
ar
X

iv
:2

40
4.

12
11

7v
2 

 [
m

at
h.

N
T

] 
 2

 M
ay

 2
02

4

ON A GOLDBACH-TYPE PROBLEM FOR THE LIOUVILLE FUNCTION

ALEXANDER P. MANGEREL

Abstract. Let λ denote the Liouville function. We show that for all sufficiently large integers N ,
the (non-trivial) convolution sum bound

∣

∣

∣

∣

∣

∣

∑

n<N

λ(n)λ(N − n)

∣

∣

∣

∣

∣

∣

< N − 1

holds. This (essentially) answers a question posed at the 2018 AIM workshop on Sarnak’s conjecture.

1. Introduction

1.1. Main result. The following problem was posed at the 2018 AIM workshop on Sarnak’s conjec-
ture.

Problem 1.1 (Problem 5.1 of [8]). Prove that for every1 N ≥ 3 the sum

Lλ(N) :=
∑

1≤n<N

λ(n)λ(N − n)

satisfies |Lλ(N)| < N − 1.

Obviously, the triangle inequality furnishes the trivial bound |Lλ(N)| ≤ N − 1. Thus, the problem
is to show any savings over this bound. This should be interpreted as an analogue of the binary
Goldbach problem for the Liouville function. Indeed, if N ≥ 4 is even and λ is replaced by the prime-
supported von Mangoldt function Λ1(n) := (logn)1n prime, then proving the existence of primes p, q
with p+ q = N is equivalent to

LΛ1
(N) :=

∑

n<N

Λ1(n)Λ1(N − n) > 0,

i.e., showing any improvement over the trivial lower bound LΛ1
(N) ≥ 0.

Problem 1.1 is far weaker than what we expect to be true regarding the convolution sum Lλ(N). It
is natural to compare the problem at hand with what ought to follow from Chowla’s conjecture [2],
namely that for all (fixed) h ≥ 1,
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λ(n)λ(n + h)
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∣
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∣

= o(1) as x→ ∞.

On the heuristic basis that the additively coupled values λ(n) and λ(N −n) ought to also be “almost
orthogonal” on average, Corrádi and Kátai [3] have conjectured that |Lλ(N)| = o(N) as N → ∞. As
far as we are aware, the only result in this direction is a theorem of De Koninck, Germán and Kátai
[4], who proved the conjecture of Corrádi and Kátai under the assumption that there are infinitely
many Siegel zeroes. Nevertheless, because N is a large shift, recent methods that have proven effective
in bounding binary correlations of multiplicative functions seem unsuited to the estimation of the
convolution sum Lλ(N), and thus the problem at hand remains non-trivial unconditionally.
Our main theorem (essentially) solves Problem 1.1.

Theorem 1.2. There exists N0 ∈ N such that if N ≥ N0 then |Lλ(N)| < N − 1.

1Actually, no range for N was given in the problem. It is our presumption that the bound was meant to be shown
for any N ≥ 3.
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Remark 1. The proof of Theorem 1.2 relies on Siegel’s theorem on lower bounds for L(1, χ), where
χ is a quadratic Dirichlet character. Thus, the lower bound N0 is ineffective. See Remark 3 below for
an indication of what sorts of effective results (up to a possible unique exception) may be proved, in
the case of N prime, using the Siegel-Tatuzawa theorem [9].

1.2. Proof strategy. We briefly explain our strategy as follows. As we show below (see Lemma 2.1),
in order to prove Theorem 1.2 we may restrict to the case in which N = pk is a prime power, and it
is instructive to first consider the case k = 1.
In this case, it is readily observed that if |Lλ(p)| = p−1 in contradiction to the claim, then λ(m)λ(p−m)
is constant over all 1 ≤ m < p, in fact

λ(m)λ(p −m) = λ(p− 1)λ(1) = λ(p− 1).

But note that if χp =
(

·
p

)

denotes the Legendre symbol modulo p then the same is true of χp:

χp(m)χp(p−m) = χp(−1)χp(m)2 = χp(p− 1).

Inspired by this comparison, we seek to show that λ(m) = χp(m) in the fundamental domain [1, p−
1] for χp. Using harmonic analysis over Z/pZ, the problem reduces to understanding the Fourier
coefficients of n 7→ λ(n)1[1,p−1](n), i.e., exponential sums

Sλ(ξ) :=
∑

1≤n<p

λ(n)e(nξ/p), ξ (mod p),

where as usual e(t) = e2πit for t ∈ R. The corresponding sums with λ replaced by χp are the twisted
Gauss sums

τ(χp, ξ) :=
∑

1≤n≤p

χp(n)e

(

nξ

p

)

= χp(ξ)τ(χp, 0), ξ (mod p).

In particular, we have the dilation property that for each 1 ≤ d < p,

τ(χp, dξ) = χp(d)τ(χp, ξ) for all ξ (mod p).

We prove below (see Proposition 2.4) that whenever |Lλ(p)| = p− 1 a similar dilation property holds
for Sλ, i.e., for each 1 ≤ d < p,

(1) Sλ(dξ) = λ(d)Sλ(ξ) for all ξ (mod p).

The upshot of this is that when d is a primitive root modulo p we may determine all of the sums
Sλ(ξ), ξ 6= 0, which turn out to coincide precisely with the twisted Gauss sums given above. In this
way, verifying (1) allows us to determine that λ(n) = χp(n) for all 1 ≤ n < p.
It turns out that, under the assumption |Lλ(p)| = p−1, proving the dilation property (1) is equivalent
to proving that

λ(m)λ(m + jp) = +1 whenever 1 ≤ m < p, 0 ≤ j < d and m ≡ −jp (mod d).

We prove that this property holds for all pairs of (m, j) in question using an iterative argument (see
Section 3). The rough idea of that argument is to

replace λ(m)λ(m + jp) by a prescribed sign multiplied by λ(m′)λ(m′ + j′p),

in which m′ ≡ −j′p (mod d) and 0 ≤ j′ < j; crucially, the parameter j has been decremented.
Iterating this procedure must eventually result in j′ = 0, in which case the product on the right-hand
side is simply +1. We are then able to calculate the original product λ(m)λ(m + jp) to be +1 as
well. Our argument may be seen as extending the “periodic” behaviour imposed on λ by the relation
λ(m)λ(p −m) = λ(p− 1) for all m ∈ {1, . . . , p− 1}, to the larger domain [1, dp− 1].
Having showed that λ(n) = χp(n) for all n < p, we return to the general prime power case N = pk,
and deduce upper bounds both for p and for k. First, the bound on p arises from the observation that
if λ(n) = χp(n) for sufficiently many n then χp is an exceptional character. We obtain a bound of the

shape L(1, χp) ≪ε p
−1/6+ε for the Dirichlet L-function of χp at s = 1 (see Proposition 2.6), which is

in contradiction to Siegel’s theorem [6, Thm. 5.28(2)] when p is sufficiently large. This is the source
of ineffectivity in our bounds on N0.
Next, we note that if pk||N then the constraint λ(n) = χp(n) can be extended to all n < pk by an
inductive argument (see Lemma 2.8 below). In particular, this implies that χp(q) = −1 at all primes
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q < pk. On the other hand, using Linnik’s theorem [6, Thm. 18.1] we can find primes q < pL, with
L an effectively computable constant, for which χp(q) = +1 necessarily (namely when q (mod p) is a
quadratic residue). This implies that k ≤ L.
It follows that N must be composed of prime powers pk with both k ≤ L and p ≤ p0, so that N itself
must be bounded by some N0, as required.

Remark 2. One may also ask2 another natural Goldbach-type problem regarding the Liouville func-
tion: given an even integer N ≥ 4, must there exist 1 ≤ a, b ≤ N with a + b = N , such that
λ(a) = λ(b) = −1? This is obviously implied by the binary Goldbach conjecture, and therefore a
weakening of it.
The methods of this paper appear to be far too rigid to address this problem directly. Note however,
that even a result of the form

(2)
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∣

∑

n<N

λ(n)λ(N − n)

∣

∣

∣

∣

∣

< N − g(N),

where g : R → R is a (sufficiently quickly) increasing function satisfying g(x) = o(x), would suffice to
prove the existence of such a pair (a, b).
Indeed, suppose otherwise. Then for any 1 ≤ n < N , (1− λ(n))(1 − λ(N − n)) = 0. It follows that

0 =
∑

1≤n<N

(1 − λ(n))(1 − λ(N − n)) = N − 1− 2
∑

n<N

λ(n) +
∑

n<N

λ(n)λ(N − n).

We deduce from this and the prime number theorem that, e.g.,
∣

∣

∣

∣

∣

∑

n<N

λ(n)λ(N − n)

∣

∣

∣

∣

∣

> N − 2

∣

∣

∣

∣

∣

∑

n<N

λ(n)

∣

∣

∣

∣

∣

≥ N − CNe−
√
logN ,

for some absolute constant C > 0 and all N ≥ 3. Thus, the choice g(x) = Cxe−
√
log x would suffice to

this end.
It is natural to ask to what extent the techniques in this paper may be perturbed in order to prove a
bound like (2). We plan to return to this problem in a future paper.

Acknowledgments

We would like to thank Oleksiy Klurman, Brad Rodgers and Mark Shusterman for useful comments
and encouragement.

2. Reduction to the prime power case

Assume for the sake of contradiction that N ≥ 2 satisfies |Lλ(N)| ≥ N − 1. By the triangle
inequality, we must have |Lλ(N)| = N − 1. Our first lemma shows that we may restrict our attention
to prime power values of N .

Lemma 2.1. Let N ∈ N and assume that there is a divisor d|N such that |Lλ(d)| < d − 1. Then
|Lλ(N)| < N − 1. In particular, if |Lλ(N)| = N − 1 then |Lλ(d)| = d− 1 for all d|N .
Moreover, if |Lλ(N)| = N − 1 then Lλ(d) = λ(d − 1)(d− 1) and λ(N − 1) = λ(d− 1) for all d|N .

Proof. Write N = md. Splitting the sum over n defining Lλ(N) according to whether m|n or not, the
triangle inequality implies

|Lλ(N)| ≤ |
∑

n<N
m|n

λ(n)λ(N − n)|+ |
∑

n<N
m∤n

λ(n)λ(N − n)|

≤ |
∑

k<d

λ(mk)λ(m(d − k))|+N − 1− |{1 ≤ n < N : m|n}|

= |
∑

k<d

λ(k)λ(d − k)|+N − 1− (d− 1) = |Lλ(d)|+N − d.

2We thank Mark Shusterman for pointing out this problem to us, which he asked in the the MathOverflow post
https://mathoverflow.net/questions/307479/goldbachs-conjecture-for-the-liouville-function.

https://mathoverflow.net/questions/307479/goldbachs-conjecture-for-the-liouville-function
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Thus, if |Lλ(d)| < d− 1 then |Lλ(N)| < d− 1 +N − d = N − 1, as required.
For the second claim, since each summand of Lλ(d) is ±1 and there are d− 1 terms in its support, we
have |Lλ(d)| = d− 1 if and only if

λ(n)λ(d − n) = λ(1)λ(d − 1) = λ(d − 1) for all 1 ≤ n < d.

It thus follows that Lλ(d) = λ(d − 1)(d− 1), as claimed. Finally, since

λ(n)λ(N − n) = λ(N − 1) for all n < N,

specialising to n = km for k ∈ N, we find

λ(N − 1) = λ(km)λ(m(d − k)) = λ(k)λ(d − k) = λ(d− 1),

as required. �

In view of Lemma 2.1, we may analyse the condition |Lλ(N)| = N − 1 by considering the implied
constraints |Lλ(p

j)| = pj − 1, whenever pj |N . In the next two subsections we will obtain constraints
both on the size of p|N , as well as the multiplicity k such that pk||N .

2.1. Bounds on the size of prime divisors of N . In the sequel, write

Sλ(ξ) :=
∑

1≤n<p

λ(n)e(nξ/p), ξ ∈ Z/pZ.

For the purposes of illustration let us observe that the condition |Lλ(p)| = p − 1 imposes rigid
constraints on the exponential sums Sλ(ξ). Indeed, we have that

1

p

∑

ξ (mod p)

Sλ(ξ)
2 =

∑

1≤n,m<p

λ(n)λ(m)
1

p

∑

ξ (mod p)

e

(

(n+m)ξ

p

)

=
∑

1≤n<p

λ(n)λ(p− n) = Lλ(p),

since n+m ≡ 0 (mod p) with 1 ≤ n,m < p if and only if n+m = p. As noted in the proof of Lemma
2.1, if |Lλ(p)| = p− 1 then

(3) λ(m)λ(p −m) = λ(p− 1)λ(1) = λ(p− 1) for all 1 ≤ m < p.

and also Lλ(p) = λ(p− 1)(p− 1). Therefore,

λ(p− 1)

p

∑

ξ (mod p)

Sλ(ξ)
2 = p− 1 =

1

p

∑

ξ (mod p)

|Sλ(ξ)|2.

To motivate our forthcoming arguments, we explicitly observe the following relations, which will imply
further rigidity in the values of Sλ(ξ).

Lemma 2.2. Let p > 2 be prime and let 1 ≤ m < p. Suppose |Lλ(p)| = p− 1. Then:

(a) if m is odd then λ(p+m) = λ(m),
(b) if m ≡ p (mod 3) then λ(2p+m) = λ(m),
(c) if m ≡ 2p (mod 3) then λ(2p−m) = λ(p− 1)λ(m).

Proof. (a) If 1 ≤ m < p is odd then (p±m)/2 ∈ Z ∩ [1, p− 1], and we have

p =
p+m

2
+
p−m

2
.

As |Lλ(p)| = p− 1, using (3) with m replaced by (p−m)/2 we get

λ(p− 1) = λ

(

p+m

2

)

λ

(

p−m

2

)

= λ(p+m)λ(p−m).

Since also λ(p− 1) = λ(m)λ(p −m), the first claim follows.
(b) The argument here is similar: if m ≡ p (mod 3) then (2p+m)/3, (p−m)/3 ∈ Z ∩ [1, p− 1] and
also

p =
2p+m

3
+
p−m

3
,

whence we obtain by (3) that

λ(p− 1) = λ

(

2p+m

3

)

λ

(

p−m

3

)

= λ(2p+m)λ(p−m) = λ(p− 1)λ(2p+m)λ(m),
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from which the claim follows.
(c) Suppose m ≡ 2p (mod 3). Again, the above idea yields

λ(p− 1) = λ

(

2p−m

3

)

λ

(

p+m

3

)

= λ(2p−m)λ(p+m).

If m is odd then λ(p+m) = λ(m) by (a), and the claim follows immediately. Otherwise, if m is even
then note that since p > 2, p−m is odd and hence (a) again yields

λ(2p−m) = λ(p+ (p−m)) = λ(p−m) = λ(p− 1)λ(m).

Thus, claim (c) follows in this case as well. �

The three relations given in Lemma 2.2 allows us to deduce the following.

Lemma 2.3. Let p > 3 and assume that |Lλ(p)| = p− 1. Then

(4) Sλ(3ξ) = Sλ(2ξ) = −Sλ(ξ) for all ξ (mod p).

In particular, for any j, k ≥ 0 we have

Sλ(3
j) = (−1)jSλ(1), Sλ(2

k) = (−1)kSλ(1).

Proof. The second claim follows by induction on j and k from the former, so it suffices to prove (4).
First, note that as p > 3 the maps ξ 7→ 2ξ and ξ 7→ 3ξ are both bijections on Z/pZ. By Plancherel’s
theorem,

(5)
1

p

∑

ξ (mod p)

|Sλ(mξ)|2 =
1

p

∑

ξ′ (mod p)

|Sλ(ξ
′)|2 = p− 1 for all m ∈ {1, 2, 3}.

Next, note that

1

p

∑

ξ (mod p)

Sλ(2ξ)Sλ(ξ) =
∑

m,n<p

λ(n)λ(m)
1

p

∑

ξ (mod p)

e

(

ξ
2n−m

p

)

=
∑

m,n<p
2n≡m (mod p)

λ(m)λ(n).

Among m,n < p with 2n ≡ m (mod p) we have that either 2n = m precisely when m is even, or else
2n = m+ p precisely when m is odd. If 2n = m then

λ(n)λ(m) = λ(m/2)λ(m) = −λ(m)2 = −1,

while if 2n = p+m then by Lemma 2.2(a) we have

λ(n)λ(m) = λ

(

p+m

2

)

λ(m) = −λ(p+m)λ(m) = −1.

It follows that

1

p

∑

ξ (mod p)

Sλ(2ξ)Sλ(ξ) =
∑

m<p
m even

λ(m)λ(m/2) +
∑

m<p
m odd

λ(m)λ

(

p+m

2

)

= −







∑

m<p
m even

1 +
∑

m<p
m odd

1






= −(p− 1).

This latter sum being real-valued, it follows from this and (5) that

1

p

∑

ξ (mod p)

|Sλ(2ξ) + Sλ(ξ)|2 =
1

p

∑

ξ (mod p)

(|Sλ(ξ)|2 + |Sλ(2ξ)|2 + 2Re(Sλ(2ξ)Sλ(ξ)))

= 2(p− 1)− 2(p− 1) = 0.

Therefore, Sλ(2ξ) = −Sλ(ξ) for all ξ (mod p), as claimed.
The proof with 2 replaced by 3 follows similar lines, using Lemma 2.2. Here, instead we must treat
pairs 1 ≤ n,m < p with 3n ≡ m (mod p), or equivalently 3n = m + jp, where 0 ≤ j < 3 and
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m + jp ≡ 0 (mod 3) in each case. (Note that as p > 3, the residue classes 0,−p,−2p (mod 3) cover
all integers 1 ≤ m < p.) Precisely,

1

p

∑

ξ (mod p)

Sλ(3ξ)Sλ(ξ) =
∑

m,n<p

λ(n)λ(m)
1

p

∑

ξ (mod p)

e

(

ξ
3n−m

p

)

=
∑

m,n<p
3n≡m (mod p)

λ(m)λ(n)

=









∑

m<p
3|m

λ(m/3)λ(m) +
∑

m<p
m≡−2p (mod 3)

λ(m)λ

(

2p+m

3

)

+
∑

m<p
m≡−p (mod 3)

λ(m)λ

(

p+m

3

)









.

By (b) and (c) of Lemma 2.2,

λ(m)λ(m/3) = λ(3)λ(m)2 = −1 if 3|m,

λ(m)λ

(

2p+m

3

)

= λ(3)λ(m)2 = −1 if m ≡ −2p ≡ p (mod 3),

λ(m)λ

(

p+m

3

)

= λ(m)λ(p − 1)λ

(

2p−m

3

)

= λ(3)λ(m)2 = −1 if m ≡ −p ≡ 2p (mod 3).

We thus conclude that

1

p

∑

ξ (mod p)

Sλ(3ξ)Sλ(ξ) = −









∑

m<p
3|m

1 +
∑

m<p
m≡−2p (mod 3)

1 +
∑

m<p
m≡−p (mod 3)

1









= −(p− 1).

The claim that Sλ(3ξ) = −Sλ(ξ) for all ξ (mod p) now follows as it did with 2ξ. �

It is natural, then, to speculate that 2 or 3 may be replaced by other primes as well. In fact, we
will prove the following more general result in the next section.

Proposition 2.4. Let p be a prime with |Lλ(p)| = p− 1, and let 1 ≤ d < p. Then we have

(6) Sλ(dξ) = λ(d)Sλ(ξ) for all ξ (mod p).

Proposition 2.4 will be beneficial in light of the following result.

Lemma 2.5. Let p > 2 be a prime satisfying |Lλ(p)| = p− 1. Suppose 2 ≤ d < p is a primitive root
modulo p such that (6) holds. Then λ(n) = χp(n) for all n < p.

Proof. As d is a primitive root, every ξ 6≡ 0 (mod p) can be written as ξ ≡ dk (mod p) for some
1 ≤ k ≤ p − 1, and thus Sλ(ξ) = Sλ(d

k). By (6) and induction, it follows that Sλ(d
k) = λ(d)kSλ(1)

for all k ≥ 1. In particular, |Sλ(ξ)| = |Sλ(1)| for all ξ 6≡ 0 (mod p).
On the basis of these observations, we first verify that λ(d) = −1. Since p is odd,

0 =
∑

ξ (mod p)

Sλ(ξ) = Sλ(0) +

p−1
∑

k=1

Sλ(d
k) = Sλ(0) + Sλ(1)

p−1
∑

k=1

λ(d)k

= Sλ(0) + (p− 1)Sλ(1)1λ(d)=+1.(7)

Now supposing λ(d) = +1 then we have Sλ(0) = −(p− 1)Sλ(1). On the other hand, since |Sλ(ξ)| =
|Sλ(1)| for all ξ 6≡ 0 (mod p), we find using (5) that

p(p−1) =
∑

ξ (mod p)

|Sλ(ξ)|2 = |Sλ(0)|2+ |Sλ(1)|2(p−1) = |Sλ(1)|2((p−1)2+p−1) = |Sλ(1)|2p(p−1).

We deduce that |Sλ(1)| = 1, and thus |Sλ(0)| = p − 1. But if p = 3 we have |Sλ(0)| = 0 6= 2 since
λ(1) = −λ(2), and for p > 3 we have

|Sλ(0)| =

∣

∣

∣

∣

∣

∣

∑

1≤n<p

λ(n)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

3≤n<p

λ(n)

∣

∣

∣

∣

∣

∣

≤ p− 3 < p− 1,
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a contradiction. Thus, we conclude that λ(d) = −1, and it follows further from (7) that Sλ(0) = 0.
Next, as d is a primitive root and χp is a non-principal character, χp(d) = −1. Hence,

Sλ(d
k) = λ(d)kSλ(1) = (−1)kSλ(1) = χp(d)

kSλ(1) for all k.

Now for each n < p, we have using Sλ(0) = 0 that

λ(n) =
∑

m<p

λ(m)1m≡n (mod p) =
1

p

∑

ξ (mod p)

e

(

−nξ
p

)

∑

m<p

λ(m)e

(

mξ

p

)

=
1

p

∑

ξ (mod p)
ξ 6≡0 (mod p)

Sλ(ξ)e

(

−nξ
p

)

.

Reparametrising ξ ∈ (Z/pZ)× as dk (mod p) for 1 ≤ k ≤ p− 1, we get

λ(n) =
1

p

p−1
∑

k=1

Sλ(d
k)e

(

−nd
k

p

)

=
Sλ(1)

p

p−1
∑

k=1

χp(d)
ke

(

−nd
k

p

)

=
Sλ(1)

p

∑

ξ (mod p)

χp(ξ)e

(

−nξ
p

)

.

Using standard relations for Gauss sums, we readily find that for any n < p,

λ(n) = χp(n) ·
Sλ(1)τ(χp)

p
,

where, as usual,

τ(χp) :=
∑

a (mod p)

χp(a)e

(

a

p

)

.

If we set n = 1 then we plainly have Sλ(1)τ(χp) = p, and the claim follows. �

There are clearly two ways in which Lemma 2.5 may be used. One is to derive information about
the Liouville function using corresponding behaviour of Dirichlet characters; this appears hard to do
since we only know that λ and χp are comparable within the fundamental domain [1, p− 1].
The other way is to obtain constraints on the behaviour of Dirichlet characters from the rigidity of
the Liouville function, in particular at primes. In this direction we deduce the following.

Proposition 2.6. There are effectively computable constants C1, p1 > 0 such that the following holds:
if p ≥ p1 is a prime for which |Lλ(p)| = p− 1 then L(1, χp) ≤ C1(log p)/p

1/6.

Remark 3. We highlight here the following (consequence of a) well-known result of Tatuzawa [9]:
with the exception of at most one prime p̃, given δ ∈ (0, 1/12] we have for all p ≥ e1/δ, p 6= p̃, that

L(1, χp) ≥
3δ

5pδ
.

This allows us to give an effective range (outside of a possible lone exception) for the possible primes p
for which |Lλ(p)| = p− 1. For instance, taking δ = 1/12, the above bound combines with Proposition
2.6 to show that when p ≥ max{p1, e12} and p 6= p̃,

p1/6 ≤ 20C1 log p = 120C1 log(p
1/6).

When p ≥ e12 we have z := p1/6 > 4. Setting R := 120C1, we find that z < R log z < Rz1/2. We may
thus conclude that p < max{p1, e12, R12}, provided p 6= p̃.
A back-of-the-envelope calculation invoking explicit bounds for (a) the Riemann zeta function on the
critical line (see e.g. [11]) and (b) the constant in the Pólya-Vinogradov inequality (see e.g. [1]) yield
the constants C1 = 12.5 and p1 = e24 here, which means that any p 6= p̃ with p > e88 satisfies
|Lλ(p)| < p− 1.

The proof of Proposition 2.6 is based on the following result, which makes more precise an old
result due to Linnik and Vinogradov [7].

Lemma 2.7. There are effectively computable constants p2, C2 > 0 such that if p ≥ p2 then
∣

∣

∣

∣

∣

∣

∑

n<p

(

1− n

p

)

∑

d|n
χp(d)−

p

2
L(1, χp)

∣

∣

∣

∣

∣

∣

≤ C2p
5/6 log p.
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Proof. We follow the strategy of [7]. Expanding the smoothed convolution sum gives

Sp :=
∑

n<p

(

1− n

p

)

(1 ∗ χp)(n) =
∑

d<p

χp(d)
∑

m<p/d

(

1− m

p/d

)

.

Let σ0 := 1 + 1/ log p. Using the Mellin identity

∑

n≤y

(

1− n

y

)

=
1

2πi

∫ σ0+i∞

σ0−i∞

ys

s(s+ 1)
ζ(s)ds,

we obtain that

Sp =
1

2πi

∫ σ0+i∞

σ0−i∞

ps

s(s+ 1)
ζ(s)





∑

d<p

χp(d)

ds



 ds.

Truncating the integral at Im(s) = p yields an error term of size

≪ p





∑

d<p

1

p





∫

|t|>p

|ζ(σ0 + it)|dt
t2

≪ (log p)2.

We shift the contour to the line Re(s) = 1/2, picking up a residue at the pole s = 1, of size

p

2

∑

d<p

χp(d)

d
=
p

2
L(1, χp) +O (

√
p log p) ,

the error term arising from partial summation and the Pólya-Vinogradov inequality. Using the stan-
dard bounds (see e.g. [10, Thms. II.3.8-3.9])

|ζ(σ + it)| =







Oε

(

(2 + |t|)
1
3 (1−σ)+ε

)

for 1
2 < σ ≤ 1,

O(log(2 + |t|)) for σ ≥ 1− 1/ log p, 1 ≤ |t| ≤ p,

the horizontal lines at height Im(s) = ±p together contribute

≤ 1

p2

∫ σ0

1/2

|ζ(u+ ip)|pu




∑

d<p

1

du



 du≪ε
1

p

∫ 1−1/ log p

1/2

p
1
3
(1−u)+ε du

1− u
+

1

p

∫ σ0

1−1/ log p

(log p)2du≪ 1√
p
.

Summarising the above, we so far have

Sp =
p

2
L(1, χp) +

1

2πi

∫ 1/2+ip

1/2−ip

ps

s(s+ 1)
ζ(s)





∑

d<p

χp(d)

ds



 ds+O (
√
p log p) .

Next, suppose s = 1/2 + it, with |t| ≤ p, and set

Sχp
(u) :=

∑

n≤u

χp(n), u ≥ 1.

Let 1 ≤ y ≤ p3/4 be a parameter to be chosen shortly. We have by a dyadic decomposition and partial
summation that

∣

∣

∣

∣

∣

∣

∑

d<p

χp(d)

ds

∣

∣

∣

∣

∣

∣

≤
∑

d≤y

1√
d
+

∑

y≤2j≤p

∣

∣

∣

∣

∣

∣

∑

2j≤d<2j+1

χp(d)

d1/2+it

∣

∣

∣

∣

∣

∣

≪ y1/2 +
∑

y≤2j≤p

(

|Sχp
(2j+1)|
2j+1

+
|Sχp

(2j)|
2j

+ (1/2 + |t|)
∫ 2j+1

2j

|Sχp
(u)|

u3/2
du

)

.

Applying the Pólya-Vinogradov inequality max1≤u≤p |Sχp
(u)| ≪ √

p log p, we obtain the upper bound

≪ y1/2 +
√
p(log p)

∑

y≤2j≤p

(

1

2j
+ (1/2 + |t|)2−j/2

)

≪ y1/2 + (1 + |t|)
√
p log p
√
y

.
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Inserting this together with the subconvexity bound

|ζ(1/2 + it)| ≪ (|t|+ 2)1/6 log(2 + |t|), |t| ≤ p,

(see e.g., [10, Cor. II.3.7]) and setting y := p2/3(log p)2, we obtain
∣

∣

∣

∣

∣

∣

1

2πi

∫ 1/2+ip

1/2−ip

ps

s(s+ 1)
ζ(s)





∑

d<p

χp(d)

ds



 ds

∣

∣

∣

∣

∣

∣

≪ p1/2y1/2
∫

|t|≤p

(|t|+ 2)1/6 log(|t|+ 2)

(2 + |t|)2 dt+
p(log p)√

y

∫

|t|≤p

(2 + |t|)7/6 log(|t|+ 2)

(2 + |t|)2 dt

≪ p5/6 log p.

Collecting the above estimates yields

Sp =
p

2
L(1, χp) +O

(

p5/6 log p
)

,

as claimed. �

Proof of Proposition 2.6. Suppose |Lλ(p)| = p − 1. Since p is prime we can find a primitive root
2 ≤ d < p modulo p, and by Proposition 2.4, d satisfies (6) for all ξ (mod p). Lemma 2.5 therefore
implies that λ(n) = χp(n) for all n < p.
Since 1 ∗ λ is the indicator function for the set of perfect squares, by Lemma 2.7 we find that

p

2
L(1, χp) +O(p5/6 log p) =

∑

n<p

(

1− n

p

)

∑

d|n
λ(d) =

∑

n<p

(

1− n

p

)

(1 ∗ λ)(n) <
∑

m2<p

1 <
√
p.

We deduce from this that L(1, χp) ≪ p−1/2 + (log p)p−1/6 ≪ (log p)p−1/6, as claimed. �

2.2. Bounds on the multiplicity of prime divisors of N . We next extend Lemma 2.5 to higher
powers of p.

Lemma 2.8. Let p be a prime and assume that |Lλ(p
k)| = pk−1 for some k ≥ 1. Then λ(n) = χp(n)

for all n < pk with p ∤ n.

Proof. By Lemma 2.1, we know that |Lλ(p
j)| = pj − 1 and λ(pj − 1) = λ(p− 1) for all 1 ≤ j ≤ k. In

the case j = 1, combining Propositions 2.4 and 2.5, we see that λ(n) = χp(n) for all n < p. We now
extend this to show that λ(n) = χp(n) for all n < pk with p ∤ n.
To do this, we prove by induction on 1 ≤ j ≤ k that χp(q) = −1 for all primes q < pj , q 6= p.
The outcome of this induction is that λ(q) = χp(q) for all q < pk, q 6= p, so that by complete
multiplicativity we obtain λ(n) = χp(n) for all n < pk with p ∤ n. The base case j = 1 follows
immediately from λ(n) = χp(n) for all 1 ≤ n < p, which we have just established.
Assume therefore that χp(q) = −1 for all q < pi, q 6= p, for all 1 ≤ i < j. We next prove that this
is the case for all q < pj , q 6= p, or equivalently that χp(q) = −1 for all primes pj−1 < q < pj . Note
that by complete multiplicativity, the inductive assumption actually implies that λ(n) = χq(n) for all
n that satisfy P+(n) < pj−1 with p ∤ n. Now, we know that

λ(n)λ(pj − n) = λ(pj − 1) = λ(p− 1)

for all n < pj with p ∤ n. We observe furthermore that for any n < pj with p ∤ n, P+(n/P+(n)) < pj−1,
since either P+(n) < pj−1 or else n has precisely one prime factor pj−1 < q < pj , and necessarily
n/q < p. It follows by the inductive assumption that whenever 1 ≤ n < pj with p ∤ n,

λ(p− 1) = λ(n)λ(pj − n) = λ(P+(n))λ(P+(pj − n))λ

(

n

P+(n)

)

λ

(

pj − n

P+(pj − n)

)

= χp

(

n

P+(n)

)

χp

(

pj − n

P+(pj − n)

)

= χp(P
+(n))χp(P

+(pj − n))χp (n)χp

(

pj − n
)

= χp(P
+(n))χp(P

+(pj − n))χp(p− 1) = χp(P
+(n))χp(P

+(pj − n))λ(p− 1).

We deduce, therefore, that

(8) χp(P
+(n)) = χp(P

+(pj − n)) for all 1 ≤ n < pj , p ∤ n,
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which we will presently use to show that χp(q) = −1 for all pj−1 < q < pj .
Let us enumerate the primes in the interval (pj−1, pj) as {q1, . . . , qR}. We prove by a second induction
on 1 ≤ r ≤ R that χp(qr) = −1. In the base case r = 1, observe that if n1 := ⌊pj/q1⌋q1, which is
coprime to p, then as n1/q1 < p we have P+(n1) = q1 (recalling that j > 1 here). Moreover,

pj − n1 = pj − q1

⌊

pj

q1

⌋

= q1

{

pj

q1

}

< q1.

Thus, P+(pj − n1) < q1, and since q1 is the minimal prime > pj−1 (and p ∤ pj − n1), we have
P+(pj − n1) < pj−1. By our inductive assumption on j, we have χp(P

+(pj − n1)) = −1, and hence
by (8), χp(q1) = χp(P

+(n1)) = −1.
Now supposing that χp(qs) = −1 for all 1 ≤ s ≤ r, we find by the same construction that if nr+1 :=
⌊pj/qr+1⌋qr+1 then P+(nr+1) = qr+1 whereas

P+(pj − nr+1) = P+

(

qr+1

{

pj

qr+1

})

< qr+1.

It follows that P+(pj−nr+1) is either qs for some 1 ≤ s ≤ r, or else it is < pj−1. Either by our inductive
assumption on r or on j, we obtain χp(P

+(pj − nr+1)) = −1, and thus χp(qr+1) = −1 as well. By
induction on r, we obtain χp(qr) = −1 for all 1 ≤ r ≤ R, and thus for all primes pj−1 < q < pj . By
induction on j, the claim follows. �

Corollary 2.9. There are effectively computable constants p3 and L such that:

(1) if p ≥ p3 and |Lλ(p
k)| = pk − 1 then k ≤ 5, and

(2) if p < p3 and |Lλ(p
k)| = pk − 1 then k ≤ L.

Proof. Suppose |Lλ(p
k)| = pk − 1. By the previous lemma we obtain that χp(n) = λ(n) for all n < pk,

and in particular χp(q) = −1 for all primes q < pk.
By Heath-Brown’s version of Linnik’s theorem [5], there is an effectively computable constant c > 0
and a prime q < cp5.5 such that q ≡ 1 (mod p). If q < pk then we obtain the contradiction −1 =
χp(q) = χp(1) = +1. We therefore conclude that pk < q < cp5.5. This implies that either k ≤ 5, or
else p < p3, with p3 := c2. Moreover, in the latter case p < p3 we also have that 2k−5.5 < c, so that
k ≤ L for L := 5.5 + log c

log 2 . �

Proof of Theorem 1.2. Suppose N ≥ 2 satisfies |Lλ(N)| = N − 1. By Lemma 2.1, we have |Lλ(p
k)| =

pk − 1 for each prime power pk||N , and in particular |Lλ(p)| = p− 1 for each prime p|N .
By Proposition 2.6, there is a(n effectively computable) constant C > 0 such that

L(1, χp) ≤ C(log p)/p1/6 for each p|N
(taking C ≥ C1 as needed to cover the range p < p1). But by Siegel’s theorem [6, Thm. 5.28(2)], this
is impossible as soon as p ≥ p0, where p0 is a(n ineffective) constant. It follows that all primes p|N
satisfy p < p0, as claimed.
Furthermore, by Corollary 2.9 there is a(n effectively computable) constant L > 0 such that if p < p0
and pk||N then k ≤ L. It follows that

N =
∏

pk||N
pk ≤

(

∏

p<p0

p

)L

=: N0.

Therefore, if N > N0 then |Lλ(N)| < N − 1, as claimed. �

Remark 4. The ineffectivity inherent in our main result is due to the possible presence of Siegel zeros,
which renders Siegel’s theorem ineffective. This seems compelling in that, typically, Siegel zeros are
useful for establishing non-trivial estimates about correlations of the Liouville function. For example,
in regards to the convolution sums treated in this paper, De Koninck, Germán and Kátai proved
[4] that if (pk)k is a sequence of exceptional moduli, and if ηk := (1 − βk) log pk, then for any N ∈
(p10k , p

c log log(1/ηk)
k ] (albeit with the condition (N, pk) = 1),

∣

∣

∣

∣

∣

1

N

∑

n<N

λ(n)λ(N − n)

∣

∣

∣

∣

∣

≤ 1

log log(1/ηk)
+ ok→∞(1).
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However, besides the restriction (N, pk) = 1 not suiting our purposes here, our results are limited by
the fact that λ(n) = χpk

(n) only in the limited range 1 ≤ n < pk. It is unclear whether the result of
[4], for example, which requires a broader range in which λ behaves periodically in some sense, may
be applicable in the present circumstances in order to render our theorem effective.

3. Proof of Proposition 2.4

In this section we prove Proposition 2.4. As we show later, it suffices to consider the case when d
is prime. Having shown the cases d = 2 and 3 in Lemma 2.3, we focus here on d > 3.

3.1. An iterative argument for d = q prime. As previously, let p > 3 be a prime with |Lλ(p)| =
p− 1. Let 3 < q < p be an odd prime. We wish to show that

Sλ(qξ) = −Sλ(ξ) for all ξ (mod p).

As in the proof of Lemma 2.3, it suffices to show that

−(p− 1) =
1

p

∑

ξ (mod p)

Sλ(qξ)Sλ(ξ) =
∑

m,n<p

λ(m)λ(n)
1

p

∑

ξ (mod p)

e

(

ξ
qn−m

p

)

=
∑

m,n<p
qn≡m (mod p)

λ(m)λ(n).

As before, we split the set of 1 ≤ m,n < p according to the choice of 0 ≤ j < q for which qn = m+ jp;
in each case we have m ≡ −jp (mod q), and thus we must show that

−(p− 1) =

q−1
∑

j=0

∑

m<p
m≡−jp (mod q)

λ(m)λ

(

m+ jp

q

)

= −
q−1
∑

j=0

∑

m<p
m≡−jp (mod q)

λ(m)λ (m+ jp) .

Equivalently, it is our goal to prove that for every 0 ≤ j < q and 1 ≤ m < p we have

(9) λ(m)λ(m + jp) = +1 whenever m ≡ −jp (mod q).

For 1 ≤ r ≤ q − 1 we define the sets

Aq,r := {(m, j) ∈ {1, . . . , p−1}×{0, . . . , q−1} :
pq

r + 1
< m+jp <

pq

r
}, Aq,q := {(m, 0) : 1 ≤ m < p}.

Note that the sets {Aq,r}1≤r≤q partition the set of all pairs (m, j) ∈ {1, . . . , p− 1}× {0, . . . , q− 1}, in
view of the following observations:

(a) for each such pair, 1 ≤ m+ jp < pq, and therefore must either satisfy 1 ≤ m+ jp < p (so j = 0),
or else pq/(r + 1) ≤ m+ jp < pq/r for some 1 ≤ r ≤ q − 1;

(b) as p and q are prime we can never have m+ jp = pq/(r+1) for any 1 ≤ r ≤ q−1 unless r = q−1,
but in this case m+ jp = p is not solvable with 1 ≤ m < p− 1;

(c) if (m, j) /∈ Aq,r for all 1 ≤ r ≤ q − 1 then 1 ≤ m+ jp < p, equivalently, j = 0 and (m, 0) ∈ Aq,q.

For each 1 ≤ r ≤ q − 1 define a map ψr on pairs (m, j) ∈ Aq,r via

ψr(m, j) :=

(⌈

rm

p

⌉

p− rm, q − jr −
⌈

rm

p

⌉)

,

where, as usual, given t ∈ R we denote by ⌈t⌉ the least integer k ≥ t.

Lemma 3.1. Let (m, j) ∈ Aq,r for some 1 ≤ r ≤ q − 1, and set (m′, j′) := ψr(m, j). The following
properties hold:

(a) m′ + j′p ≡ 0 (mod q) whenever m+ jp ≡ 0 (mod q),
(b) m′ = {−rm/p}p = p (1− {rm/p}),
(c) (m′, j′) ∈ ⋃r+1≤s≤q Aq,s, and

(d) if m+ jp ≡ 0 (mod q) then λ(m+ jp) = λ(r)λ(p − 1)λ(m′ + j′p).

In fact, (d) may be rewritten as

(10) λ(m)λ(m + jp) =

[

λ(rm)λ

(

p

{

rm

p

})]

λ(m′)λ(m′ + j′p).
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Proof. (a) We observe that

(11) m′ + j′p =

(⌈

rm

p

⌉

p− rm

)

+

(

q − jr −
⌈

rm

p

⌉)

p = p(q − jr)− rm = pq − r(m+ jp),

so that if m+ jp ≡ 0 (mod q) then m′ + j′p ≡ 0 (mod q) as well.
(b) Note that since r,m < p, rm/p /∈ Z. Whenever α /∈ Z we have

⌈α⌉ = α+ 1− {α} = α+ {−α},

so we therefore conclude that

m′ = p

(

rm

p
+

{

−rm
p

})

− rm = p

{

−rm
p

}

= p

(

1−
{

rm

p

})

,

as required.
(c) Using pq/(r + 1) < m+ jp < pq/r together with (11), we deduce that

m′ + j′p < pq − r · pq

r + 1
= pq

(

1− r

r + 1

)

=
pq

r + 1

m′ + j′p > pq − r · pq
r

= 0.

Together with (b), the latter bound implies that 1 ≤ m′ < p. Furthermore,

j′ = q −
(

jr +

⌈

rm

p

⌉)

≥ q − 1− r

p
(jp+m) > q − 1− r

p
· pq
r

= −1,

so as j′ is an integer with j′ > −1, and ⌈rm/p⌉ ≥ 1, we have 0 ≤ j′ < q. As 0 < m′+ j′p < pq/(r+1),
it follows that (m′, j′) ∈ Aq,s for some r + 1 ≤ s ≤ q, as required.
(d) Since (m, j) ∈ Aq,r and q|(m+ jp), we see that

1 ≤ m+ jp

q
<

1

q
· pq
r

=
p

r
.

It follows that (rm + rjp)/q ∈ Z ∩ [1, p− 1], and so using (3),

λ(m+ jp) = λ(qr)λ

(

rm+ rjp

q

)

= λ(qr)λ(p − 1)λ

(

p− rm + rjp

q

)

= λ(qr)λ(p − 1)λ

(

(q − rj)p− rm

q

)

= λ(r)λ(p − 1)λ

((⌈

rm

p

⌉

p− rm

)

+ p

(

q − rj −
⌈

rm

p

⌉))

= λ(r)λ(p − 1)λ(m′ + j′p),

as claimed.
To prove (10), it suffices to note using (b) that

λ(m′) = λ(p− p{rm/p}) = λ(p− 1)λ(p{rm/p}),

after which the identity follows immediately from (c) upon multiplying both sides by λ(m). �

The upshot of Lemma 3.1(c) is that ψr maps Aq,r to a set of pairs (m′, j′) for which m′ + j′p has
strictly decreased (and in particular (m′, j′) belongs to Aq,r′ where r

′ > r). We see therefore that by
iteratively composing maps ψr, r < q, we must eventually find an image pair in Aq,q, i.e., where the
j component is 0.
With this in mind, we introduce the following definition.

Definition 1. We say that the signature of a pair (m, j), 1 ≤ m < p and 0 ≤ j < q, is the tuple
(r1, . . . , rk) such that 1 ≤ r1 < r2 < · · · < rk < q, with

ψrk ◦ · · · ◦ ψr1(m, j) = (m̃, 0) ∈ Aq,q,

for some 1 ≤ m̃ < p. (Here, we implicitly have that the indices ri are determined such that (m, j) ∈
Aq,r1 , ψr1(m, j) ∈ Aq,r2 , ψr2 ◦ ψr1(m, j) ∈ Aq,r3 , and so on.)
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Lemma 3.2. Let (m, j) have signature (r1, . . . , rk). Then

λ(m)λ(m + jp) =

k−1
∏

i=0

λ(miri+1)λ

(

p

{

ri+1mi

p

})

,

where we have set

(m0, j0) := (m, j), (mi+1, ji+1) := ψri+1
(mi, ji) for 0 ≤ i ≤ k − 1.

Proof. By iteratively invoking (10), we obtain

λ(m)λ(m + jp) = λ(m0)λ(m0 + j0p) =

[

λ(m0r1)λ

(

p

{

r1m0

p

})]

λ(m1)λ(m1 + j1p)

=
1
∏

i=0

[

λ(miri+1)λ

(

p

{

ri+1mi

p

})]

λ(m2)λ(m2 + j2p)

= · · · =
k−1
∏

i=0

[

λ(miri+1)λ

(

p

{

ri+1mi

p

})]

λ(mk)λ(mk + jkp).

By the definition of signature, we have jk = 0, and thus λ(mk)λ(mk + jkp) = λ(mk)
2 = +1. The

claim follows. �

3.2. Periodicity via dilation. In connection with Lemma 3.1 we next show the following lemma,
which shows that if Sλ satisfies the dilation property in Proposition 2.4 with d = r < p then λ exhibits
mod p periodicity in [1, rp− 1].

Lemma 3.3. Assume that 1 ≤ r < p satisfies

(12) Sλ(rξ) = λ(r)Sλ(ξ) for all ξ (mod p).

Then for any 1 ≤ m < p, λ(p{rm/p}) = λ(r)λ(m).

Proof. Note that by making the bijective change of variables ξ 7→ r−1ξ (mod p) and rearranging, (12)
yields

Sλ(r
−1ξ) = λ(r)Sλ(ξ) for all ξ (mod p).

From this, we derive that

0 = Sλ(r
−1ξ)− λ(r)Sλ(ξ) =

∑

n<p

λ(n)e(nr−1ξ/p)−
∑

m<p

λ(mr)e(mξ/p)

=
∑

m<p

e (mξ/p)









∑

n<p
n≡rm (mod p)

λ(n) − λ(mr)









.

Since this holds for all ξ (mod p) we deduce that for all 1 ≤ m < p,

(13)
∑

n<p
n≡rm (mod p)

λ(n) = λ(m)λ(r).

On the other hand, the condition n ≡ rm (mod p) with 1 ≤ n < p is equivalent to n = p{rm/p}.
Combining these two facts, we deduce that

λ(p{rm/p}) = λ(m)λ(r),

as claimed. �

We are now in a position to prove Proposition 2.4.

Proof of Proposition 2.4. We proceed by induction on d. When d = 1 there is nothing to prove. Thus,
assume that for every 1 ≤ d < q the equation

(14) Sλ(dξ) = λ(d)Sλ(ξ) holds for all ξ (mod p).
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We thus must establish (14) for d = q (provided q < p).
First, we observe that if q is composite then writing q = ab with 1 < a, b < q we have that for any ξ
(mod p),

Sλ(qξ) = Sλ(a(bξ)) = λ(a)Sλ(bξ) = λ(a)λ(b)Sλ(ξ) = λ(q)Sλ(ξ),

as required. Hence, the claim holds whenever q is composite.
Thus, we may assume that q is prime. Assuming the induction hypothesis, we see that for any 1 ≤ r < q
(necessarily coprime to p) we have

Sλ(rξ) = λ(r)Sλ(ξ) for all ξ (mod p).

By Lemma 3.3, we see that for any 1 ≤ m < p,

(15) λ (p {rm/p}) = λ(r)λ(m) = λ(rm),

a fact that we will use momentarily.
As discussed above, in order to prove (14) holds with d = q it suffices to show that

λ(m)λ(m + jp) = +1 for all 0 ≤ j < q, 1 ≤ m < p with m ≡ −jp (mod q).

Now given 1 ≤ m < p and 0 ≤ j < q let (r1, . . . , rk) denote the signature of (m, j), recalling that
1 ≤ r1 < · · · < rk < q. By Lemma 3.2, we have

λ(m)λ(m + jp) =

k−1
∏

i=0

λ(miri+1)λ

(

p

{

ri+1mi

p

})

.

But since ri+1 < q for all 0 ≤ i ≤ k − 1, we know that (15) holds with each r = ri+1. Thus, every
factor in the right-hand product is simply +1, and hence λ(m)λ(m + jp) = +1, as required. Hence,
(14) holds when q is prime as well.
The inductive claim therefore follows in all cases, and so by induction, the proof is complete. �
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