
ar
X

iv
:2

40
4.

10
61

6v
4

 [
cs

.L
O

]
 5

 M
ay

 2
02

4

One is all you need: Second-order Unification without

First-order Variables ∗

David M. Cerna1 and Julian Parsert23

1 Czech Academy of Sciences, Prague, Czechia
dcerna@cs.cas.cz

2 University of Oxford, United Kingdom
3 University of Innsbruck, Austria

julian.parsert@gmail.com

Abstract

We consider the fragment of Second-Order unification, referred to as Second-Order
Ground Unification (SOGU), with the following properties: (i) only one second-order vari-
able allowed, (ii) first-order variables do not occur. We show that Hilbert’s 10th problem is
reducible to a necessary condition for SOGU unifiability if the signature contains a binary
function symbol and two constants, thus proving undecidability. This generalizes known
undecidability results, as either first-order variable occurrences or multiple second-order
variables were required for the reductions. Furthermore, we show that adding the following
restriction: (i) the second-order variable has arity 1, (ii) the signature is finite, and (iii)
the problem has bounded congruence, results in a decidable fragment. The latter fragment
is related to bounded second-order unification in the sense that the number of bound vari-
able occurrences is a function of the problem structure. We conclude with a discussion
concerning the removal of the bounded congruence restriction.

1 Introduction

In general, unification is the process of equating symbolic expressions. Second-order unification
concerns symbolic expressions containing function variables, i.e. variables which take expres-
sions as arguments. Such processes are fundamental to mathematics and computer science, and
are central to formal methods, verification, automated reasoning, interactive theorem proving,
and a variety of other areas. In addition, methods of formal verification based on satisfiability
modulo theories (SMT) exploits various forms of unification within the underlying theories and
their implementations.

Recent investigations have made efforts to increase the expressive power of SMT by adding
higher-order features [4]. In some cases, synthesis techniques are required to find SMT mod-
els [17]. Furthermore, various function synthesis problems can be addressed using Syntax-
Guided Synthesis (SyGuS) [3]. Observe that in many cases SyGuS can be considered as a form
of equational second-order unification where (i) only one second-order variable allowed, (ii) first-
order variables do not occur. Often, enumerative SyGuS solvers use Counterexample Guided
Inductive Synthesis [1] to speed up the synthesis procedure by leveraging ground instances of
the problem. In the synthesis domain of Programming-By-Example (PBE) the goal is to find
functions that satisfy a given set of concrete input-output examples where no variables (other
than the synthesis target) are present [8]. All of these developments combined motivate the
investigation of second-order unification, including ground cases in the absence of first-order
variables.

∗Funded by Czech Science Foundation Grant No. 22-06414L and Cost Action CA20111 EuroProofNet and
the Austrian Science Fund (FWF) project AUTOSARD (36623).

http://arxiv.org/abs/2404.10616v4

One is all you need D.M. Cerna and J. Parsert

Already in the 1970s, Huet and Lucchesi proved the undecidability of higher-order logic [9,
15]. This result was generalized by Goldfarb [7] who proved that second-order unification is
undecidable. Both results consider the general problem and thus led to the search for decidable
fragments and honing of the undecidability results (See [12] for a comprehensive survey). Known
decidable classes include Monadic Second-order [5, 13], Second-order Linear [11], Bounded
Second-order [18], and Context Unification [10]. Undecidability of Second-order unification has
been shown for the following fragments;

• Two second-order variables without first-order variables, [14]

• one second-order variable with at least eight first-order variables [6], and

• One second-order variable with only ground arguments and first-order variables [14]

Interestingly, Levy [12] notes that the number of second-order variables only plays a minor role
in the decidability as Levy and Veanes [14] provide a reduction translating arbitrary second-
order equations to equations containing only one second-order variable and additional first-order
variables. These results immediately lead to the following question:

How important are first-order variables for undecidability of second-order unifica-
tion?

To address this question, we investigate second-order ground unification where only 1 second-
order variable (arbitrary occurrences) is allowed and no first-order variables occur. To this
end, we introduce two functions, the n-counter and the n-multiplier, that allow us to reason
about the multiplicity of a given constant (monadic function symbol) post-substitution and of
a non-variable symbol introduced by the substitution, respectively. These functions allow us to
describe properties of the unification problem number-theoretically. As a result, we can reduce
finding solutions to Diophantine equations to a unification condition involving the structure
of the substitution and n-counter, and thus prove (un)decidability results. In particular, our
contributions are:

• The n-counter and the n-multiplier and prove essential properties of both.

• We prove the undecidability of second-order unification with one function variable and
no first-order variables.

• We describe a decidable fragment of Second-order ground unification.

• We discuss possible generalizations of this decidable fragment.

• We conjecture undecidability even when the function variable has arity 1.

Observe that through our encoding any decidable class of Diophantine equations provides a
decidable fragment of the second-order unification problem presented in this work. Furthermore,
our reduction uses a simple encoding which guarantees the equation presented in Lemma 3
directly reduces to 0 = p(xn) where p(xn) denotes a polynomial with integer coefficients over
the variables x1, · · · , xn. There are likely more intricate encodings which map polynomials to
more interesting unification problems. This may be especially relevant when reducing decidable
classes of Diophantine equations to unification problems; a topic we plan to consider in future
work.

2

One is all you need D.M. Cerna and J. Parsert

2 preliminaries

We consider a finite signature Σ = {f1, · · · , fn, c1, · · · , cm} where n,m ≥ 1, for 1 ≤ i ≤ n,
the arity of fi is denoted arity(fi) ≥ 1, and for all 1 ≤ j ≤ m, the arity of cj is denoted
arity(cj) = 0 (constants). Furthermore, let Σ≤1 ⊆ Σ be the set of base symbols defined as
Σ≤1 = {f | f ∈ Σ ∧ arity(f) ≤ 1}.

By V we denote a countably infinite set of variables. Furthermore, let Vi,Vf ⊂ V such that
Vi ∩ Vf = ∅. We refer to members of Vi as individual variables, denoted by x,y,z, · · · and
members of Vf as function variables, denoted by F,G,H, · · · . Members of Vf have an arity ≥ 1
which we denote by arity(F) where F ∈ Vf . By Vn

f , where n ≥ 1, we denote the set of all
function variables with arity n. We will use h to denote a symbol in V ∪Σ when doing so would
not cause confusion.

We refer to members of the term algebra T (Σ,V), as terms. By Vi(t) and Vf (t) (Vn
f (t)

for n ≥ 1) we denote the set of individual variables and function variables (with arity = n)
occurring in t, respectively. We refer to a term t as n-second-order ground (n-SOG) if Vi(t) = ∅,
Vf (t) 6= ∅ with Vf (t) ⊂ Vn

f , first-order if Vf(t) = ∅, and ground if t is first-order and Vi(t) = ∅.
The sets of n-SOG, first-order, and ground terms are denoted T n

SO, TFO, and TG, respectively.
When possible, without causing confusion, we will abbreviate a sequence of terms t1, · · · , tn by
tn where n ≥ 0.

The set of positions of a term t, denoted by pos(t), is a set of strings of positive integers,
defined as pos(h(t1, . . . , tn)) = {ǫ} ∪

⋃n

i=1
{i.p | p ∈ pos(ti)}, t1, . . . , tn are terms, and ǫ denotes

the empty string. For example, the term at position 1.1.2 of g(f(x, a)) is a. Given a term t and
p ∈ pos(t), then t|p denotes the subterm of t at position p. Given a term t and p, q ∈ pos(t),
we write p ⊑ q if q = p.q′ and p ⊏ q if p ⊑ q and p 6= q. The set of subterms of a term t is
defined as sub(t) = {t|p | p ∈ pos(t)}. The head of a term t is defined as head(h(t1, . . . , tn)) = h,
for n ≥ 0. The number of occurrences of a term s in a term t is defined as occ(s, t) = |{p |
s = t|p ∧ p ∈ pos(t)}|. The number of occurrences of a symbol h in a term t is defined as
occΣ(h, t) = |{p | h = head(t|p) ∧ p ∈ pos(t)}|.

A n-second-order ground (n-SOG) unification equation has the form u
?

=F v where u and
v are n-SOG terms and F ∈ Vn

f such that Vf (u) = {F} and Vf (v) = {F}. A n-second-order
ground unification problem (n-SOGU problem) is a pair (U , F) where U is a set of n-SOG

unification equations and F ∈ Vn
f such that for all u

?

=G v ∈ U , G = F . Recall from the
definition of n-SOG that Vi(u) = Vi(v) = ∅.

A substitution is set of bindings of the form {F1 7→ λyl1 .t1, · · ·Fk 7→ λylk .tk, x1 7→
s1, · · · , xw 7→ sw} where k, w ≥ 0, for all 1 ≤ i ≤ k, ti is first-order and Vi(ti) ⊆ {y1, · · · , yli},
arity(Fi) = li, and for all 1 ≤ i ≤ w, si is ground. Given a substitution σ, domf (σ) = {F | F 7→
λxn.t ∈ σ ∧ F ∈ Vn

f } and dom i(σ) = {x | x 7→ t ∈ Σ ∧ x ∈ Vi}. We refer to a substitution σ

as second-order when dom i(σ) = ∅ and first-order when domf (σ) = ∅. We use postfix notation
for substitution applications, writing tσ instead of σ(t). Substitutions are denoted by lowercase
Greek letters. As usual, the application tσ affects only the free variable occurrences of t whose
free variable is found in dom i(σ) and domf (σ). A substitution σ is a unifier of an n-SOGU

problem (U , F), if domf (σ) = {F}, dom i(σ) = ∅, and for all u
?

=F v ∈ U , uσ = vσ.

We will use the following theorem due to Matiyasevich, Robinson, Davis, and Putnam, in
later sections.

Theorem 1 (Hilbert’s 10th problem or Matiyasevich–Robinson–Davis–Putnam theorem [16]).
Given a polynomial p(x) with integer coefficients, finding integer solutions to p(x) = 0 is unde-
cidable.

3

One is all you need D.M. Cerna and J. Parsert

3 n-Multipliers and n-Counters

In this section, we define and discuss the n-multiplier and n-counter functions, which allow us to
encode number-theoretic problems in second-order unification. These functions are motivated
by the following simple observation about n-SOGU.

Lemma 1. Let (U , F) be a unifiable n-SOGU problem, and σ a unifier of (U , F). Then for all

c ∈ Σ≤1 and u
?

=F v ∈ U , occΣ(c, uσ) = occΣ(c, vσ).

Proof. If there exists u
?

=F v ∈ U such that occΣ(c, uσ) 6= occΣ(c, vσ), then there exists a
position p ∈ pos(uσ) ∩ pos(uσ) such that uσ|p 6= vσ|p, i.e. σ is not a unifier. �

With this observation, we now seek to relate the number of occurrences of a symbol in a
term t and substitution σ with the number of occurrences of the same symbol in the term tσ.
To this end, we define the multiplier function.

Definition 1 (n-Multiplier). Let t be a n-SOG term such that Vf (t) ⊆ {F} and F ∈ Vn
f and

h1, · · · , hn ≥ 0. Then we define mul(F, hn, t) recursively as follows:

• if t = f(t1, · · · , tl), then mul(F, hn, t) =
∑l

j=1
mul(F, hn, tj)

• if t = F (tn), then mul(F, hn, t) = 1 +
∑n

i=1
hi ·mul(F, hn, ti)

Furthermore, let (U , F) be an n-SOGU problem then,

mul l(F, hn,U) =
∑

u
?
=F v∈U

mul(F, hn, u) mulr(F, hn,U) =
∑

u
?
=F v∈U

mul(F, hn, v).

The n-multiplier captures the following property of a term: let t be a n-SOG term such that
Vf (t) ⊆ {F}, f ∈ Σ, and σ = {F 7→ λxn.s} a substitution where occΣ(f, s) ≥ 0, Vi(s) ⊆ {xn},
and for all 1 ≤ i ≤ n, occ(xi, s) = hi. Then occΣ(f, tσ) ≥ occΣ(f, s) · mul(F, hn, t) where the
hn capture the duplication of the arguments to F . The following presents this idea using a
concrete example.

Example 1. Consider the term t = g(F (g(a, F (s(a)))), g(F (a), F (F (F (b))))). Then the n-
multiplier of t is

mul(F, h, t) = mul(F, h, F (g(a, F (s(a))))) +mul(F, h, g(F (a), F (F (F (b))))) =

(1 + h) + (1 + (1 + h · (1 + h))) = 3 + 2 · h+ h2.

Thus, when h = 2 we get mul(F, h, t) = 11. Observe occΣ(g
′, t{F 7→ λx.g′(x, x)}) = 11.

Next, we introduce the n-counter function. Informally, given an n-SOG term t such that
Vf (t) ⊆ {F}, a symbol c ∈ Σ≤1, and a substitution σ with domf (σ) = {F}, the n-counter
captures number of occurrences of c in tσ.

Definition 2 (n-Counter). Let c ∈ Σ≤1, t be a n-SOG term such that Vf (t) ⊆ {F} and F ∈ Vn
f ,

and h1, · · · , hn ≥ 0. Then we define cnt(F, hn, c, t) recursively as follows:

• if t = f(tl) and f 6= c, then cnt(F, hn, c, t) =
∑l

j=1
cnt(F, hn, c, tj).

• if t = c(t), then cnt(F, hn, c, c(t)) = 1 + cnt(F, hn, c, t)

4

One is all you need D.M. Cerna and J. Parsert

• if t = c, then cnt(F, hn, c, c) = 1

• if t = F (tn), then cnt(F, hn, c, t) =
∑n

i=1
hi · cnt(F, hn, c, ti)

Furthermore, let (U , F) be a n-SOGU problem them,

cnt l(F, hn, c,U) =
∑

u
?
=F v∈U

cnt(F, hn, c, u) cntr(F, hn, c,U) =
∑

u
?
=F v∈U

cnt(F, hn, c, v).

The n-counter captures how many occurrences of a given constant or monadic function
symbol will occur in a term tσ where Vf (t) ⊆ {F}, σ = {F 7→ λxn.s}, Vi(s) ⊆ {xn}, and for
all 1 ≤ i ≤ n, occ(xi, s) = hi A concrete instance is presented in Example 2.

Example 2. Consider the term t = g(g(a, a), g(F (g(a, F (g(a, a)))), g(F (a), F (F (F (b))))).
The counter of t is cnt(F, h, a, t) = cnt(F, h, a, g(a, a)) + cnt(F, h, a, F (g(a, F (g(a, a))))) +
cnt(F, h, a, g(F (a), F (F (F (b))))) = 2 + (h + 2 · h2) + h = 2 + 2 · h + 2 · h2. Thus, when
h = 2 we get cnt(F, h, a, t) = 14. Observe occΣ(a, t{F 7→ λx.g(x, x)}) = 14.

The n-multiplier and n-counter functions differ in the following key aspects: the n-multiplier
counts occurrences of a symbol occurring once in a given substitution with bound variable
occurrences corresponding to hn, and the n-counter counts occurrences of a given symbol after
applying the given substitution to a term.

Now we describe the relationship between the n-multiplier, n-counter, and the total occur-
rences of a given symbol.

Lemma 2. Let c ∈ Σ≤1, t be a n-SOG term such that Vf (t) ⊆ {F}, h1, · · · , hn ≥ 0, and
σ = {F 7→ λxn.s} a substitution such that Vi(s) ⊆ {xn} and for all 1 ≤ i ≤ n occ(xi, s) = hi.
Then occ(c, tσ) = occ(c, s) ·mul(F, hn, t) + cnt(F, hn, c, t).

Proof. We prove the lemma by induction on dep(t) . When dep(t) = 1, then t is a constant,
t = tσ, and mul(F, hn, t) = 0. If t = c then cnt(F, hn, c, t) = 1, otherwise cnt(F, hn, c, t) = 0.
In either case we get occ(c, tσ) = 0 + cnt(F, hn, c, t).

Now for the induction hypothesis we assume the lemma holds for all terms t such that
dep(t) < w + 1 and prove the lemma for a term t′ such that dep(t) = w + 1. Consider the
following Three cases:

• t = f(t1, · · · , tk) for f ∈ Σ and f 6= c. We know by the induction hypothesis that for
1 ≤ i ≤ k, occ(c, tiσ) = occ(c, s) ·mul(F, hn, ti) + cnt(F, hn, c, ti). Thus,

occ(c, tσ) =
k
∑

i=1

occ(c, tiσ) = occ(c, s) ·
k
∑

i=1

mul(F, hn, ti) +
k
∑

i=1

cnt(F, hn, c, ti),

and by the definition of n-multiplier and n-counter, mul(F, hn, t) =
∑k

i=1
mul(F, hn, ti),

and cnt(F, hn, c, t) =
∑k

i=1
cnt(F, hn, c, ti). Thus, occ(c, tσ) = occ(c, s) · mul(F, hn, t) +

cnt(F, hn, c, t).

• t = c(t1). Same as previous case except cnt(F, hn, c, t) = 1 + cnt(F, hn, c, t1)

• t = F (r1, · · · , rn). By the induction hypothesis, we have that for all 1 ≤ i ≤ n,

occ(c, riσ) = occ(c, s) ·mul(F, hn, ri) + cnt(F, hn, c, ri).

5

One is all you need D.M. Cerna and J. Parsert

With this assumption we can derive the following equality and conclude the proof.

occ(c, tσ) = occ(c, s) +

n
∑

i=1

hi · occ(c, riσ) =

occ(c, s) + occ(c, s) ·

(

n
∑

i=1

hi ·mul(F, hn, ri)

)

+

(

n
∑

i=1

hi · cnt(F, hn, c, ri)

)

=

occ(c, s) ·

(

1 +
n
∑

i=1

hi ·mul(F, hn, ri)

)

+

(

n
∑

i=1

hi · cnt(F, hn, c, ri)

)

=

occ(c, s) ·mul(F, hn, F (rn)) + cnt(F, hn, c, F (rn)) =

occ(c, s) ·mul(F, hn, t) + cnt(F, hn, c, t)

�

This lemma captures an essential property of the n-multiplier and n-counter. This is again
shown in the following example.

Example 3. Consider the term t = g(g(a, a), g(F (g(a, F (g(a, a)))), g(F (a), F (F (F (b))))) and
substitution {F 7→ λx.g(a, g(x, x))}. The n-counter of t at 2 is cnt(F, 2, a, t) = 14 and the
n-multiplier of t at 2 is mul(F, 2, t) = 11. Observe occΣ(a, t{F 7→ λx.g(a, g(x, x))}) = 25 and
occ(a, s) ·mul(F, 2, t) + cnt(F, 2, a, t) = 25.

Up until now we considered arbitrary terms and substitutions. We now apply these results
to unification problems and their solutions. In particular, a corollary of Lemma 2 is that there
is a direct relation between the n-multiplier and n-counter of a unifiable unification problem
given a unifier of the problem. The following lemma describes this relation.

Lemma 3 (Unification Condition). Let (U , F) be a unifiable n-SOGU problem such that
Vf (U) ⊆ {F}, h1, · · · , hn ≥ 0, and σ = {F 7→ λxn.s} a unifier of (U , F) such that Vi(s) = {xn}
and for all 1 ≤ i ≤ n,occ(x, s) = hi. Then for all c ∈ Σ≤1,

occ(c, s) · (mul l(F, hn,U)−mulr(F, hn,U)) = cntr(F, hn, c,U)− cnt l(F, hn, c,U). (1)

Proof. By Lemma 1, for any c ∈ Σ≤1 and u
?

= v ∈ U , we have occ(c, uσ) = occ(c, vσ) and by
Lemma 2 we also have

occ(c, uσ) = occ(c, s) ·mul(F, hn, u) + cnt(F, hn, c, u), and

occ(c, vσ) = occ(c, s) ·mul(F, hn, v) + cnt(F, hn, c, v).

Thus, for any c ∈ Σ≤1 and u
?

=F v ∈ U ,

occ(c, s) ·mul(F, hn, u) + cnt(F, hn, c, u) = occ(c, s) ·mul(F, hn, v) + cnt(F, hn, c, v).

From this equation we can derive:

occ(c, s) · (mul(F, hn, u)−mul(F, hn, v)) = cnt(F, hn, c, v)− cnt(F, hn, c, u) (2)

We can generalize this to U by computing Equation 1 for each u
?

=F v ∈ U adding the results
together. The result is the following equation:

occ(c, s) · ((mul l(F, hn,U)−mulr(F, hn,U)) = cntr(F, hn, c,U)− cnt l(F, hn, c,U).

�

6

One is all you need D.M. Cerna and J. Parsert

The unification condition is at the heart of the undecidability proof presented in Section 4.
Essentially, Equation 1 relates the left and right side of a unification equation giving a necessary
condition for unification. The following example shows an instance of this property.

Example 4. Consider the 1-SOGU problem F (g(a, a))
?

=F g(F (a), F (a)) and the unifier σ =
{F 7→ λx.g(x, x)}. Observe that

occ(a, g(x, x)) · ((mul l(F, 2, F (g(a, a)))−mulr(F, 2, g(F (a), F (a)))) = 0 · (1− 2) = 0

and for the right we get cntr(F, h, a, g(F (a), F (a))) − cnt l(F, h, a, F (g(a, a))) = 4− 4 = 0.

4 Undecidability n-SOGU

In this section, we prove the main result of this paper. We do so by using the machinery we
built in the previous section to encode Diophantine equations in unification problems. As a
result, we are able to transfer undecidability results Diophantine equations to satisfying the
following unification condition for n-SOGU: for a given c ∈ Σ≤1 and n-SOGU problem (U , F),
does there exist hn ≥ 0 such that cntr(F, hn, c,U) = cnt l(F, hn, c,U). This unification condition
is a necessary condition for unifiability.

For the remainder of this section, we consider a finite signature Σ such that {g, a, b} ⊆ Σ,
arity(g) = 2, and arity(a) = arity(b) = 0. By p(xn) we denote a polynomial with integer
coefficients over the unknowns x1, · · · , xn ranging over the natural numbers and bymono(p(xn))
we denote the set of monomials of p(xn). Given a polynomial p(xn) and 1 ≤ i ≤ n, if for all
m ∈ mono(p(xn)), there exists a monomial m′ such that m = xi ·m′ then we say div (p(xn), xi).
Furthermore, deg(p(xn)) = max{k | k ≥ 0 ∧m = xk

i · q(xn) ∧ 1 ≤ i ≤ n ∧m ∈ mono(p(xn))}.
Given a polynomial p(xn), a polynomial p′(xn) is a sub-polynomial of p(xn) if mono(p′(xn)) ⊆
mono(p(xn)). Using the above definition we define distinct sub-polynomials based on divisibility
by one of the input unknowns.

Definition 3 (monomial groupings). Let p(xn) = q(xn) + c be a polynomial where c ∈ Z,
0 ≤ j ≤ n, and Sj = {m | m ∈ mono(p(xn)) ∧ ∀i(1 ≤ i < j ⇒ ¬div (m,xi))}. Then

• p(xn)0 = c,

• p(xn)j = 0 if there does not exists m ∈ Sj such that div (m,xj),

• otherwise, p(xn)j = p′(xn), where p′(xn) is the sub-polynomial of p(xn) such that
mono(p′(xn)) = {m | m ∈ Sj ∧ div (m,xj)}.

Furthermore, let p(xn)j = xj · p′(xn). Then p(xn)j ↓= p′(xn).

We now define a second-order term representation for arbitrary polynomials as follows:

Definition 4 (n-Converter). Let p(xn) be a polynomial and F ∈ Vn
f . Then we define the positive

(negative) second-order term representation of p(xn), as cvt
+(F, p(xn))(cvt

−(F, p(xn))), where
cvt+ (cvt−) is defined recursively as follows:

• if p(xn) = p(xn)0 = 0, then cvt+(F, p(xn)) = cvt−(F, p(xn)) = b

• if p(xn) = p(xn)0 = c ≥ 1, then

– cvt+(F, p(xn)) = t where occΣ(a, t) = |p(xn)0|+ 1 and t is ground.

7

One is all you need D.M. Cerna and J. Parsert

– cvt−(F, p(xn)) = t where occΣ(a, t) = 1 and t is ground.

• if p(xn) = p(xn)0 < 0, then

– cvt−(F, p(xn)) = t where occΣ(a, t) = |p(xn)0|+ 1 and t is ground.

– cvt+(F, p(xn)) = t where occΣ(a, t) = 1 and t is ground.

• if p(xn) 6= p(xn)0and p(xn)0 = 0, then for all ⋆ ∈ {+,−},

cvt⋆(F, p(xn)) = F (cvt⋆(F, p(xn)1 ↓), · · · , cvt⋆(F, p(xn)n ↓))

• if p(xn) 6= p(xn)0and p(xn)0 ≥ 1, then

– cvt+(F, p(xn)) = g(t, F (cvt+(F, p(xn)1 ↓), · · · , cvt+(F, p(xn)n ↓)) where occΣ(a, t) =
p(xn)0 and t is ground.

– cvt−(F, p(xn)) = F (cvt−(F, p(xn)1 ↓), · · · , cvt−(F, p(xn)n ↓))

• if p(xn) 6= p(xn)0, and p(xn)0 < 0, then

– cvt−(F, p(xn)) = g(t, F (cvt−(F, p(xn)1 ↓), · · · , cvt−(F, p(xn)n ↓)) where occΣ(a, t) =
p(xn)0 and t is ground.

– cvt+(F, p(xn)) = F (cvt+(F, p(xn)1 ↓), · · · , cvt+(F, p(xn)n ↓))

Intuitively, the n-converter takes a polynomial in n unknowns separates it into n+1 variable
disjoint subpolynomials. Each of these subpolynomials is assigned to one of the arguments of
the second-order variable (except the subpolynomial representing an integer constant) and
the n-converter is called recursively on these subpolynomials. The process stops when all the
subpolynomials are integers. Example 5 illustrates the construction of a term from a polynomial.
Example 6 & 7 construct the n-multiplier and n-counter of the resulting term, respectively.

Example 5. Consider the polynomial p(x, y) = 3 ·x3+xy−2 ·y2−2. The positive and negative
terms representing this polynomial are as follows:

cvt+(F, 3 · x3 + xy − 2 · y2 − 2) =F (cvt+(F, 3 · x2 + y), cvt+(F,−2 · y))

cvt+(F, 3 · x2 + y) =F (cvt+(F, 3 · x), cvt+(F, 1))

cvt+(F, 3 · x) =F (cvt+(F, 3), b)

cvt+(F, 3) =g(g(a, a), g(a, a))

cvt+(F, 1) =g(a, a)

cvt+(F,−2 · y) =F (b, a)

cvt−(F, 3 · x3 + xy − 2 · y2 − 2) =g(g(a, a), F (cvt−(F, 3 · x2 + y), cvt−(F,−2 · y)))

cvt−(F, 3 · x2 + y) =F (cvt−(F, 3 · x), cvt−(F, 1))

cvt−(F, 3 · x) =F (a, b)

cvt−(F, 1) =a

cvt−(F,−2 · y) =F (b, g(a, g(a, a)))

We can build a unification equation using these two terms:

g(g(a, a), F (F (F (a, b), a), F (b, g(a, g(a, a))))
?

= F (F (F (g(g(a, a), g(a, a)), b), g(a, a)), F (b, a))

8

One is all you need D.M. Cerna and J. Parsert

Observe that the n-converter will always produce a flex-rigid unification equation as long
as the input polynomial is of the form p(xn) = p′(xn) + c where c ∈ Z. When c = 0, we get
a flex-flex unification equation and there is always a solution for both the polynomial and the
unification equation.

Example 6. Consider the term from Example 5. The n-multiplier is computed as follows:

mul(F, x, y, cvt+(F, 3 · x3 + xy − 2 · y2 − 2)) =1 + x ·mul(F, x, y, cvt+(F, 3 · x2 + y))+

y ·mul(F, x, y, cvt+(F,−2 · y))

mul(F, x, y, cvt+(F, 3 · x2 + y)) =1 + x ·mul(F, x, y, cvt+(F, 3 · x))

mul(F, x, y, cvt+(F, 3 · x)) =1

mul(F, x, y, cvt−(F, 3 · x3 + xy − 2 · y2 − 2)) =1 + xmul(F, x, y, ·cvt−(F, 3 · x2 + y))+

y ·mul(F, x, y, cvt−(F,−2 · y))

mul(F, x, y, cvt−(F, 3 · x2 + y)) =1 + x · cvt−(F, 3 · x)

mul(F, x, y, cvt−(F, 3 · x)) =1

Thus, mul(F, x, y, cvt+(F, 3 ·x3+xy−2 ·y2−2)) = mul(F, x, y, cvt−(F, 3 ·x3+xy−2 ·y2−2)) =
1 + x2 + y.

Example 7. Consider the term from Example 5. The n-counter is computed as follows:

cnt(F, x, y, a, cvt+(F, 3 · x3 + xy − 2 · y2 − 2)) =x · cnt(F, x, y, a, cvt+(F, 3 · x2 + y))+

y · cnt(F, x, y, a, cvt+(F,−2 · y)))

cnt(F, x, y, a, cvt+(F, 3 · x2 + y)) =x · cnt(F, x, y, a, cvt+(F, 3 · x)) + 2 · y

cnt(F, x, y, a, cvt+(F, 3 · x)) =x · cnt(F, x, y, a, cvt+(F, 3))

cnt(F, x, y, a, cvt+(F, 3)) =4

cnt(F, x, y, a, cvt+(F,−2 · y)) =y

cnt(F, x, y, a, cvt−(F, 3 · x3 + xy − 2 · y2 − 2)) =2 + x · cnt(F, x, y, a, cvt−(F, 3 · x2 + y))+

y · cnt(F, x, y, a, cvt−(F,−2 · y))

cnt(F, x, y, a, cvt−(F, 3 · x2 + y)) =x · cnt(F, x, y, a, cvt−(F, 3 · x)) + y

cnt(F, x, y, a, cvt−(F, 3 · x)) =x

cnt(F, x, y, a, cvt−(F,−2 · y)) =y · cnt(F, x, y, a, cvt−(F,−2))

cnt(F, x, y, a, cvt−(F,−2)) =3

Thus,

cnt(F, x, y, a, cvt+(F, 3 · x3 + xy − 2 · y2 − 2)) =4 · x3 + 2 · xy + y2

cnt(F, x, y, a, cvt−(F, 3 · x3 + xy − 2 · y2 − 2)) =x3 + xy + 3 · y2 + 2

cnt(F, x, y, a, cvt+(F, p(x, y))) − cnt(F, x, y, a, cvt−(F, p(x, y))) =3x3 + xy − 2 · y2 − 2

Using the operator defined in Definition 4, we can transform a polynomial with integer
coefficients into a n-SOGU problem. The next definition describes the process:

9

One is all you need D.M. Cerna and J. Parsert

Definition 5. Let p(xn) be a polynomial and F ∈ Vn
f . Then (U , F) is the n-SOGU problem

induced by p(xn) where U = {cvt−(F, p(xn))
?

=F cvt+(F, p(xn))}.

The result of this translation is that the n-counter captures the structure of the polynomial
and the n-multipliers cancel out.

Lemma 4. Let n ≥ 1, p(xn) be a polynomial, and (U , F) an n-SOGU problem induced by p(xn)

where U = {cvt−(F, p(xn))
?

=F cvt+(F, p(xn))}. Then

p(xn) = cntr(F, xn, a,U)− cnt l(F, xn, a,U) and 0 = mul l(F, xn,U)−mulr(F, xn,U).

Proof.

We proceed by induction on deg(p(xn)).

Base case: When deg(p(xn)) = 0, then p(xn) = c for some c ∈ Z. We have the following cases:

• if c = 0, then U = {b
?

=F b}. This implies that cntr(F, xn, a,U) = cnt l(F, xn, a,U) = 0
and mul l(F, xn,U) = mulr(F, xn,U) = 0

• if c > 0, then U = {s
?

=F t} where occΣ(a, t) = c + 1 and occΣ(a, s) = 1. This implies
that cntr(F, xn, a,U)− cnt l(F, xn, a,U) = c and mul l(F, xn,U) = mulr(F, xn,U) = 0

• if c < 0, then U = {s
?

=F t} where occΣ(a, t) = 1 and occΣ(a, s) = |c| + 1. This implies
that cntr(F, xn, a,U)− cnt l(F, xn, a,U) = c and mul l(F, xn,U) = mulr(F, xn,U) = 0

This completes the basecase.

Stepcase: We assume for our induction hypothesis that for all polynomials p(xn) with
deg(p(xn)) ≤ k the statement holds, and show the statement holds for polynomials p(xn)
with deg(p(xn)) = k + 1. observe that

cntr(F, xn, a,U) =cntr(F, xn, a, cvt
+(F, p(xn))) =

=cntr(F, xn, a, cvt
+(F, p(xn)0)) +

n
∑

i=1

xi · cntr(F, xn, a, cvt
+(F, p(xn)i))

cnt l(F, xn, a,U) =cnt l(F, xn, a, cvt
−(F, p(xn))) =

=cnt l(F, xn, a, cvt
−(F, p(xn)0)) +

n
∑

i=1

xi · cnt l(F, xn, a, cvt
−(F, p(xn)i))

By the induction hypothesis we know that for all 0 ≤ i ≤ n that

p(xn)i = cntr(F, xn, a, cvt
+(F, p(xn)i))− cnt l(F, xn, a, cvt

−(F, p(xn)i))

Thus, we can derive the following:

cntr(F, xn, a,U)− cnt l(F, xn, a,U) =p(xn)0 +

n
∑

i=1

xi · p(xn)i = p(xn)

10

One is all you need D.M. Cerna and J. Parsert

Similarly,

mulr(F, xn,U) =mulr(F, xn, cvt
+(F, p(xn))) =

=mulr(F, xn, cvt
+(F, p(xn)0)) +

n
∑

i=1

xi ·mulr(F, xn, cvt
+(F, p(xn)i))

mul l(F, xn,U) =mul l(F, xn, cvt
−(F, p(xn))) =

=mul l(F, xn, cvt
−(F, p(xn)0)) +

n
∑

i=1

xi ·mul l(F, xn, cvt
−(F, p(xn)i))

By the induction hypothesis we know that for all 0 ≤ i ≤ n that

0 = mulr(F, xn, cvt
+(F, p(xn)i))−mul l(F, xn, cvt

−(F, p(xn)i))

Thus, we can derive the following:

mulr(F, xn,U)−mul l(F, xn,U) =0 +

n
∑

i=1

0 · xi = 0

�

A simply corollary of Lemma 4 concerns commutativity of unification equations:

Corollary 1. Let n ≥ 1, p(xn) be a polynomial, and ({s
?

= t}, F) an n-SOGU problem induced
by p(xn). Then

−p(xn) = cntr(F, xn, a, {t
?

= s})− cnt l(F, xn, a, {t
?

= s})

Proof. Same as Lemma 4 but swapping terms. �

Both p(xn) and −p(xn) have the same roots and the induced unification problem cannot
be further reduced without substituting into F , thus the induced unification problem uniquely
captures the polynomial p(xn).

We now prove that the unification condition as introduced in Lemma 3 is equivalent to find-
ing the solutions to polynomial equations. The following shows how a solution to a polynomial
can be obtained from the unification condition and vice versa.

Lemma 5. Let p(xn) be a polynomial and (U , F) the n-SOGU problem induced by p(xn) using
the c ∈ Σ≤1(Definition 4). Then there exists h1, · · · , hn ≥ 0 such that cnt l(F, hn, c,U) =
cntr(F, hn, c,U) (unification condition) if and only if {xi 7→ hi | 1 ≤ i ≤ n ∧ hi ∈ N} is a
solution to p(xn) = 0.

Proof. Observe that, by lemma 4, p(hn) = cntr(F, hn, c,U) − cnt l(F, hn, c,U). Thus, we can
prove the two directions as follows:
=⇒: If cnt l(F, hn, c,U) = cntr(F, hn, c,U) then p(hn) = 0.
⇐=: Any substitution of natural numbers hn into xn such that p(hn) = 0 would imply that
cntr(F, hn, c,U) = cnt l(F, hn, c,U). �

Using Lemma 5, we now show that finding h1, · · · , hn ≥ 0 such that the unification condition
holds is undecidable by reducing solving p(xn) = 0 for arbitrary polynomials over N (Theorem 1)
to finding h1, · · · , hn ≥ 0 which satisfy the unification condition.

Lemma 6 (Equalizer Problem). For a given n-SOGU problem, finding h1, · · · , hn ≥ 0 such
that the unification condition (Lemma 3) holds is undecidable.

11

One is all you need D.M. Cerna and J. Parsert

Proof. Given a polynomial p(xn) = 0 we construct, with the help of Definition 5, an n-SOGU
problem (U , F) using c ∈ Σ≤1. Importantly, this process is terminating, finitely computable.
We now prove that h1, · · · , hn ≥ 0 satisfies the unification condition (Lemma 3) over (U , F)
using c ∈ Σ≤1 if and only if p(xn) = 0 has solutions:
=⇒: Assume: h1, · · · , hn ≥ 0 satisfies the unification condition (Lemma 3) over (U , F) using
c ∈ Σ≤1, then by Lemma 4, p(hn) = 0 as

p(xn) = cntr(F, xn, c,U)− cnt l(F, xn, c,U) and 0 = mul l(F, xn,U)−mulr(F, xn,U).

⇐=: Assume: p(xn) = 0 now has solutions. Then let h1, · · · , hn be a solution to p(xn) = 0.
Observe that by Lemma 4,

p(xn) = cntr(F, xn, c,U)− cnt l(F, xn, c,U) and 0 = mul l(F, xn,U)−mulr(F, xn,U).

Thus, h1, · · · , hn satisfy the unification condition (Lemma 3) over (U , F) using c ∈ Σ≤1. By
Theorem 1, we know that finding integer solutions to p(xn) = 0 is undecidable. Hence, solving
for the unification condition is also undecidable. �

We have proven the equalizer problem to be undecidable by reducing Hilbert’s 10th problem.
Now, we use the equalizer problem to prove the main result of this paper.

Theorem 2. There exists n ≥ 1 such that n-SOGU is undecidable.

Proof. We will prove this by contradiction. Hence, assume that n-SOGU is decidable and let
(U , F) be an arbitrary n-SOGU problem. We will now consider the following two cases where
a solution exists and where no solution exists:
Case 1: Assume (U , F) has at least one solution. Note that there might be infinitely many
unifiers, but since by assumption n-SOGU is decidable we can compute a solution. We let
σ = {F 7→ λ yn.s} be a solution. Now, for all 1 ≤ i ≤ n, let hi = occ(yi, s). Observe that for
all c ∈ Σ≤1,

occ(c, s) · ((mul l(F, hn,U)−mulr(F, hn,U)) = cntr(F, hn, c,U)− cnt l(F, hn, c,U).

Observe that this choice of h1, · · · , hn is a solution to the Equalizer problem.
Case 2: Assume (U , F) has no solution. Then, by Lemma 3, for all h1, · · · , hn ≥ 0, there exists
c ∈ Σ≤1 such that for all k ≥ 0,

k · ((mul l(F, hn,U)−mulr(F, hn,U)) 6= cntr(F, hn, c,U)− cnt l(F, hn, c,U).

The above implies that there is no solution to the Equalizer Problem.
Note that computing h1, · · · , hn ≥ 0 in the first case is decidable and an answer in the

second case is vacuously decidable by the assumption. However, this would imply that the
Equalizer Problem is decidable, which is a contradiction. �

Theorem 2 answers the question posed in Section 1 by proving that first-order variable
occurrence does not impact the decidability of second-order unification. By combining the
encoding used for the reduction as well as other number theoretic results, we can refine n to at
most 9 using the encoding presented in [16]. We leave a more detailed investigation for future
work.

5 Decidability of 1-SOGU with Bounded Congruence

In this section, we investigate further properties of the n-multiplier and n-counter functions.
As a result, we obtain a decidable fragment of 1-SOGU based on a property we call bounded

12

One is all you need D.M. Cerna and J. Parsert

congruence (Definition 7). The following lemma highlights that the 1-counter and 1-multiplier
are univariate polynomials. We will use this fact to define bounded congruence.

Lemma 7. Let (U , F) be a 1-SOGU, c ∈ Σ≤1, and h ≥ 0. Then cnt l(F, h, c,U) = ql(h),
cntr(F, h, c,U) = qr(h), mul l(F, h,U) = pl(h) and mulr(F, h,U) = pr(h), where ql(x) and
qr(x), pl(x) and pr(x) are polynomials with natural number coefficients and x ranges over N.

Proof. Derived by telescoping the recursive definition. �

Furthermore, we denote the ith coefficient of cnt l(F, h, c,U), cntr(F, h, c,U), mul l(F, h,U),
and mulr(F, h,U) by cnt l(F, h, c,U)i, cntr(F, h, c,U)i, mul l(F, h,U)i and mulr(F, h,U)i, re-
spectively. Observe that, considering the 1-counter and 1-multiplier as univariate polynomials
in h highlights the fact that only the 0th coefficient is not multiplied by h. Thus, for h larger
then the Max-arg-multiplicity we only need to consider the 0th coefficients when considering
divisibility modulo h.

Definition 6 (Max-arg-multiplicity). Let (U , F) be a 1-SOGU. Then we define hU ≥ 0 as the
minimal natural number such that hU ≥ mul l(F, h,U)0−mulr(F, h,U)0+1 and for all c ∈ Σ≤1,
and hU ≥ cntr(F, hU , c,U)0 − cnt l(F, hU , c,U)0 + 1.

In the following lemma, we use max-arg-multiplicity to show that for large enough values of h
we only have to consider the 0th coefficient of the polynomial representations of the 1-multiplier
and 1-counter.

Lemma 8. Let (U , F) be a 1-SOGU problem. Then for all c ∈ Σ≤1,

mul l(F, hU ,U)0 −mulr(F, hU , c,U)0 ≡ mul l(F, hU ,U)−mulr(F, hU ,U) mod hU

cntr(F, hU , c,U)0 − cnt l(F, hU , c,U)0 ≡ cntr(F, hU , c,U)− cnt l(F, hU , c,U) mod hU

Proof. The 0th coefficient is the only coefficient not multiplied by hU . �

Below we define bounded Congruence and refer to this fragment of 1-SOGU as 1-SOGU with
bounded congruence.

Definition 7 (Bounded Congruence). Let (U , F) be a 1-SOGU problem. We refer to (U , F)
as having bounded congruence if there exists c ∈ Σ≤1:

• mul l(F, hU ,U)−mulr(F, hU ,U) 6≡ cntr(F, hU , c,U)− cnt l(F, hU , c,U) mod hU

• 0 6≡ cntr(F, hU , c,U)− cnt l(F, hU , c,U) mod hU

Observe that unification problems with bounded congruence are unifiable iff the number of
occurrences of the bound variable is less than the Max-arg-multiplicity of the problem. The
following lemma addresses this observation.

Lemma 9. Let (U , F) be a 1-SOGU with bounded congruence. Then U is unifiable iff {F 7→
λx.t} unifies U where Vi(t) = {x}, and occ(x, t) < hU .

Proof. The following holds (by Lemma 8) for all h ≥ hU ,
mul l(F, hU ,U)−mulr(F, hU ,U) mod hU = mul l(F, h,U) −mulr(F, h,U) mod h,

cntr(F, hU , c,U)− cnt l(F, hU , c,U) mod hU = cntr(F, h, c,U)− cnt l(F, h, c,U) mod h.

Thus, for all h ≥ hU ,

mul l(F, h,U)−mulr(F, h,U) 6≡ cntr(F, h, c,U) − cnt l(F, h, c,U) mod h,

and 0 6≡ cntr(F, h, c,U) − cnt l(F, h, c,U) mod h. In other words, for any unifier {F 7→ λx.t}
of (U , F), occ(x, t) < hU . �

13

One is all you need D.M. Cerna and J. Parsert

Given a 1-SOGU problem with bounded congruence, a unifier can be found by checking all
values less than or equal to the max-arg-multiplicity. By Lemma 3, we get the precise number
of occurrences of every constant and monadic function symbol occurring in the problem. In the
following lemma we provide the precise constraints needed for unifiability.

Lemma 10. Let (U , F) be a 1-SOGU problem with bounded-congruence. Then U is unifiable
iff there exists 1 ≤ h′ < hU such that for all c ∈ Σ≤1, either

mul l(F, h
′,U)−mulr(F, h

′,U) mod h′ ≡ cntr(F, h
′, c,U)− cnt l(F, h

′, c,U) mod h′ (3)

or Equation 3 does not hold, but

0 ≡ cntr(F, h
′, c,U)− cnt l(F, h

′, c,U) mod h′ (4)

holds and there exists a substitution σ such that σ unifies U , σ = {F 7→ λx.t}, Vi(t) = {x},
occ(x, t) = h′, for all c ∈ Σ≤1, such that Equation 3 holds,

occ(c, t) =
cntr(F, h

′, c,U)− cnt l(F, h
′, c,U)

mul l(F, h′,U)−mulr(F, h′,U)
,

and for all c ∈ Σ≤1, such that Equation 3 does not hold, occ(c, t) = 0.

Proof. The number of occurrences of c ∈ Σ≤1 is fixed by Lemma 2. �

To emphasise this, we present the following example:

Example 8. Consider U = {g(b, F (g(b, g(a, a))))
?

=F g(b, g(b, g(F (a), F (a))))}. Observe
that mul l(F, h,U) = 1, mulr(F, h,U) = 2, cnt l(F, h, a,U) = 2 · h, cnt l(F, h, b,U) = 1 + h,
cntr(F, h, a,U) = 2 · h, cntr(F, h, b,U) = 2, and hU = 3. Thus,

cntr(F, h, a,U)− cnt l(F, h, a,U) = 0

cntr(F, h, b,U)− cnt l(F, h, b,U) = 1− h

mul l(F, h,U) −mulr(F, h,U) = −1

Observe that h = 3,

mul l(F, 2,U) −mulr(F, 2,U) 6≡ cntr(F, 2, b,U)− cnt l(F, 2, b,U) mod 3

0 6≡ cntr(F, 2, b,U)− cnt l(F, 2, b,U) mod 3

However, for h = 2,

mul l(F, 2,U)−mulr(F, 2,U) 6≡ cntr(F, 2, a,U)− cnt l(F, 2, a,U) mod 2

0 ≡ cntr(F, 2, a,U)− cnt l(F, 2, a,U) mod 2

mul l(F, 2,U) −mulr(F, 2,U) ≡ cntr(F, 2, b,U)− cnt l(F, 2, b,U) mod 2

This implies that the unifier of U has 1 occurrence of b and no occurrences of a. Observe that
{F 7→ λx.g(b, g(x, x)) is a unifier of U .

In conclusion, we obtain the following result about problems with bounded congruence.

Theorem 3. 1-SOGU with bounded-congruence is decidable.

Proof. Let (U , F) be a 1-SOGU with bounded-congruence. If (U , F) is unifiable, then there
exists a unifier σ = {F 7→ λx.t} such that Vi(t) ⊆ {x} and occ(x, t) < hU (Lemma 9). Once
we bound the occurrences of x we can use the decision procedure for bounded second-order
unification [18] to find a unifier. �

14

One is all you need D.M. Cerna and J. Parsert

Essentially, 1-SOGU with bounded-congruence derives a bound on the number of occur-
rences of the bound variable in any unifier from the structure of the unification problem. Thus,
the resulting unification problem, after deriving the max number of bound variable occurrences,
is an instance of bound-second-order unification [18]. When the unification problem does not
have bounded congruence, we cannot compute a max number of bound variable occurrences as
above.

Conjecture 1. 1-SOGU is undecidable.

Observe that the above construction reduces 1-SOGU to solving a system of integer poly-
nomials with two unknowns (Lemma 3) each of which has the form p(x) − yi · q(x) = 0. Let
use assume that |Σ≤1| ≥ 2 and the unification problem which induces the system of poly-
nomials contains at least two symbols from Σ≤1. Observe that q(x) is derived from the
1-multiplier and will be the same for every polynomial in the system. Let the system be
p1(x) = y1 · q(x), · · · , pn(x) = yn · q(x). If there exists 1 ≤ i < j ≤ n such that pi(x) 6= pj(x),
then we can build a new univariate polynomial pi(x)−pj(x) = 0 if we assume the same number
of occurrences for both symbols in the unifier. We can use real root approximation methods [2]
to find the integer solutions (of which there are finitely many), and thus, attempt unifier con-
struction for all integer solutions as such polynomials have a maximum number of solutions
dependent on the degree.

This leaves two cases, (i) |Σ≤1| = 1 (or unification problem only uses one member of Σ≤1),
or (ii) for all 1 ≤ i < j ≤ n, pi(x) = pj(x). Observe that in both cases, either the system of
equations has only 1 equation and two unknowns, or we cannot make the assumption that the
symbols have the same number of occurrences. Though, if all coefficients of q(x) are zero, then
we are again in the univariate case. Furthermore, both cases are partially solved by bounded
congruence. Though, it remains unclear if there is a general decision procedure for 1-SOGU
in the particular cases outlined above. We conjecture that 1-SOGU is undecidable when the
resulting system of equations is of size 1, does not have bounded congruence, and both p(x) and
q(x) are non-trivial polynomials.

6 Conclusion and Future Work

We show that second-order ground unification is undecidable be reducing Hilbert’s 10th problem
over N to a necessary condition for unification. The reduction required two novel occurrence
counting functions and their relationship to the existence of a unifier. Furthermore, we show
that restricting ourselves to arity 1 function variables results in a decidable fragment modulo
so-called bound-congruence. For future work we plan to address Conjecture 1 and the possibly
decidable fragments discussed at the end of the previous section.

References

[1] Alessandro Abate, Cristina David, Pascal Kesseli, Daniel Kroening, and Elizabeth Polgreen.
Counterexample guided inductive synthesis modulo theories. In Hana Chockler and Georg Weis-
senbacher, editors, Computer Aided Verification - 30th International Conference, CAV 2018, Held
as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,
Part I, volume 10981 of Lecture Notes in Computer Science, pages 270–288. Springer, 2018.

[2] Oliver Aberth. Iteration methods for finding all zeros of a polynomial simultaneously. Mathematics
of Computation, 27:339–344, 1973.

15

One is all you need D.M. Cerna and J. Parsert

[3] Rajeev Alur, Rastislav Bod́ık, Eric Dallal, Dana Fisman, Pranav Garg, Garvit Juniwal, Hadas
Kress-Gazit, P. Madhusudan, Milo M. K. Martin, Mukund Raghothaman, Shambwaditya Saha,
Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa.
Syntax-guided synthesis. In Maximilian Irlbeck, Doron A. Peled, and Alexander Pretschner, edi-
tors, Dependable Software Systems Engineering, volume 40 of NATO Science for Peace and Security
Series, D: Information and Communication Security, pages 1–25. IOS Press, 2015.

[4] Haniel Barbosa, Andrew Reynolds, Daniel El Ouraoui, Cesare Tinelli, and Clark W. Barrett.
Extending SMT solvers to higher-order logic. In Pascal Fontaine, editor, Automated Deduction -
CADE 27 - 27th International Conference on Automated Deduction, Natal, Brazil, August 27-30,
2019, Proceedings, volume 11716 of Lecture Notes in Computer Science, pages 35–54. Springer,
2019.

[5] William M. Farmer. A unification algorithm for second-order monadic terms. Ann. Pure Appl.
Log., 39(2):131–174, 1988.

[6] Harald Ganzinger, Florent Jacquemard, and Margus Veanes. Rigid reachability. In Jieh Hsiang
and Atsushi Ohori, editors, Advances in Computing Science - ASIAN ’98, 4th Asian Computing
Science Conference, Manila, The Philippines, December 8-10, 1998, Proceedings, volume 1538 of
Lecture Notes in Computer Science, pages 4–21. Springer, 1998.

[7] Warren D. Goldfarb. The undecidability of the second-order unification problem. Theor. Comput.
Sci., 13:225–230, 1981.

[8] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program synthesis. Found. Trends Pro-
gram. Lang., 4(1-2):1–119, 2017.

[9] Gérard P. Huet. The undecidability of unification in third order logic. Inf. Control., 22(3):257–267,
1973.

[10] Artur Jez. Context unification is in PSPACE. In Javier Esparza, Pierre Fraigniaud, Thore Hus-
feldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming - 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II, volume
8573 of Lecture Notes in Computer Science, pages 244–255. Springer, 2014.

[11] Jordi Levy. Linear second-order unification. In Harald Ganzinger, editor, Rewriting Techniques
and Applications, 7th International Conference, RTA-96, New Brunswick, NJ, USA, July 27-30,
1996, Proceedings, volume 1103 of Lecture Notes in Computer Science, pages 332–346. Springer,
1996.

[12] Jordi Levy. On the limits of second-order unification. In Temur Kutsia and Christophe Ringeis-
sen, editors, Proceedings of the 28th International Workshop on Unification, UNIF 2014, Vienna,
Austria, July 13, 2014, pages 5–14, 2014.

[13] Jordi Levy, Manfred Schmidt-Schauß, and Mateu Villaret. The complexity of monadic second-
order unification. SIAM J. Comput., 38(3):1113–1140, 2008.

[14] Jordi Levy and Margus Veanes. On the undecidability of second-order unification. Inf. Comput.,
159(1-2):125–150, 2000.

[15] Claudio L Lucchesi. The undecidability of the unification problem for third order languages. Report
CSRR, 2059:129–198, 1972.

[16] Yuri V. Matiyasevich. Hilbert’s tenth problem. MIT Press, Cambridge, MA, USA, 1993.

[17] Julian Parsert, Chad E. Brown, Mikolas Janota, and Cezary Kaliszyk. Experiments on infinite
model finding in SMT solving. In Ruzica Piskac and Andrei Voronkov, editors, LPAR 2023:
Proceedings of 24th International Conference on Logic for Programming, Artificial Intelligence
and Reasoning, Manizales, Colombia, 4-9th June 2023, volume 94 of EPiC Series in Computing,
pages 317–328. EasyChair, 2023.

[18] Manfred Schmidt-Schauß. Decidability of bounded second order unification. Inf. Comput.,
188(2):143–178, 2004.

16

	1 Introduction
	2 preliminaries
	3 n-Multipliers and n-Counters
	4 Undecidability n-SOGU
	5 Decidability of 1-SOGU with Bounded Congruence
	6 Conclusion and Future Work
	References

