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Abstract. This paper studies the geometry of binary hyperdimensional computing (HDC), a com-

putational scheme in which data are encoded using high-dimensional binary vectors. We establish a
result about the similarity structure induced by the HDC binding operator and show that the Laplace

kernel naturally arises in this setting, motivating our new encoding method Laplace-HDC, which im-
proves upon previous methods. We describe how our results indicate limitations of binary HDC in

encoding spatial information from images and discuss potential solutions, including using Haar con-

volutional features and the definition of a translation-equivariant HDC encoding. Several numerical
experiments highlighting the improved accuracy of Laplace-HDC in contrast to alternative methods

are presented. We also numerically study other aspects of the proposed framework, such as robustness

and the underlying translation-equivariant encoding.

1. Introduction

Hyperdimensional computing (HDC) is a computational paradigm rooted in cognitive science and
inspired by the operation of the brain. With billions of neurons and trillions of synapses, the human
brain exhibits states akin to high-dimensional arrays. Unlike conventional machine learning models that
work with floating-point operations, the brain’s processes engage in simpler “arithmetic” but across
significantly higher dimensions (such as the operations in the cerebral cortex). HDC aims to mimic
the brain’s operation by encoding data with high-dimensional vectors, called hypervectors, while using
simple operations, such as the XOR operation. Hypervectors are often defined randomly or pseudo-
randomly and can have entries that are binary, integer, real, or complex [22]; however, in this paper,
we restrict our attention to binary HDC models, which are the most common in practice. In contrast
with typical floating-point operations on data, the simplicity of binary operations makes binary HDC
computationally straightforward and amenable to hardware-level optimization [8].

Similar to the cognitive operations of the brain, HDC is robust to noise, heavily distributable, inter-
pretable, and energy efficient [13, 28]. Additionally, HDC models can undergo single-pass training, where
a model is trained by processing each sample in the data set only once. The simplicity of arithmetic tasks
and their parallel nature facilitate rapid inference for these models. Thanks to these attributes, HDC
is a well-suited framework for the Internet of Things (IoT) and edge devices [16, 21], where resilience
to noise and straightforward computations hold significant importance. Despite the simple underlying
arithmetic, HDC models are considered across various complex tasks, such as speech recognition [10],
written language classification [15], DNA pattern matching [18], robotics [25], image description tasks
[24, 26], and low energy computing [1, 4, 11, 14].

A significant challenge associated with HDC models is their relatively low accuracy. For instance,
as demonstrated in the experiments section below, standard HDC models attain an average accuracy
rate of 82% on the MNIST handwritten digit classification task, while several variants of deep neural
networks can achieve accuracies above 99.5% [2, 9, 12]. Standard HDC modeling consists of three main
steps: hyperdimensional embedding, single-pass training, and inference. Efforts to enhance the accuracy
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of these models typically involve either refining one of these steps or proposing additional steps in the
pipeline. For example, a standard HDC model uses a record-based encoding, which involves the binding
and bundling of random hypervectors associated with the feature positions and feature values, while to
boost the accuracy for temporal or spatial data, an N -gram-based encoding may be considered, where
feature positions are encoded into the hypervectors through rotational permutations [6]. As an example
of changing the number of steps in the process, OnlineHD [8] is an HDC framework where an additional
retraining phase is integrated into the modeling pipeline. This augmentation boosts the model accuracy
by discarding the mispredicted queries from the corresponding mispredicted classes and adding them to
the correct class.

1.1. Motivation. In this paper, we are primarily motivated by the work of Yu et al. [30], which, in
contrast to previous works that mainly focused on using either deterministic hypervectors or random
hypervectors with i.i.d. entries, considers constructions of random hypervectors with a prescribed co-
variance structure. They refer to their approach as RFF-HDC and empirically show that it outperforms
previous HDC schemes. More precisely, given a desired covariance structure K ∈ Rm×m, Yu et al. [30]
uses the following algorithm to construct a matrix V ∈ {−1,+1}N×m of m hypervectors.

Require: Similarity matrix K ∈ Rm×m, hyperdimension N
W ← sin

(
π
2K

)
(where the function sin is applied entrywise)

USUT ←W (eigendecomposition)
Generate G ∈ RN×m with i.i.d. standard Gaussian entries
V ← sign(GS

1/2
+ U) (where sign is applied entrywise and S+ sets negative entries to 0).

return V ∈ {−1,+1}N×m

When S = S+, that is, whenW is positive semi-definite, it follows that V ⊤V /N =K, see §1.4 for a
more precise statement and mathematical description. The assumption thatW is positive semi-definite
constrains the types of similarities that can be achieved using this algorithm. However, Yu et al. [30]
shows that some restriction is necessary by proving that there are covariance structures K which are
impossible to realize using binary hypervectors.

The current paper builds upon Yu et al. [30] by studying the geometry of HDC encodings resulting
from constructions using hypervectors with a covariance structure. More precisely, we consider the
similarity structure of the embedding space induced by the HDC binding operation, see (1). We show
that the Laplace kernel naturally arises in this context, and our results provide heuristics for choosing
effective distributions of hypervectors. Moreover, we consider several modifications to the HDC pipeline,
which further boost the accuracy of HDC models. We demonstrate theoretically and empirically how
spatial information for images is lost in the similarity structure of certain HDC encoding schemes and
present methods of retaining this information, including the definition of a translation-equivariant HDC
encoding scheme. In addition to conducting empirical experiments to assess the proposed framework’s
performance compared to state-of-the-art techniques, mathematical tools are used to explore theoretical
aspects.

We emphasize that some models we explore (as with previous work) involve using floating-point op-
erations during the construction of the hypervectors or training stages of the models. We will emphasize
when this is the case. Moreover, as we will discuss, these models have variants that can ultimately be
fully represented and operated in a binary mode for inference, and results for binary inference will be
presented.

1.2. Preliminaries and Notation. While implementations of binary HDC use vectors x ∈ {0, 1}N
(for some large N on the order of N = 104) equipped with entrywise XOR (denoted ⊕), we may
conceptualize these vectors as being in {−1,+1}N equipped with entrywise product (denoted ⊙). These
two representations are isomorphic: if ϕ : {0, 1}N → {−1,+1}N by x 7→ ϕ(x) = 1− 2x then

ϕ(x(i)⊕ y(i)) = 1− 2(x(i)⊕ y(i)) = ϕ(x(i))⊙ ϕ(y(i)),
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for all i = 1, . . . , N , where x(i) denotes the i-th entry of x. In this paper, we use the ({−1,+1}N ,⊙)
representation of binary HDC schemes.

For a given hypervector u ∈ {−1,+1}N , we denote its k-th entry by u(k). We write ek to denote
the k-th standard basis vector whose k-th entry is equal to 1 and which is zero elsewhere. We use the
convention that hypervectors are column vectors such that the inner product can be expressed by

u⊤v =

N∑
k=1

u(k)v(k),

where u⊤ denotes the transpose of u, and write u⊙ v to denote the entrywise product

(u⊙ v)(k) = u(k)v(k),

for k = 1, . . . , N . Given a set of d hypervectors v1, . . . ,vd, let

d⊙
j=1

vj = v1 ⊙ · · · ⊙ vd,

denote the entrywise product over all vectors in the set. For a matrix A ∈ RN×N , we write ∥A∥0 to
denote the number of nonzero entries of A

∥A∥0 := #{(i, j) ∈ {1, . . . , N}2 : A(i, j) ̸= 0},

where A(i, j) denotes the (i, j)-th entry of A, and # denotes the counting measure.

1.3. Defining an Embedding. Assume that data X ⊂ {1, . . . ,m}d are given, that is, each x ∈ X is
a d-dimensional vector whose entries are integers in the set {1, . . . ,m}. Let m hypervectors

v1, . . . ,vm ∈ {−1,+1}N ,

be given (see §1.4 for a discussion of constructing these hypervectors). Further, let P be a set d
permutation matrices of size N ×N

P = {Π1,Π2, . . . ,Πd};

examples of families of permutation matrices of interest are discussed below. The binding operation
which maps X → {−1,+1}N is defined by

(1) x 7→ ψx =

d⊙
i=1

Πivx(i).

For the encoding ψx to be meaningful, some assumptions must be imposed on the permutation matrices.
We make the following trace-orthogonality assumption.

Assumption 1.1 (Trace-orthogonal family of permutations). We say that a family of permutations
P = {Π1,Π2, . . . ,Πd} is trace-orthogonal if

(2) ⟨Πi,Πi′⟩ = Tr
(
Π⊤

i Πi′

)
= 0, ∀i, i′ ∈ {1, . . . , d}, i ̸= i′.

It is straightforward to construct a family of trace-orthogonal permutations using cyclic shifts (under
the necessary assumption that d ≤ N).

Remark 1.1 (1D-Cyclic family). For i ∈ {1, . . . , d} let T 1D-Cyclic
i denote the N ×N permutation matrix,

which acts on v ∈ {−1,+1}N by

(3) (T 1D-Cyclic
i v)(i′) = v(i+ i′), for i′ ∈ {1, . . . , N},
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where the addition i+ i′ is taken modulo N . That is, T 1D-Cyclic
i can be defined entrywise by

T 1D-Cyclic
i (j, j′) =

{
1 if j = j′ + i mod N
0 otherwise.

When i ̸= i′ and d ≤ N , the support of T 1D-Cyclic
i and T 1D-Cyclic

i′ are disjoint so the trace-orthogonal
property holds.

Remark 1.2 (1D-Block Cyclic family). Suppose that N = dM for some positive integer M . Then,

another family of trace-orthogonal permutations matrices {T 1D-Block
i : i ∈ {1, . . . , d}} can be defined by

their action on v ∈ {−1,+1}d×M by

(4) (T 1D-Block
i v)(i′, k) = v(i+ i′, k), for (i′, k) ∈ {1, . . . , d} × {1, . . . ,M},

where the addition i + i′ is taken modulo d. It is straightforward to verify that this 1D-Block Cyclic
family is also trace-orthogonal.

1.4. Constructing Hypervectors. We choose hypervectors using the method of Yu et al. [30] outlined
in §1.1 above. In the following, we describe this construction in detail and provide related mathematical
preliminaries. Given an affinity matrix K ∈ Rm×m, the goal is to construct hypervectors v1, . . . ,vm ∈
{−1,+1}N such that

E
v⊤i vj
N

=K(i, j).

Recall Grothendieck’s identity (see, for example, Vershynin [29, page 63]).

Lemma 1.1 (Grothendieck’s identity). Let g be an n-dimensional vector with i.i.d. random standard
Gaussian entries. Then, for any fixed vectors u,v ∈ Sn−1, we have

E(sign(g⊤u) sign(g⊤v)) =
2

π
arcsin(u⊤v),

where Sn−1 = {x ∈ Rn : ∥x∥2 = 1}.

Suppose that an affinity kernel matrix K ∈ Rm×m is given, and define W ∈ Rm×m by

(5) W (i, j) = sin
(π
2
K(i, j)

)
,

for i, j = 1, . . . ,m. The construction is effective when the following assumption, which restricts the
possible choices of K, is satisfied.

Assumption 1.2 (Admissible affinity kernel). We say that an affinity kernel K ∈ Rm×m is admissible
if the matrix W defined by (5) is symmetric positive semi-definite and K(i, i) = 1 for all i = 1, . . . ,m.

An example of a family of admissible affinity kernels is provided in Corollary 1.1; also see §1.2. For
now, we proceed under the assumption that W is a symmetric positive semi-definite matrix, which
implies W can be decomposed as

W = U⊤U ,

where U is a real-valued n × n matrix. Note that if W is not positive semi-definite, it is possible to
truncate the negative eigenvalues to achieve a decomposition of this form, see §1.1; however, in this case,
the construction will not achieve hypervectors with the covariance structure of K.

Let G ∈ RN×m be a matrix whose entries are independent Gaussian random variables with mean 0
and variance 1. Define the matrix V ∈ {−1,+1}N×m by

V = sign(GU),
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where sign denotes the entrywise sign function with the convention that 0 has sign +1. Let vk denote
the k-th column of V . Then, the hypervectors

v1, . . . ,vm ∈ {−1,+1}N ,

have the desired covariance structure in expectation. Indeed, we claim that

(6) Evi(k)vj(k) =K(i, j), for all k ∈ {1, . . . , N},

which in turn implies

(7) E
v⊤i vj
N

=K(i, j).

To show (6), we note that by the definition of vj we have

Evi(k)vj(k) = E sign(g⊤k ui) sign(g
⊤
k uj),

where g⊤k is the k-th row of G and uj is the j-th column of U . Recall that in the definition of an
admissible kernel, we assume K(i, i) = 1. It follows that

∥ui∥22 = u⊤
i ui =W (i, i) = sin

(π
2
K(i, i)

)
= 1,

for i = 1, . . . ,m. Thus, Grothendieck’s Identity (see Lemma 1.1 above) can be applied to deduce that

(8) E sign(g⊤k ui) sign(g
⊤
k uj) =

2

π
arcsin(u⊤

i uj).

By the definition of U we have

2

π
arcsin(u⊤

i uj) =
2

π
arcsin (W (i, j)) =K(i, j),

where the final equality follows from the definition of W .

1.5. Main Analytic Result. Let data X ⊂ {1, . . . ,m}d be given, and fix a hyperdimension N ≥ d. Let
P = {Π1,Π2, . . . ,Πd} be a family of N ×N permutation matrices satisfying Assumption 1.1. Assume
that K ∈ Rm×m is an affinity kernel which is admissible in the sense of Assumption 1.2. Construct
v1, . . . ,vm ∈ {−1,+1}N using P and K in the procedure described in §1.4. Define the embedding
ψx ∈ {−1,+1}N of a vector x ∈ X in terms of the binding operation

(9) x 7→ ψx =

d⊙
i=1

Πivx(i).

The following theorem is our main analytic result.

Theorem 1.1. Under the assumptions of §1.5, we have

(10) S(x,y) := E
ψ⊤

xψy

N
=

d∏
i=1

K(x(i),y(i)),

and

Var

(
ψ⊤

xψy

N

)
≤ 2γP

N2
(1− S(x,y)),

where for the set P = {Π1,Π2, . . . ,Πd}:

(11) γP =

∥∥∥∥∥
d∑

i′=1

d∑
i=1

ΠiΠ
⊤
i′

∥∥∥∥∥
0

.
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The proof of Theorem 1.1 is given in §A.1. The following corollary states this result for the case
where P is the 1D-Cyclic family of permutation matrices, and K is approximately the Laplace kernel.
To simplify the exposition, we present an informal version of this result here and provide a more technical
statement in the following section.

Corollary 1.1 (Informal Statement). Let P = {Π1, . . . ,Πd} be the 1D-Cyclic family of permutation
matrices defined in Remark 1.1, which satisfies Assumption 1.1. It is possible to chooseK approximately
equal to the Laplace kernel K(i, j) ≈ exp(−λ|i− j|) such that Assumption 1.2 is satisfied. In this case,

(12) S(x,y) := E

(
ψ⊤

xψy

N

)
≈ exp(−λ∥x− y∥1).

Moreover, the variance satisfies

Var

(
ψ⊤

xψy

N

)
≤ 4d− 2

N
(1− S(x,y)).

For a precise version of the corollary, see Theorem 1.2 below. Interestingly, it is not possible to replace
the Laplace kernel with the Gaussian kernel in this statement, see §1.6

1.6. Choosing an Admissible Kernel. Recall thatK ∈ Rm×m is admissible in the sense of Assump-
tion 1.2 if K(i, i) = 1 and if W defined by

W (i, j) = sin
(π
2
K(i, j)

)
is positive semi-definite. In §1.6.1, we conduct an informal study of admissible kernels. Subsequently,
in §1.6.2, we state a precise result that describes a family of admissible kernels Kα and the resulting
expected similarity Sα(x,y).

1.6.1. Heuristic Derivation. Given an admissible kernel K, Theorem 1.1 states that the resulting ex-
pected similarity S(x,y) has the form

S(x,y) =

d∏
i=1

K(x(i),y(i)).

This formula suggests that the values of K(i, j) should all be relatively close to 1 for all i, j since,
otherwise, taking the product will result in values close to zero; this observation motivates the ansatz

K(i, j) = 1− F (i, j), where 0 ≤ F (i, j) ≤ ε,

for some small ε > 0. The series expansions

exp(x) = 1 + x+O(x2), and sin
(π
2
(1− x)

)
= 1− π2x2

8
+O(x4),

as x→ 0 imply that the resulting matrix W satisfies

W (i, j) = sin
(π
2
(1− F (i, j))

)
= exp

(
−π2

8
F (i, j)2

)
+O(ε4).

These calculations motivate choosing F (i, j) such that

W (i, j) ≈ exp

(
−π2

8
F (i, j)2

)
is positive semi-definite. One natural choice is setting F (i, j) = λ|i − j| such that K is approximately
equal to the Laplace kernel K(i, j) ≈ exp(−λ|i − j|) and W is approximately equal to the Gaussian
kernel

W (i, j) ≈ exp
(
−|i− j|2/(2σ2)

)
,
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where σ = 2λ/π. Both the Laplace kernel and the Gaussian kernel are positive definite kernels, so the
Laplace kernel K is one natural choice to use in this construction.

Interestingly, choosing F (i, j) = |i − j|2/(2σ2) such that K is approximately equal to the Gaussian
kernel K(i, j) ≈ exp(−λ|i− j|2/(2σ2) results in W of the form

W (i, j) ≈ exp
(
−γ|i− j|4

)
,

for γ = π2/(32σ4), which is not a positive definite kernel. Thus, the Gaussian kernel is not an admissible
choice of K for this construction.

1.6.2. Precise Description. In the following, we make the informal derivation of the previous section,
which says the Laplace kernel is a natural choice for K more rigorous and general. In particular, we
define a family of admissible kernels and derive the resulting expected similarity kernel.

Lemma 1.2. Fix α, λ > 0, and consider the matrix W α ∈ Rm×m with elements

(13) W α(i, j) = exp (−λ|i− j|α) ,

for all i, j = 1, . . . ,m. Then,

– For each α ∈ [0, 2], W α is positive semi-definite
– For each α ∈ (2,∞), W α is not positive semi-definite

Proof of Lemma 1.2. This is a direct implication of Schoenberg’s classic result. Specifically, Corollary
3 of Schoenberg [27] states that exp (−|x|α) is positive definite when 0 < α ≤ 2, and fails to become
positive definite when α > 2. This function being positive definite implies that for any selection of
x1, . . . , xm ∈ R, the matrix with elements exp (−|xi − xj |α) is positive semi-definite. Narrowing down

the choice of the test points to xi = λ1/αi for i = 1, . . . ,m validates the claims of the lemma. □

The following theorem defines a family of admissible kernels and, motivated by the informal derivation
of §1.6.1, derives the resulting expected similarity kernel. A subsequent remark describes the connection
to the Laplace kernel derived in the previous section.

Theorem 1.2. Let λ > 0 and α ∈ (0, 1]. Define Kα ∈ Rm×m by

(14) Kα(i, j) =
2

π
arcsin

(
exp

(
−π2

8
λ|i− j|2α

))
,

for i, j ∈ {1, . . . ,m}. Then,Kα is admissible in the sense of Assumption 1.2. Moreover, if the bandwidth
parameter λ is set such that λ|i− j|α ≤ ε, then

Kα(i, j) = exp (−λ|i− j|α) +O(ε2),

and the resulting expected similarity kernel Sα satisfies

Sα(x,y) = exp(−λ∥x− y∥αα)(1 +O(ε2d)),

as ε→ 0.

The proof of Theorem 1.2 is given in §A.2. In the following, we make three remarks about this result.

Remark 1.3 (Laplace kernel). When α = 1

Kα(i, j) = exp(−λ|i− j|) +O(ε2),

is the Laplace kernel, up to lower order terms, and

Sα(i, j) = exp(−λ∥x− y∥1)(1 +O(ε2d)),

which recovers the informal motivating result from the previous section.
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Remark 1.4 (Limitation of similarity structure). The result of Theorem 1.1 suggests a limitation of
binary HDC pipelines that involve binding data x 7→ ψx and then relying on the similarity structure

induced by inner products ψ⊤
xψy/N . Namely, the expected similarity S(x,y) is invariant to global

permutations of the elements of the data, that is,

S(x,y) = S(x ◦ σ,y ◦ σ),

where (x ◦ σ)(i) = x(σ(i)) for a permutation σ, see (10). For some data types, such as images, the
ordering of the data elements may contain information. For example, a group of black pixels may
indicate structure, such as a digit, while scattered black pixels may be noise. These spatial relationships
can be captured using feature extraction methods such as convolutional filters, see §2.4. Alternatively,
the definition of the embedding could be modified so that spatial information is encoded via another
mechanism such as translation-equivariance, see §1.7

Remark 1.5 (Setting the bandwidth parameter λ). WhenKα is defined by (14), the form of the resulting
expected similarity

Sα(x,y) ≈ exp(−λ∥x− y∥αα),
can be used to set the bandwidth parameter λ. Suppose a data set X = {xi}ni=1 is given. A typical
strategy for kernel methods is setting the bandwidth parameter so that Kα is invariant to transforma-
tions that preserve distances ∥x−y∥α up to a global constant (for example, global scaling of the data).
One way to achieve this is by setting

(15) λ =
c

median(D)
,

for some constant c > 0, where

D(i, j) = ∥xi − xj∥αα,
and median(D) is the median of the n2 numbers in the matrix D. When the number of data points n
is large, the matrix D in (15) could be replaced by a matrix D′ corresponding to a subset of the data
to reduce the required computation.

1.7. Translation Equivariant Encoding. Remark 1.4 describes a limitation of the method related
to encoding spatial information. In the following, we describe an alternate way to encode spatial
information by defining a translation equivariant binding operation for images. Suppose that x ∈
{1, . . . ,m}L×L is an L× L image. For simplicity, initially assume N := L2 (We will subsequently relax
this assumption to handle N > L2). We define a family of permutations P = {T i,j : i, j = 1, ..., m} ,
which act on v ∈ {−1,+1}L×L by

(T i,jv) (i
′, j′) = v(i+ i′, j + j′),

where the addition i + i′ and j + j′ is taken modulo L. This family satisfies the Trace-Orthogonality
Assumption 1.1. Define the embedding

(16) x 7→ ψx =

L⊙
i,j=1

T i,jvx(i,j),

where x(i, j) denotes the (i, j)-th entry of x. By construction, this embedding is translation-equivariant.
That is,

T i,jψx = ψT i,jx,

see Figure 1.
The equivariant binding operation for the case N = L2 can be extended to N > L2 while maintaining

exact translation-equivariance by using a block-based construction when N = ML2 by taking M copies
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Image space Embedding space

ψ

T i,j T i,j

ψ

Figure 1. Commutative diagram for translation-equivariance of binding operation (16).

of the L × L construction. More precisely, we define the 2D-Block family of permutations matrices
{T 2D-Block

i,j : i, j ∈ {1, . . . , L}} which act on v ∈ {−1,+1}L×L×M by

(17)
(
T 2D-Block

i,j v
)
(i′, j′, k) = v(i+ i′, j + j′, k), for (i′, j′, k) ∈ {1, . . . , L}2 × {1, . . . ,M},

where the addition i + i′ and j + j′ is taken modulo L. Alternatively, one can consider N = M2 > L2

and define {T 2D-Cyclic
i,j : i, j ∈ {1, . . . , L}}

(18)
(
T 2D-Cyclic

i,j v
)
(i′, j′) = v(i+ i′, j + j′), for (i′, j′) ∈ {1, . . . ,M}2,

where addition i+i′ and j+j′ is taken modulo M . When the 2D-Cyclic family of permutations is used in
the binding operation, the resulting encoding is translation-equivariant when ignoring boundary effects.
We demonstrate an application of the 2D-Cyclic family of permutations to visualize this equivariance
property §2.7.

We note that translation-equivariance has been considered in the context of Hyperdimensional com-
puting by [?, ?]. In these works, a theory of an equivariant encoding scheme is developed, but no
concrete examples of such a family of equivariance-permitting matrices are produced. Our work extends
these results by constructing a concrete example of such a family and developing visualizations that are
possible due to the similarity structure imposed on the hypervectors used in the binding operation.

Remark 1.6 (Connections of constructions to neural networks). We note two connections of the binary
HDC schemes we consider to neural networks. First, the Laplace kernel, which naturally arose in our
binary HDC construction, also has connections to Neural Tangent Kernels (NTKs) [7, 3]. Second, we
note that neural networks with +1 and −1 weights and activations have been considered by several
authors; see, for example, Courbariaux et al. [5] and Kim [17].

2. Experiments

We present several numerical experiments on the binary HDC schemes described in this paper and
their limitations and extensions. Code for all presented methods is publically available at:

https://github.com/HDStat/Laplace-HDC

This section is organized as follows. In §2.1, we describe the linear classifiers that we use on the binary
encodings. In §2.2, we present results for the vanilla version of Laplace-HDC. In §2.3, we present results
for Laplace-HDC using singular value decomposition (SVD) features. In §2.4, we present results for
Laplace-HDC with Haar convolutional features. In §2.5, we provide a comparison of Laplace-HDC to

https://github.com/HDStat/Laplace-HDC


10 S. POURMAND, W.D. WHITING, A. AGHASI, AND N.F. MARSHALL

other methods. Beyond the model accuracy, we study robustness in §2.6, and conduct experiments
concerning the translation-equivariance property of the proposed encoding scheme in §2.7.

2.1. Classification Methods. Once the data x ∈ X has been embedded x 7→ ψx, a classifier may
be trained. Each classifier we consider uses an inner product to determine the final class. Suppose the
classes {1, 2, . . . , c} are represented within X , and suppose ψi denotes the class representative for class
i, for i = 1, 2, . . . , c . We determine the class of y by a simple linear classifier

(19) class(y) = argmax
i=1,...,c

(
ψ⊤

yψi

)
.

Below, we detail four methods we use for determining the class representatives {ψi}.

2.1.1. Float and Binary Majority Vote. The majority vote classifiers operate on a simple principle for
classification. First, we describe the binary flavor of this method. Consider the collection

Ci = {x ∈ X : class(x) = i},

and let #(Ci) denote the number of elements in the collection. The representative for class i, denoted
ψi, is determined by a majority vote of ψx for x ∈ Ci. More precisely, we define the Binary Majority
Vote representative ψi by

ψi(k) =

{
+1

∑
x∈Ci

ψx(k) > 0

−1 otherwise,

The Float Majority Vote is largely the same, but we relax the condition that ψi must have entries in
−1,+1. Instead, the entries of ψi may be floating-point numbers. In this case, the representative ψi is
determined entrywise by class averages

ψi(k) =
1

#(Ci)

∑
x∈Ci

ψx(k).

2.1.2. Float and Binary SGD. We define two classifiers, which we call Float SGD and Binary SGD. The
Float SGD classifier determines the class representatives ψi by optimizing a cross-entropy loss function
using stochastic gradient descent; more precisely, we use Adam [19] with a learning rate parameter
α = 0.01, where the model takes ψx and outputs one of the c classes. We perform 3 epochs training
passes over the data in X in all experiments. The Binary HDC classifier operates in the same manner,
except during each training epoch, the weights of the model parameter are clamped to be in the range
[−1, 1]. Once all training epochs have been completed; the sign function is applied to the model weights,
making all negative weights −1 and all positive weights +1.

2.2. Laplace-HDC in its Basic Form. In this section, we define a Binary HDC scheme motivated
by Theorem 1.1, Corollary 1.1, and Theorem 1.2, which we call Laplace-HDC. Given a data set X =
{x1, . . . ,xn} where xi ∈ {1, . . . ,m}d, Laplace-HDC consists of the following steps:

1. Set the bandwidth parameter λ > 0 using Remark 1.5 with α = 1.
2. Define the kernel K ∈ Rm×m using (14).
3. Construct hypervectors v1, . . . ,vm ∈ {−1,+1}N using the method detailed in §1.4.
4. Choose a family of permutation matrices P = {Π1, . . . ,Πd} that are Trace-Orthogonal in the

sense of Assumption 1.1.
5. Encode each xj 7→ ψxj

using the binding operation (9).

6. Return {ψx1
, . . . ,ψxn

} where ψxi
∈ {−1,+1}N .
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By construction, it follows from Theorem 1.2 that

E
ψ⊤

xi
ψxj

N
≈ exp(−λ∥xi − xj∥1).

In the following, we demonstrate the utility of Laplace-HDC in an application to image classification.
We consider four choices of trace-orthogonal families of permutation matrices: 1D-Cyclic shift, 1D-Block
Cyclic, 2D-Block Cyclic, and 2D-Cyclic Shift, which are defined in (3), (4), (17), and (18), respectively.
Classification is performed by determining which class representative ψi gives the largest inner product
(19). The class representatives ψi are determined by two different methods: Float SGD and Binary
SGD, which are defined in §2.1.2.

In each case, we use the largest possible hyperdimensionality N ≤ 104. For example, the 1D-Block
family of permutations requires that N = dM for some positive integer M . The image data we consider
has dimension d = 282, so we choose M = ⌊104/282⌋ = 12, which results in N = 9408. When setting the
bandwidth parameter λ > 0, we use (15) with c = 1 except for binary SGD where c = 4 provides better
performance, and we estimate the median of the ℓ1-distances of the data using 1000 samples selected
uniformly at random from X . The accuracy for each is presented as the mean ± one standard deviation
in all cases; see Table 1.

Table 1. Basic Laplace-HDC Performance

1D-Cyclic 2D-Cyclic 1D-Block 2D-Block
Float SGD - Fashion MNIST 86.06± 0.74 86.03± 0.73 87.86± 0.40 87.41± 0.15
Binary SGD - Fashion MNIST 83.60± 1.35 83.87± 0.63 84.72± 0.23 83.51± 0.57

Float SGD - MNIST 95.46± 0.48 95.46± 0.51 96.13± 0.25 96.14± 0.28
Binary SGD - MNIST 93.25± 1.09 93.37± 1.00 94.43± 0.82 94.59± 0.44

2.3. Laplace-HDC with SVD Features. Singular value decomposition is a popular pre-processing
tool in predictive tasks involving numerical features. Well-known techniques such as principal component
regression use this decomposition to rotate the coordinate system so that the features are uncorrelated
in the rotated system. The process normally involves populating the numerical features into a matrixX
(where the number of columns corresponds to the number of features and the number of rows corresponds

to the number of samples) and then performing a compact SVD of the form X = UΣV ⊤ to acquire

the transformation matrix. The new feature matrix takes the form X̂ = XV , which not only enjoys
uncorrelated features, also may have fewer columns than those in X thanks to the compact nature of
the SVD operation (instead of a full SVD). Truncating small singular values is a manual alternative to
reduce the number of features, which is also capable of denoising the feature matrix. This technique is
incorporated into the HDC pipeline by first mapping the data matrix X to X̂ and then performing the
hyperdimensional encoding on X̂.

To evaluate the effects of SVD transformation, we applied it to the FashionMNIST data and used a
total of 8 variations of permutation schemes and classifier pairs. The mean test accuracy (in percentage)
of different classifiers, plus and minus one standard deviation, is computed for 50 independent experi-
ments after SVD preprocessing and different permutation schemes. The results are available in Table 2.
The hyperparameters λ and N are set in the same way described in §2.2.

2.4. Laplace-HDC with Haar Convolutional Features. The result of Theorem 1.1, Corollary 1.1,
and Theorem 1.2 suggest a limitation of using the inner product similarity structure of HDC encodings
when applied to images: the spatial relationship between pixels is lost. In images, the spatial relation
between pixels contains meaningful information. For example, a group of black pixels may indicate
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Table 2. Laplace-HDC with SVD features

1D-Cyclic 1D-Block
Float SGD - Fashion MNIST 87.26± 0.16 86.67± 0.44
Binary SGD - Fashion MNIST 84.40± 0.42 83.57± 1.13

Float SGD - MNIST 95.63± 0.30 96.15± 0.30
Binary SGD - MNIST 94.03± 0.35 94.66± 0.39

structure, such as a digit, while scattered black pixels may be noise. Note that the ℓ1-norm is invariant
to permutations

∥x∥1 =

d∑
i=1

|x(i)| =
d∑

i=1

|x(σ(i))| = ∥x ◦ σ∥1,

for any fixed permutation σ of {1, . . . , d}. Thus, by Theorem 1.1, the expected similarity structure of
the HDC embedding is invariant to a global permutation of the pixels of all the images. One basic way
to encode spatial information is to use convolutional features. As a basic demonstration, we consider
the 9 Haar wavelet matrices of dimension 4× 4; see Figure 2.

−1.0

−0.5

0.0

0.5

1.0

Figure 2. Collection of 9 Haar convolution matrices of dimension 4× 4.

Convolving these 9 filters of dimension 4× 4 with an L× L image with stride s creates

n = 9((L− 4)/s+ 1)2

convolutional Haar features, where the stride is the amount of each filter is shifted in each direction
when convolving over the data. Each feature coordinate is mapped to the interval [0, 255] by an affine
transformation (determined from the training data), which is rounded to an integer in {0, 1, . . . , 255}.
These integer features are used in the same Laplce-HDC methodology described in §2.2; the results are
reported in Table 3.

More generally, using features from a trained convolutional neural network is possible and would
improve the accuracy even further; see §3 for further discussion.
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Table 3. Laplace-HDC with Haar convolutional features

1D-Cyclic 1D-Block
Float SGD - Fashion MNIST 88.67± 0.30 87.86± 0.40
Binary SGD - Fashion MNIST 86.65± 0.36 85.63± 0.56

Float SGD - MNIST 96.40± 0.28 96.22± 0.29
Binary SGD - MNIST 95.17± 0.44 94.85± 0.50

2.5. Comparison to Other Methods. In this section, we implement our proposed framework and
compare it to some of the relevant works in the literature, such as RFF-HDC, OnlineHD, and (Extended)
HoloGN. In the sequel, we first briefly overview each of these methods and then report their performance
on standard datasets such as MNIST and FashionMNIST. To present the results in a reliable format,
the experiments are performed 50 times, and mean accuracies along with standard deviation of the
accuracies and the histograms are reported in Figure 3 and Table 4.
RFF-HDC. This method, presented by Yu et al. [30] is the most relevant baseline, as it is the basis for
our work. While traditional hyperdimensional computing methods (here referred to as Vanilla HDC) are
fast, they suffer from low prediction accuracy. RFF-HDC utilizes similarity matrices in a similar way
to Random Fourier Features (RFF) to construct the hypervectors, which helps outperform the state-of-
the-art HDC schemes. A pseudo-code that constructs the hypervectors for RFF-HDC was given in §1.1.
Note that all the floating point operations are performed during the construction of the hypervectors or
learning the models, and ultimately, the models are fully represented and operated in binary mode for
inference.
OnlineHD. Performing iterative training rather than single-pass training is one approach to boost the
accuracy of HDC models, although it increases the time complexity and memory usage, which is costly.
Methods such as OnlineHD [8] relate the low accuracy of single-pass models to the naive gathering of
information from all hypervectors that belong to the same class. This leads to the dominance of the
common pattern while downplaying the more uncommon patterns in the data. OnlineHD [8] is presented
as a single-pass remedy to this problem. Basically, if a hypervector is closely similar to the current state
of the class hypervector, then OnlineHD assigns a small weight to it while updating the model in order
to decrease its effect, and if the hypervector is distant, the weight increases.
Extended HoloGN. Holographic graph neuron (HoloGN) [20] is an approach designed for character
recognition over a dataset of small binary images. HoloGN assigns a randomly generated hypervector
to each pixel. Then, a circular shift occurs if the pixel color is white. After this stage, the remaining
procedure is similar to vanilla HDC bundling (Binary Majority vote, see §2.1.1). An extension of this
approach to operate with non-binary datasets such as MNIST was presented in Manabat et al. [23],
which is used as a comparison baseline in our experiments.

The accuracies reported in Table 4 and the histograms depicted in Figure 3 show that Laplace-
HDC with convolutional features can outperform the state-of-the-art techniques in terms of the mean
accuracy. In terms of the accuracy standard deviation, Laplace-HDC offers a significantly lower deviation
compared to the RFF-HDC, with which it shares some foundations.

In the next two sections, we explore some other aspects of the proposed binary HDC beyond the
accuracy.

2.6. Robustness to Corruptions. A notable characteristic of binary HDC encodings are their ro-
bustness to noise: these binary encodings can remain effective even in the presence of corrupted bits.
To demonstrate this robustness property for Laplace-HDC, we perform an experiment where the classi-
fication task is stress-tested by randomly corrupting a proportion of the bits of the binary encoding.



14 S. POURMAND, W.D. WHITING, A. AGHASI, AND N.F. MARSHALL

0.814 0.816 0.818 0.82 0.822 0.824 0.826
0

2

4

6

8

0.684 0.686 0.688 0.69 0.692 0.694 0.696 0.698
0

2

4

6

8

(a)

0.79 0.795 0.8 0.805 0.81 0.815
0

1

2

3

4

5

6

0.618 0.62 0.622 0.624 0.626 0.628 0.63 0.632
0

1

2

3

4

5

6

(b)

0.93 0.931 0.932 0.933 0.934 0.935 0.936
0

2

4

6

8

10

0.822 0.824 0.826 0.828 0.83
0

1

2

3

4

5

6

7

(c)

0.9 0.92 0.94 0.96 0.98
0

1

2

3

4

5

0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88
0

2

4

6

8

(d)

0.935 0.94 0.945 0.95 0.955 0.96 0.965
0

1

2

3

4

5

6

7

0.855 0.86 0.865 0.87 0.875 0.88
0

1

2

3

4

5

6

7

(e)

Figure 3. Accuracy histograms of the methods in Table 4 for 50 trials. The mean
accuracy and one-standard deviation interval are shown with dashed lines: (a) Vanilla
HDC, (b) Extended HoloGN, (c) OnlineHD, (d) RFF-HDC, (e) Laplace-HDC

In this experiment, for each x ∈ X the corresponding encoded hypervector ψx ∈ {−1, 1}N is cor-

rupted by flipping k of the N bits of the encoded vector to generate a corrupted hypervector ψ̃x. More
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Table 4. The mean test accuracy (in percentage) of different methods discussed in
§2.5 plus and minus one standard deviation, computed for 50 independent experiments.
The reported Laplace-HDC uses Haar convolutional features, 1D-Cyclic permutations,
and the Binary SGD classifier.

Vanilla HDC Ext. HoloGN OnlineHD RFF-HDC Laplace-HDC
MNIST 82.07± 0.17 80.21± 0.41 93.32± 0.08 93.58± 1.21 95.17± 0.44

Fashion MNIST 69.07± 0.19 62.44± 0.19 82.55± 0.12 81.19± 1.81 86.65± 0.36

precisely, for each x ∈ X we choose a set {i1, . . . , ik} from {1, . . . , N} independently and uniformly at
random without replacement and set

ψ̃x(ij) = −ψx(ij), for j = 1, . . . , k.

After this step, the class of ψ̃x is inferred using a classifier model which was trained on the uncorrupted
data ψx. In this fashion, we are able to determine the degree to which corruption affects classification
accuracy. In this experiment, we use the Binary SGD classifier, see §2.1.2. We report results based on
the ratio k/N of corrupted bits to the bits in the encoding. When k/N = 0, the embedding ψx is not
altered; the method and classification accuracy are the same as reported in §2.2. When k/N = 1/2, half

the bits are randomly corrupted, and the corrupted embedding ψ̃x and original embedding ψx become
uncorrelated. Figure 4 shows the degradation pattern of the Laplace-HDC accuracy as a function of
bit error rate. The experiment is performed for the FashionMNIST data for k = 0, 2, ..., 5000, and
hyperparameters λ and N are set in the same way described in §2.2. Each experiment is performed
multiple times, and in addition to the mean accuracy, an uncertainty region of radius three standard
deviations is depicted around the mean accuracy plot. One can see that with almost up to a 25%
bit error rate (which corresponds to 50% of the worst possible corruption), the classification accuracy
confidently maintains a value above 80%.

2.7. Translation Equivariance. In this section, we describe how the 2D-Cyclic family of permutations
defined in (18) encodes spatial information and leads to interesting visualizations. In particular, we
consider the encoding {1, . . . ,m}L×L → {−1,+1}M×M by

x 7→ ψx =

M⊙
i,j=1

T 2D-Cyclic
i,j vx(i,j),

which is translation-equivariant up to boundary effects, see §1.7. Consider examples from the Fashion-
MNIST dataset; see Figure 5.

Let z denote the all zero image z(i, j) = 0 for i, j = 1, . . . , L, and ψz be the encoding of the all zero
image. To visualize the hypervector encodings of these images, we plot

ψx1
⊙ψz, . . . ,ψx10

⊙ψz,

see Figure 6.
Informally speaking, this image consists of translated versions of thresholded versions of the original.

The images are overlapping, which captures some autocorrelation of the image with itself when inner
products are computed. We note that classification performance seems higher when parameters are tuned
so that there is overlap. The number of images in the HDC encoding is controlled by the bandwidth
parameter λ. To make another visualization, we can look at the class averages of these images; see
Figure 7.
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Figure 4. The robustness of the proposed HDC formulation to noise: in each hyper-
vector, a portion of the bits are randomly flipped, and the accuracy is evaluated for
the noisy model. The narrow shaded region around the accuracy curve is ±3 times the
standard deviation of the accuracy. One can notice that up to almost 25% bit error
rate, the accuracy does not drop below 80%.
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Figure 5. One example from each class in Fashion MNSIT dataset
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Figure 6. We plot ψxj
⊙ψz for the class example images x1, . . . ,x10 from Figure 5.
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Figure 7. We average 1
#(Cj)

∑
x∈Cj

ψx ⊙ψz where Cj is the j-th class, for j = 1, . . . , 10.

3. Discussion

This paper introduces Laplace-HDC, a binary HDC scheme motivated by the geometry of hypervector
data encodings. We build upon the work of Yu et al. [30], by considering the inner product structure of
hypervector encodings resulting from the binding operation for hypervectors with a covariance structure.



18 S. POURMAND, W.D. WHITING, A. AGHASI, AND N.F. MARSHALL

We show that the Laplace kernel (rather than the Gaussian kernel) is a natural choice for the covari-
ance structure of the hypervectors used in this construction. In this case, we show that the inner product
of the hypervector encodings of data is related to an ℓ1-norm Laplace kernel between data points, which
motivates a method for setting the bandwidth parameter λ > 0 in this construction. These observations
lead to a practical binary HDC scheme, which we call Laplace-HDC.

Our results also indicate a limitation of binary HDC schemes of this type for image data: the spatial
relationship between pixels is lost. More precisely, our results show that the inner product structure
of hypervector encodings is invariant to global permutations of the data. We demonstrate that when
spatial relationships are encoded, even in an elementary way, such as through convolutional Haar features
(which are not invariant to global permutations of the pixels), the accuracy of binary HDC improves
for image data.

We note that more complicated feature extraction methods could be used to increase the performance
further. For example, the features derived from the output of one or more layers of a convolutional
neural network trained on image data could be used. The fact that binary HDC schemes of this type
are invariant to global permutations of the pixels can be viewed both as a limitation or a feature of
binding-based binary HDC encoding schemes.

We emphasize that our theoretical results only say that spatial relationships are not encoded in the
inner product structure of the binding operation. It may be possible to recover spatial information via
another method. We illustrate such a method when we define a translation-equivariant binary HDC
encoding scheme for images, which is a potential direction for future work.

We note that the Trace-Orthongal assumption that we make on the families of permutation matrices
we consider may be overly restrictive. We performed some limited experiments using families of permu-
tations, which are each sampled independently and uniformly, which achieved similar accuracy to the
Trace-Orthogonal families of permutation we considered (1D-Cyclic, 1D-Block, 2D-Cyclic, 2D-Block).
However, it should be noted that each of the families of permutations we considered has efficient imple-
mentations that maintain memory locality when encoding batched images. In contrast, performing a
uniformly random permutation is orders of magnitude slower due to a lack of memory locality. However,
there may be pseudo-random permutations that can be efficiently implemented that are interesting to
consider.

Acknowledgements. The authors thank Peter Cowal for useful discussions about the paper.
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Appendix A. Proof of Analytic Results

A.1. Proof of Theorem 1.1.
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Proof of Theorem 1.1. By the definition (1) of the map x 7→ ψx we have

S(x,y) =
1

N
ETr

(
ψxψ

⊤
y

)
=

1

N
ETr

((
d⊙

i=1

Πivx(i)

)(
d⊙

i=1

v⊤y(i)Π
⊤
i

))

=
1

N
ETr

(
d⊙

i=1

Πivx(i)v
⊤
y(i)Π

⊤
i

)

=
1

N

N∑
j=1

E

(
d∏

i=1

e⊤j Πivx(i)v
⊤
y(i)Π

⊤
i ej

)

=
1

N

N∑
j=1

d∏
i=1

E
(
e⊤j Πivx(i)v

⊤
y(i)Π

⊤
i ej

)

=
1

N

N∑
j=1

d∏
i=1

K(x(i),y(i))

=

d∏
i=1

K(x(i),y(i)).(20)

In the chain of equalities above, the third equality holds since for arbitrary vectors ui,vi,RN ,

d⊙
i=1

ui

d⊙
i′=1

v⊤i′ =

d⊙
i=1

uiv
⊤
i ,

where the right-side
⊙

represents a straightforward generalization of Hadamard product from vectors
to matrices. Moreover, by the construction of vk, the elements vk(j) and vk′(j′) are statistically
independent whenever j ̸= j′. As a result, since the permutation matrices Πi are non-overlapping, the
factors e⊤j Πivx(i)v

⊤
y(i)Π

⊤
i ej and e⊤j Πi′vx(i′)v

⊤
y(i′)Π

⊤
i′ ej become independent whenever i ̸= i′, which

justifies the fifth equality. Finally, the sixth equality is a straightforward implication of (6).
Next, we bound the variance. First, we compute the second moment

E

(
ψ⊤

xψy

N

)2

=
1

N2
E

 N∑
j=1

d∏
i=1

e⊤j Πivx(i)v
⊤
y(i)Π

⊤
i ej

2

=
1

N2
E

 N∑
j=1

d∏
i=1

e⊤j Πivx(i)v
⊤
y(i)Π

⊤
i ej

 N∑
j′=1

d∏
i′=1

e⊤j′Πi′vx(i′)v
⊤
y(i′)Π

⊤
i′ ej′


=

1

N2

N∑
j=1

N∑
j′=1

E

(
d∏

i=1

e⊤j Πivx(i)v
⊤
y(i)Π

⊤
i ej

d∏
i′=1

e⊤j′Πi′vx(i′)v
⊤
y(i′)Π

⊤
i′ ej′

)
.

(21)

Define the N ×N matrix

Q :=

d∑
i′=1

d∑
i=1

ΠiΠ
⊤
i′ ,

and accordingly, define

Ω := {(j, j′) : Q(j, j′) > 0} ,
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where Q(j, j′) is the (j, j′)-th element of Q. One can split the summation above over Ω and Ωc as:

(22) E

(
ψ⊤

xψy

N

)2

= EΩ + EΩc ,

where for X = Ω,Ωc:

EX =
1

N2
E

∑
(j,j′)∈X

d∏
i=1

e⊤j Πivx(i)v
⊤
y(i)Π

⊤
i ej

d∏
i′=1

e⊤j′Πi′vx(i′)v
⊤
y(i′)Π

⊤
i′ ej′ .

The summand is clearly upper-bounded by 1, so the summation of terms over Ω is bounded by

(23) EΩ ≤
∑

(j,j′)∈Ω 1

N2
=
|Ω|
N2

=
γP
N2

,

where the final equality follows from the definition of γP . On the other hand, for (j, j′) ∈ Ωc we have

(24) E
d∏

i=1

e⊤j Πivx(i)v
⊤
y(i)Π

⊤
i ej

d∏
i′=1

e⊤j′Πi′vx(i′)v
⊤
y(i′)Π

⊤
i′ ej′ = S(x,y)2.

To see why (24) holds, we start by showing that if (j, j′) ∈ Ωc, then

(25) e⊤j Πi ̸= e⊤j′Πi′ , ∀i, i′ ∈ {1, . . . , d}.

Suppose not, that is, suppose e⊤j Πi0 = e⊤j′Πi′0
, for some i0, i

′
0 ∈ {1, . . . , d}. Then,

0 < e⊤j Πi0Π
⊤
i′0
ej′ ≤ e⊤j

∑
i

∑
i′

ΠiΠ
⊤
i′ ej′ = Q(j, j′),

which contradicts the fact that (j, j′) ∈ Ωc. Recall that, by construction, the elements vk(j) and

vk′(j′) are statistically independent whenever j ̸= j′. By (25), it follows that e⊤j Πivx(i)v
⊤
y(i)Π

⊤
i ej and

e⊤j′Πi′vx(i′)v
⊤
y(i′)Π

⊤
i′ ej′ are independent, for all i, i′ ∈ {1, . . . , d}. Thus, we can take the expectation of

the product of i and i′ separately and use the fact that

d∏
i=1

E
(
e⊤j Πivx(i)v

⊤
y(i)Π

⊤
i ej

)
= S(x,y),

to deduce (24). Combining (22), (23), and (24) gives

E

(
ψ⊤

xψy

N

)2

≤ γP
N2

+
1

N2

∑
(j,j′)∈Ωc

S(x,y)2 =
γP
N2

+
N2 − γP

N2
S(x,y)2.

Finally, we have

Var

(
ψ⊤

xψy

N

)
= E

(
ψ⊤

xψy

N

)2

−

(
E
ψ⊤

xψy

N

)2

≤ γP
N2

+
N2 − γP

N2
S(x,y)2 − S(x,y)2

=
γP
N2

(1− S(x,y)2)

≤ 2γP
N2

(1− S(x,y)),

(26)

where the final inequality follows from using the fact that 1 + S(x,y) ≤ 2. This completes the proof.
□
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Remark A.1 (Sharpness of proof of Theorem 1.1). From (21) we have

E

(
ψ⊤

xψy

N

)2

=
1

N2

N∑
j=1

N∑
j′=1

E

(
d∏

i=1

Xj,i

d∏
i′=1

Xj′,i′

)
,

where

Xj,i = e
⊤
j Πivx(i)v

⊤
y(i)Π

⊤
i ej .

In the following, we show this estimate can be refined leading to a more complicated statement. Let

Ωj,j′ =

{
i ∈ {1, . . . , d} : e⊤j Πi

d∑
i′=1

Π⊤
i′ ej′ > 0

}
.

Using this notation, we have

(27) E

(
d∏

i=1

Xj,i

d∏
i′=1

Xj′,i′

)
=

∏
i∈Ωc

j,j′

E (Xj,i)
∏

i′∈Ωc
j′,j

E (Xj′,i′)E

 ∏
i∈Ωj,j′

Xj,i

∏
i′∈Ωj′,j

Xj′,i′

 ,

where we used the fact that Xj,i is independent of all other random variables in the product when
i ∈ Ωc

j,j′ , and likewise, by symmetry, Xj,i′ is independent of all other random variables in the product

when i′ ∈ Ωj′,j . We have∏
i∈Ωc

j,j′

EXj,i

∏
i′∈Ωc

j′,j

EXj′,i′ =
∏

i∈Ωc
j,j′

K(x(i),y(i))
∏

i′∈Ωc
j′,j

K(x(i′),y(i′)),

while the third term on the right-hand side of (27) is bounded by 1. In fact, this bound is sharp in
certain cases, for example, in the case when x and y are constant. In summary, we have

E

(
ψ⊤

xψy

N

)2

≤ 1

N2

N∑
j=1

N∑
j′=1

∏
i∈Ωc

j,j′

K(x(i),y(i))
∏

i′∈Ωc
j′,j

K(x(i′),y(i′)).

Note that with this notation Ωj,j′ is the set of “bad permutations”, which cause terms in the product
of random variables to be dependent. When Ωj,j′ = ∅ and Ωj′,j = ∅ we have∏

i∈Ωc
j,j′

K(x(i),y(i))
∏

i′∈Ωc
j′,j

K(x(i′),y(i′)) = S(x,y)2.

Alternatively, if there is only one bad permutation in each set Ωj,j′ = {i0} and Ωj′,j = {i′0} we have

∏
i∈Ωc

j,j′

K(x(i),y(i))
∏

i′∈Ωc
j′,j

K(x(i′),y(i′)) =
S(x,y)2

K(x(i0),y(i0))K(x(i′0),y(i
′
0))

.

Previously, we performed a global analysis, which only looked at the number of j, j′ for which there are
any bad permutations (see Ω below). This refined analysis shows that the number of bad permutations
also matters. The block-based permutation schemes minimize the number of j, j′ for which Ωj,j′ > 0,
but do this bad trying to maximize |Ωj,j′ | whenever Ωj,j′ > 0.
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A.2. Proof of Theorem 1.2.

Proof of Theorem 1.2. If Kα is defined by (14), then

W α(i, j) = exp

(
−π2

8
λ|i− j|2α

)
,

which is positive semi-definite by Lemma 1.2 and the fact that α ∈ (0, 1]. Note that

2

π
arcsin

(
exp

(
−x2

))
= 1− 2

√
2x

π
+O(x3),

as x→ 0. If λ|i− j|α ≤ ε, then it follows that the kernel Kα defined in (14) satisfies

(28) Kα(i, j) = 1− λ|i− j|α +O(ε3).
Write

Sα(x,y) =

d∏
i=1

Kα(x(i),y(j)) = exp

(
d∑

i=1

ln (Kα(x(i),y(j)))

)
.

Using the series expansions

ln(1− x) = −x+O(x2), and exp(x) = 1 +O(x),
as x→ 0, together with (28) gives

exp

(
d∑

i=1

ln (Kα(x(i),y(j)))

)
= exp

(
−λ

d∑
i=1

|x(i)− y(i)|α
)(

1 +O(ε2d)
)
.

That is,
Sα(x,y) = exp (−λ∥x− y∥αα)

(
1 +O(ε2d)

)
which completes the proof.

□
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