
FlowWalker: A Memory-efficient and High-performance
GPU-based Dynamic Graph RandomWalk Framework

Junyi Mei
1
, Shixuan Sun

1
, Chao Li

1
, Cheng Xu

1
, Cheng Chen

2
, Yibo Liu

1
, Jing Wang

1
, Cheng Zhao

2
,

Xiaofeng Hou
1
, Minyi Guo

1
, Bingsheng He

3
, Xiaoliang Cong

2

1
Shanghai Jiao Tong University,

2
ByteDance Inc.,

3
National University of Singapore

meijunyi@sjtu.edu.cn,sunshixuan@sjtu.edu.cn,lichao@cs.sjtu.edu.cn,jerryxu@sjtu.edu.cn

chencheng.sg@bytedance.com,liuyib@sjtu.edu.cn,jing618@sjtu.edu.cn,zhaocheng.127@bytedance.com

hou-xf@cs.sjtu.edu.cn,guo-my@cs.sjtu.edu.cn,hebs@comp.nus.edu.sg,congxiaoliang@bytedance.com

ABSTRACT
Dynamic graph random walk (DGRW) emerges as a practical tool

for capturing structural relations within a graph. Effectively ex-

ecuting DGRW on GPU presents certain challenges. First, exist-

ing sampling methods demand a pre-processing buffer, causing

substantial space complexity. Moreover, the power-law distribu-

tion of graph vertex degrees introduces workload imbalance is-

sues, rendering DGRW embarrassed to parallelize. In this paper, we

propose FlowWalker, a GPU-based dynamic graph random walk

framework. FlowWalker implements an efficient parallel sampling

method to fully exploit the GPU parallelism and reduce space com-

plexity. Moreover, it employs a sampler-centric paradigm along-

side a dynamic scheduling strategy to handle the huge amounts of

walking queries. FlowWalker stands as a memory-efficient frame-

work that requires no auxiliary data structures in GPU global

memory. We examine the performance of FlowWalker extensively

on ten datasets, and experiment results show that FlowWalker

achieves up to 752.2×, 72.1×, and 16.4× speedup compared with ex-

isting CPU, GPU, and FPGA random walk frameworks, respectively.

Case study shows that FlowWalker diminishes random walk time

from 35% to 3% in a pipeline of ByteDance friend recommendation

GNN training. The source code of FlowWalker can be found at

https://github.com/junyimei/flowwalker-artifact.

1 INTRODUCTION
Random walk (RW) is a practical approach to extract graph in-

formation and is widely used in real-world applications such as

social network analysis [14], recommendation systems [41], and

knowledge graphs [22]. Take the friend recommendation in Douyin

(a popular social media developed by ByteDance) as an example.

In the recommendation graph, vertices represent users, and edges

depict diverse user interactions such as co-liking, co-favoring, etc.

RW is used to generate random walk sequences serving the Graph

Neural Network (GNN) [31, 38, 51, 52] tasks for personalized friend

recommendations. However, the computational demands of RW

are substantial. For instance, on a recommendation graph snap-

shot with 227 million users and 2.71 billion edges, RW takes up to

3.5 hours, contributing to 35% of the end-to-end training duration.

Since recommendation graphs are undergoing frequent updates,

ensuring the prompt completion of the RW tasks becomes vital for

maintaining service quality. Consequently, there is an urgent need

to accelerate RW computations.

Recognizing the significance of the problem, researchers have

conducted comprehensive studies [35, 45, 49] to parallelize RW on

𝑵(𝒗𝟎) 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6

Weight 2 3 5 4 2 4

Graph

2

𝑣1 𝑣2

𝑣3 𝑣4

𝑣5 𝑣6

𝑣0

3

5

4
2 4

0.1
0.15

0.25
0.2

0.1

0.2

v₁ v₂ v₃ v₄ v₅ v₆

Transition Probability

Initialization

Phase

Selection

Phase 0.1
0.15

0.25
0.2

0.1

0.2

v₁ v₂ v₃ v₄ v₅ v₆

Transition Probability

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔𝒗𝟒

(a) An example graph.

𝑵(𝒗𝟎) 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6

Weight 2 3 5 4 2 4

Graph

2

𝑣1 𝑣2

𝑣3 𝑣4

𝑣5 𝑣6

𝑣0

3

5

4
2 4

0.1
0.15

0.25
0.2

0.1

0.2

v₁ v₂ v₃ v₄ v₅ v₆

Transition Probability

Initialization

Phase

Selection

Phase 0.1
0.15

0.25
0.2

0.1

0.2

v₁ v₂ v₃ v₄ v₅ v₆

Transition Probability

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔𝒗𝟒

(b) Sampling a neighbor of 𝑣0.

Figure 1: The procedure for sampling a neighbor of 𝑣0.

multi-core CPUs. Some works modify state-of-the-art graph pro-

cessing frameworks to support RW algorithms, but they treat RW

the same as traditional graph algorithms and ignore its unique prop-

erties [16, 18, 42]. Thus specialized graph sampling frameworks

have been proposed to maximize the overall sampling through-

put. For instance, GraphWalker [45] introduces a partition-based

method for out-of-core computation. ThunderRW [35] optimizes

cache utilization to enhance in-memory computation. These frame-

works work well in static graph random walk (SGRW) such as

DeepWalk [29], where the transition probability remains constant.

Specifically, they execute SGRW in two phases: 1) a preprocessing

phase that computes the transition probability table for each vertex,

and 2) a computation phase that runs random walk queries. As

shown in Figure 1, this approach greatly diminishes the sampling

cost [35] by avoiding the initialization of the probability table at

every step. However, this preprocessing strategy cannot process dy-

namic graph random walks (DGRW), where transition probabilities

are dynamically determined during runtime as in Node2Vec [9] and

MetaPath [36]. As a result, the computational complexity surges

in DGRW as each step requires scanning the neighbors to calcu-

late the transition probability table. For instance, ThunderRW can

execute DeepWalk on the previously discussed recommendation

graph in approximately 150 seconds with the preprocessing strat-

egy; however, it exceeds an eight-hour time limit when running

Node2Vec.

Recently, DGRW has gained popularity over SGRW due to its

ability to capture temporal structure relations (i.e., the state of

each query), rendering it a more powerful tool [9, 37]. Researchers

have turned to GPU acceleration to enhance DGRW performance

leveraging their high-bandwidth on-board memory and massive

ar
X

iv
:2

40
4.

08
36

4v
3

 [
cs

.D
C

]
 2

6
A

pr
 2

02
4

https://github.com/junyimei/flowwalker-artifact

computing power. For example, C-SAW [27] parallelizes inverse

transform sampling [26] on GPU, and Skywalker [43] proposes a

GPU-based alias table sampling [40] method. However, we uncover

several fundamental limitations in existing GPU-based frameworks

that lead to significant performance constraints.

First, these frameworks require extensive memory space to facil-

itate the query execution. They necessitate an𝑂 (𝑑) memory buffer

to store the transition probability table for each query, where 𝑑 de-

notes the degree of the vertex that is being sampled. Since dynamic

memory allocation can be costly, they opt to pre-allocate a buffer

with𝑂 (𝑑𝑚𝑎𝑥) size where𝑑𝑚𝑎𝑥 denotes the maximum vertex degree

in the graph. This approach can consume vast amounts of memory,

especially when dealing with real-world graphs characterized by

significant skewness. In the case where 𝑑𝑚𝑎𝑥 in twitter reaches

3× 106, a buffer size of around 11.45 MB is required for every single

query. Though GPUs offer powerful computing capabilities, the

limited memory space restricts concurrent parallelism (i.e., queries

processed simultaneously) and reduces available space for graph

data.

Second, these frameworks disregard the load imbalance issue

emanating from both workload and hardware characteristics. The

workload at each step is governed by the vertex degree, and the

degree skewness among vertices can lead to workload imbalance.

Besides, despite that RW is embarrassingly parallel, the concurrent

execution capability of modern GPUs, which can support tens of

thousands of threads, exacerbates the load imbalance problems

among computing resources. While C-SAW overlooks these con-

cerns, Skywalker handles sampling tasks of varying degrees with

warps or blocks, which leads to burdensome memory costs as well

as communication overhead.

In this paper, we introduce FlowWalker, a GPU-based DGRW

framework that performs fast sampling at minimal memory cost.

We design a sampler-centric computation model, which abstracts

the computation from the hardware perspective. Under this model,

an RW application is conceptualized as a set of discrete sampling

tasks, where each task aims to randomly select a vertex from a

specified vertex set. The GPU threads are systematically organized

into a collection of samplers, which efficiently process these tasks.

This abstraction narrows the RW computation down to two crucial

problems: 1) devising efficient samplers; and 2) formulating an

effective scheduling mechanism that assigns tasks to the samplers

according to workload characteristics.

Inspired by sampling on streams, we design a parallel sampling

method based on the reservoir sampling technique [39]. This method

is tailored for GPU optimization and is sufficiently adapted to han-

dle vertices with varied degrees. Our design significantly reduces

the space complexity of handling a sampling task from 𝑂 (𝑑) to
𝑂 (1), thereby facilitating the concurrent execution of a substantial

number of tasks. Coupled with efficient samplers, we develop a

high-performance processing engine based on a multi-level task

pool that distributes tasks among the samplers. Benefiting from its

sampler design and processing engine, FlowWalker attains notable

memory efficiency, with no auxiliary data structures in the global

memory to streamline computation. Thereby, FlowWalker effec-

tively tackles the challenges of limited query concurrency and load

imbalance, optimizing the utilization of computational resources.

We showcase the generality of FlowWalker by implementing

four representative algorithms, including DeepWalk [29], PPR [8],

Node2Vec [9], and MetaPath [36]. We compare performance against

ThunderRW [35], the state-of-the-art CPU-based framework; Sky-

walker [43], a GPU-based approach; DGL [42], the widely used

GNN framework; and LightRW [37], the state-of-the-art FPGA-bas-

ed approach. We conduct extensive experiments on ten real-world

graphs, the size of which scale from millions to billions. Experi-

ment results show that 1) FlowWalker stands as the sole GPU-based

solution that able to support all of the four algorithms above; 2)

FlowWalker consistently completes all test cases within a time

frame of 2.2 hours, achieving up to 752.2× speedup over competi-

tors, whereas DGL, LightRW, ThunderRW and Skywalker either

exceed an eight-hour limit or encounter memory constraints; and 3)

FlowWalker has negligible memory cost by getting rid of auxiliary

data structures. In summary, we make the following contributions

in this paper:

• We introduce FlowWalker, a memory-efficient and high-

performance GPU-based random walk framework, which

leverages a sampler-centric computation model.

• We propose an efficient parallel sampling method for GPU

based on reservoir sampling. This method greatly dimin-

ishes the space complexity, thereby substantially accelerat-

ing the sampling process.

• We develop a concise scheduling mechanism to efficiently

channel a vast number of fine-grained tasks through sam-

plers of different granularities. This mechanism enhances

overall efficiency and adaptability.

Paper Organization. Section 2 introduces backgrounds. Section
3 gives an overview of the system. Sections 4 and 5 elaborate on the

sampling method and computation engine, respectively. Section 6

details our experiment as well as case study. Section 7 concludes

this paper.

2 BACKGROUND
We introduce the preliminary and the background related to our

work in this section.

2.1 Graph RandomWalk
Let𝐺 = (𝑉 , 𝐸) denote a directed graph where𝑉 is the set of vertices

and 𝐸 is the set of edges. Given a vertex 𝑣 ∈ 𝑉 , 𝑁 (𝑣) is the neighbor
set of 𝑣 and 𝑑 (𝑣) is the degree, i.e., |𝑁 (𝑣) |. Given an edge 𝑒 (𝑢, 𝑣) ∈ 𝐸,
𝑤 (𝑢, 𝑣) and 𝑙 (𝑢, 𝑣) represent its weight and label respectively.

Algorithm 1 presents a common RW computation paradigm. An

RW algorithm has a set Q of random walk queries. A query 𝑄 be-

gins at a start vertex. At each step,𝑄 randomly selects a neighbor 𝑢

of the current residing vertex 𝑄.𝑐𝑢𝑟 and moves to it. The operation

is performed in two phases: 1) the initialization phase calculates

the transition probability 𝑝 (𝑢) for each neighbor 𝑢; and 2) the se-

lection phase randomly picks a neighbor given the distribution. 𝑄

records the walk sequence in 𝑄.𝑠𝑒𝑞 and stops until meets a speci-

fied condition, for example, 𝑄.𝑠𝑒𝑞 reaches a length threshold. The

outputs are the query sequences. Assume that the current residing

vertex is 𝑄.𝑐𝑢𝑟 = 𝑣 . The selection of a neighbor involves sampling

𝑢 from 𝑁 (𝑣) based on a transition probability 𝑝 (𝑢), determined by

a weight function 𝑓 applied to the edge 𝑒 (𝑣,𝑢). For instance, if we
2

Algorithm 1: Random Walk Computation Paradigm

Input: a graph𝐺 and a set Q of RW queries;

Output: the sequence of each query𝑄 ∈ Q;
1 for𝑄 ∈ Q do
2 do

/* The initialization phase. */

3 foreach 𝑢 ∈ 𝑁 (𝑄.𝑐𝑢𝑟) do
4 Calculate 𝑢’s transition probability 𝑝 (𝑢) ;

/* The selection phase. */

5 Select a 𝑢 ∈ 𝑁 (𝑄.𝑐𝑢𝑟) given 𝑝 (𝑢) and add it to𝑄.𝑠𝑒𝑞;

6 while Stop(𝑄) is false;

7 return Q.𝑠𝑒𝑞;

define 𝑓 (𝑒 (𝑣,𝑢)) = 𝑤 (𝑣,𝑢), then 𝑝 (𝑢) = 𝑤 (𝑣,𝑢)∑
𝑢′ ∈𝑁 (𝑣) 𝑤 (𝑣,𝑢′)

, which is

a normalized value. To simplify the presentation, we refer to the

transition probability 𝑝 (𝑢) as the relative chance (e.g., the edge

weight 𝑤 (𝑣,𝑢)) of 𝑢 being selected without normalization in the

subsequent discussions.

Graph random walk algorithms are broadly divided into two

categories based on the transition probability property: static graph

random walk (SGRW) and dynamic graph random walk (DGRW). In

SGRW applications like DeepWalk and PPR, the transition probabil-

ity is fixed throughout the computation. This allows for calculating

values in a pre-processing stage (as discussed in Section 1), which

significantly reduces computational complexity by eliminating the

initialization phase in Algorithm 1. In contrast, the transition prob-

ability of DGRW relies on the query states and requires determina-

tion during runtime. Consequently, the initialization is postponed

to the computation step. Next, we will introduce two representative

DGRW algorithms.

MetaPath [36] is a widely used algorithm for representation

learning in heterogeneous networks [7]. Within MetaPath, an edge

label schema 𝑙1 → . . . → 𝑙𝑖 . . . → 𝑙𝑘 constrains the walk se-

quence 𝑄.𝑠𝑒𝑞 of a random walk query. Specifically, the labels of

adjacent vertices in the sequence must align with the schema, i.e.,

𝑙 (𝑄.𝑠𝑒𝑞[𝑖], 𝑄.𝑠𝑒𝑞 [𝑖 + 1]) = 𝑙𝑖 . Suppose the current residing vertex is

𝑄.𝑐𝑢𝑟 = 𝑣 , where 𝑣 is the 𝑖-th vertex in𝑄.𝑠𝑒𝑞. The transition proba-

bility for selecting a neighbor 𝑢 ∈ 𝑁 (𝑣) is defined by Equation 1.

The weighted version of MetaPath incorporates the edge weight

into the calculation by multiplying it with the transition probability

𝑝 (𝑢).

𝑝 (𝑢) =
{
1, if 𝑙 (𝑣,𝑢) = 𝑙𝑖 ,

0, otherwise.
(1)

Node2Vec [9] is a second-order RW algorithm, where the tran-

sition probability is dependent on the last visited vertex. Assuming

that 𝑄.𝑐𝑢𝑟 is 𝑣 , then the transition probability 𝑝 (𝑢) for selecting
a neighbor 𝑢 ∈ 𝑁 (𝑣) is governed by Equation 2, in which 𝑣 ′ rep-
resents the last visited vertex before 𝑣 and 𝑑𝑖𝑠𝑡 (𝑣 ′, 𝑢) denotes the
distance between 𝑣 ′ and 𝑢. 𝑎 and 𝑏 are two hyperparameters that

modulate the random walk behavior. Similar to MetaPath, the edge

weight𝑤 (𝑣,𝑢) can be factored into the computation by multiplying

it with the computed transition probability 𝑝 (𝑢).

𝑝 (𝑢) =


1

𝑎 , if 𝑑𝑖𝑠𝑡 (𝑣 ′, 𝑢) = 0,

1, if 𝑑𝑖𝑠𝑡 (𝑣 ′, 𝑢) = 1,
1

𝑏
, if 𝑑𝑖𝑠𝑡 (𝑣 ′, 𝑢) = 2,

0, otherwise.

(2)

In addition to Node2Vec and MetaPath, methods such as Hetes-

paceywalk [10] exemplify the application of DGRW. Representation

learning methods on Heterogeneous Information Networks (HINs)

[19, 34] are typically grounded in DGRW, necessitating considera-

tion of label information—akin to the MetaPath approach. DGRW

is also used for similarity measurement [21, 47] and community

detection [1, 6]. In ByteDance, there are massive graphs with vertex

labels such as users, videos, and advertisement items. Taking the ad-

vertisement recommendation scenario in Douyin as an example, we

need to generate random walk sequences for each user and adver-

tisement item based on specific meta-paths, such as user-item-user.

Subsequently, the embeddings are trained to serve as inputs for the

recommendation models. The practical necessity for dynamic walk

algorithms in real-world business scenarios has motivated us to

commence work on FlowWorker.

2.2 Sampling Methods
In the context of our study, sampling is the process of selecting a

vertex 𝑢 from a neighbor set 𝑁 (𝑣) based on the transition proba-

bility distribution. Different frameworks implement this operation

through various samplingmethods. ThunderRW, for example, offers

inverse transform sampling (ITS) [26], rejection sampling (RJS) [30],

and alias table sampling (ALS) [12, 40], allowing users to choose

the method most suitable for the algorithm’s property. C-SAW [27]

and Skywalker [43] utilize ITS and ALS, respectively. However,

both methods require an 𝑂 (𝑑)-sized memory buffer to store the

transition probability, which, as discussed in Section 1, consumes

substantial memory and can lead to significant performance is-

sues. Contrastingly, RJS requires only𝑂 (1) space to store the maxi-

mum transition probability, employing a “trial-and-error” selection

approach. However, this method comes with its drawbacks: the

non-deterministic running time of randomized selection is heavily

affected by the underlying probability distribution, and the process

leads to numerous random memory accesses. These factors make

RJS challenging to implement efficiently on GPUs.

Contrary to other methods, reservoir sampling (RS) [4, 39] is

tailored for sampling streaming data. As outlined in Algorithm 2,

RS operates on a vertex sequence 𝑆 with length 𝑛.𝑊𝑃 maintains

the prefix sum of weights, and 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 stores the index of the

vertex chosen from 𝑆 . Upon encountering a vertex at position 𝑖 ,

RS updates𝑊𝑃 and generates a random number. If this number

is smaller than the transition probability
𝑊 [𝑖]
𝑊𝑃

, RS updates the

𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 index accordingly (Line 4). Ultimately, RS returns the last

selected vertex. Notably, the space complexity of RS is 𝑂 (1), and
the time complexity is 𝑂 (𝑑) given a neighbor set 𝑁 (𝑣) with 𝑑

vertices as the input. While both ITS and ALS require only a single

random number, RS necessitates generating a random number for

each element. Although this might pose a challenge for CPUs, it is

well-suited for GPUs, which offer ample computational resources.

3

Algorithm 2: Sequential Weighted Reservoir Sampling

Input: a vertex sequence 𝑆 , the corresponding weight sequence𝑊 ,

the sequence length 𝑛;

Output: a vertex sampled from 𝑆 based on𝑊 ;

1 𝑊𝑃 ← 0, 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← 0;

2 for 𝑖 ← 1 𝑡𝑜 𝑛 do
3 𝑊𝑃 ←𝑊𝑃 +𝑊 [𝑖];
4 if random(0, 1)< 𝑊 [𝑖]

𝑊𝑃
then 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← 𝑖;

5 return 𝑆 [𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑];

2.3 GPU-based RandomWalk Frameworks
Researchers have proposed several works to accelerate RW appli-

cations using GPUs. NextDoor [13] is a graph sampling framework

utilizing the RJS sampling method. It adopts the offline computation

mode, which calculates the maximumweight for a neighbor set dur-

ing the pre-processing stage. When executing random walk queries,

NextDoor only performs the selection phase of the sampling. There-

fore, NextDoor cannot support variant DGRW applications. Note

that NextDoor implements unweighted Node2Vec by choosing the

maximum value from (1, 1𝑎 ,
1

𝑏
) to bypass the initialization phase.

The implementation cannot be generalized to weighted Node2Vec

and other DGRW applications such as weighted MetaPath. During

runtime, NextDoor follows the BSP [5] model, advancing all queries

by a single step at a time. NextDoor, which can sample multiple

vertices from a neighbor set, ensures load balance by allocating

threads according to the number of sampling results.

Distinct from NextDoor [13], C-SAW [27] supports DGRW and

employs the ITS sampling method. It adopts a query-centric compu-

tation model, assigning each query to a warp and executing them

synchronously in a step-by-step fashion using the BSP [5] model.

Although C-SAW optimizes ITS for GPUs to speed up computations,

it falls short in supporting queries with variable walk lengths, such

as PPR, due to its synchronized execution approach.

Skywalker [43, 44] parallelizes the ALS sampling methods and

optimizes memory access by compressing alias tables. To address

the load imbalance caused by varying vertex degrees, Skywalker

employs versatile samplers tailored to vertices with different de-

grees. To further mitigate load imbalance among thread blocks, it

introduces a queue to distribute queries across blocks. As queries

can have different lengths, the space complexity of the queue is

𝑂 (𝐿𝑚𝑎𝑥 × |Q|) where 𝐿𝑚𝑎𝑥 is the maximum length of queries.

Despite these advancements, both C-SAWand Skywalker possess

foundational limitations, as discussed in Section 1, which restrict

their efficiency in handling large graphs. Besides, frameworks like

GraSS [50] focus on graph compression. This technique is comple-

mentary to our work and can be integrated with FlowWalker to

further minimize memory usage.

2.4 Other Related Works
Given the critical role of Random Walk (RW) applications, numer-

ous studies have focused on optimizing CPU-based graph random

walk frameworks. NosWalker [46], DrunkardMob [17], and Graph-

Walker [45] are designed to handle graphs that exceed available

memory. ThunderRW [35] optimizes in-memory computation by

improving cache utilization. KnightKing [49] and FlashMob [48]

Thread Block

Global Memory

Shared

Memory

Execution Flow
Data Dependency

②

④

Global Task Pool

…

Result Pool

…

Graph Data

①

…

Local Task Pool

………………

RNG

Warp Samplers

③

Block Sampler

④

Figure 2: System Design Overview of FlowWalker. The exe-
cution flow is organized as follows: 1○ Thread blocks fetch
tasks from the global task pool into its local task pool. 2○
Tasks are dispatched to the appropriate sampler based on
the vertex degree. 3○Warp and block samplers execute the
sampling tasks. The process necessitates graph data stored
in the global memory and random number generators (RNG)
stored in the shared memory. 4○ The query states in the local
task pool are updated and the sampling results are recorded.
are distributed frameworks that address communication and mem-

ory bandwidth utilization. Nevertheless, all these frameworks are

optimized for SGRW, though some of them (e.g., ThunderRW) can

execute DGRW. Additionally, research efforts have been made to

optimizememory usage for randomwalks on both static and stream-

ing graphs [28, 33].

Recently, Tan et al. [37] introduce an FPGA-based approach to

accelerate DGRW. They develop a parallel reservoir sampling meth-

od on FPGAs, akin to Algorithm 3. Despite the similarities, the

fundamental differences in the underlying hardware architectures

set our approaches apart. LightRW’s emphasis lies in customizing

hardware to optimize pipeline execution and memory access during

sampling. In contrast, GPU architectures are fixed, with threads

grouped into thread blocks at runtime. Our approach involves a

meticulous exploration of the design space to adapt reservoir sam-

pling to the unique demands of GPU workloads and hardware

characteristics. The inherent distinctions in hardware architectures

influence our respective sampling algorithms, system designs, and

research focuses.

3 AN OVERVIEW OF FLOWWALKER
Computation Model. Different from the query-centric model, we

propose the sampler-centric model that abstracts the computation

from the hardware perspective. Specifically, an RW application con-

sists of massive random walk queries each of which is a sequence

of steps. A step performs one sampling operation, which selects a

neighbor from the neighbor set of the current residing vertex and

updates the query. Therefore, an RW application can be viewed

as a set of sampling tasks. The computation on GPUs is to orga-

nize threads to a set of samplers to perform these sampling tasks

efficiently until all queries are complete.

System Design. Based on the sampler-centric model, we design

FlowWalker, a memory-efficient and high-performance GPU-based

4

DGRW framework. We propose a parallel reservoir sampling meth-

od that can perform the sampling with 𝑂 (1) memory cost. Besides,

an efficient computation engine is implemented to guide global task

scheduling and computation inside a thread block.

Figure 2 gives an overview of our system design. In FlowWalker,

a thread block is an independent worker whose threads are orga-

nized into samplers with different parallelism. Particularly, given

a set of sampling tasks, a thread block adopts a two-stage execu-

tion scheme to handle variant workloads among these tasks. In the

first stage, threads are organized into warp samplers (i.e., a warp

works as a sampler) to process small tasks. In the second stage,

all threads in the same thread block form a block sampler (i.e., a

block works as a sampler) to handle large tasks. A multi-level task

pool based dynamic scheduling mechanism is adopted to keep load

balance among computing resources. A thread block has a local

task pool that maintains the queries assigned to it. Once a query

is completed, it will fetch a new query from the global task pool.

The fine-grained scheduling method requires no communication

and synchronization among blocks and achieves good load balance.

Additionally, it gets rid of auxiliary data structures in the global

memory, and a small amount of intermediate data can be held inside

the shared memory, which is a type of fast-speed GPU memory. In

terms of APIs, our framework adheres to the conventions estab-

lished by prior works [27, 35, 43, 45]. Therefore, we omit the details

for brevity.

Benefiting from the designs mentioned above, FlowWalker is

able to perform memory-efficient sampling with no data structures

stored in the global memory to assist the execution. This signifi-

cantly benefits GPU-based RW because GPUs have abundant com-

puting resources but limited memory space. We will introduce the

sampling method and the engine in Sections 4 and 5, respectively.

4 SAMPLING METHOD
Under the sampler-centric abstraction, sampling is the key opera-

tion in RW applications. As discussed in Section 2, existing meth-

ods [26, 30, 40] have severe performance issues on GPUs due to the

large memory consumption of the intermediate data. Inspired by

stream processing, we model the problem of choosing a neighbor

as that of sampling an element from a stream. Therefore, we can

adopt reservoir sampling (RS) to reveal the memory consumption

issue because RS does not maintain a state for each element.

4.1 Direct Parallel Reservoir Sampling
Given a sequence 𝑆 of 𝑛 vertices, the corresponding weights𝑊 and

a group of 𝑘 threads (e.g., a warp), our goal is to parallel reservoir

sampling which selects a vertex 𝑣 from 𝑆 based on𝑊 . Moreover, we

want to keep 𝑘 threads having coalesced memory access patterns to

fully utilize GPUs. Recall that reservoir sampling scans 𝑆 along the

sequence order with the probability of replacing the selected vertex

with 𝑣𝑖 as
𝑤𝑣

𝑊𝑖
where 𝑣𝑖 is the 𝑖th vertex in 𝑆 , 𝑤𝑣 is the weight of

𝑣 , and𝑊𝑖 =
∑𝑖

𝑗=1𝑊 [𝑗] (i.e., the sum of weights of vertices before

𝑣𝑖 in 𝑆). If 𝑣𝑖 is picked, then we replace the selected vertex with 𝑣𝑖 .

Reservoir sampling returns the last selected vertex as the sampling

result.

A straightforward idea of parallelization is to sample a vertex

from 𝑘 consecutive vertices in parallel in each iteration and repeat

until all vertices are processed.We call thismethod the direct parallel

reservoir sampling (DPRS) algorithm. Algorithm 3 depicts the details.

In a certain iteration (Lines 4-11), we first read weights from𝑊

for 𝑘 vertices in parallel with thread 𝑗 holding value𝑊𝐿 [𝑗]. Next,
we compute the prefix sum𝑊𝑃 for the 𝑘 values in parallel. 𝑤𝐵

maintains the sum of weights in previous iterations, i.e. vertices

from 𝑆 [1] to 𝑆 [𝑖×𝑘]. Therefore, thread 𝑗 selects the vertex 𝑆 [𝑗+𝑖×𝑘]
with the probability

𝑊𝐿 [𝑗]
𝑊𝑃 [𝑗]+𝑤𝐵

(Line 9). We then set the selected

index to the maximum value in𝐶 (i.e., the maximum sequence index

selected by these 𝑘 threads) and update𝑤𝐵 (Lines 10-11). Finally,

we return the sampled vertex given the index (Line 12). Note that

returning 𝑆 [0] denotes that no vertex is selected, for example, no

label can match the constraint in MetaPath.

Example 4.1. Figure 3 presents a running example of DPRSwhere

𝑛 = 6 and 𝑘 = 3. At Iteration 1, threads 𝑇1−3 first load weights of

𝑣1−3 in parallel and then compute their prefix sum. After that, they

perform the selection independently. For example, 𝑇1 sets the se-

lected index 𝐶 to 1 since the random number value 𝑟 = 0.5 is less

than
𝑊𝐿

𝑊𝑃+𝑤𝐵
= 1.0. At the end of the iteration, DPRS performs a

parallel reduction to get the last selected index (i.e., the maximum𝐶

among 𝑇1−3), which is the selected item at this iteration. Addition-

ally, DPRS sets𝑤𝐵 to 10, which is the𝑊𝑃 value held by 𝑇3. DPRS

continues its computations until all elements have been processed.

The result is 4 and the selected vertex is 𝑣4. The parallel sampling

order is equivalent to the order of 𝑆 .

Analysis. Given the vertex 𝑣 = 𝑆 [𝑗 + 𝑖 × 𝑘], thread 𝑗 updates

the selected vertex with the probability of
𝑤𝑣∑𝑗+𝑖×𝑘

𝑚=1
𝑊 [𝑚]

. The max

operation keeps the algorithm to return the last picked vertex.

Therefore, Algorithm 3 intuitively has the same logic as Algorithm

2 though it runs in parallel, and Proposition 1 holds.

Proposition 1. Given a sequence 𝑆 of vertices and the correspond-

ing weight sequence𝑊 , Algorithm 3 picks 𝑣 with the probability
𝑤𝑣∑
𝑊

where𝑤𝑣 is the weight of 𝑣 .

Next, we analyze the time cost of Algorithm 3. Suppose that the

cost of obtaining𝑊 [𝑖] is 𝛼 , that of communication among threads

is 𝛽 , and that of random number generation is 𝛾 . In Algorithm 3,

Line 6 accesses global memory, Lines 7 and 10 perform the par-

allel collective operations among 𝑘 threads, and Line 9 computes

a random number in each thread. Therefore, the cost at one it-

eration is 𝛼 + 2 × 𝛽 log𝑘 + 𝛾 . The time cost of the algorithm is

⌈𝑛
𝑘
⌉ × (𝛼 + 2 × 𝛽 log𝑘 + 𝛾). The time complexity is 𝑂 (𝑛

𝑘
× log𝑘),

and the speedup over Algorithm 2 is 𝑂 (𝑘
log𝑘
).

Finally, we discuss the space complexity of Algorithm 3. In addi-

tion to storing 𝑆 and𝑊 , we do not maintain a state for each vertex,

while each thread only requires several local variables (𝑊𝑃 , 𝐶 , and

𝑤𝐵 , etc.). Therefore, the space complexity of the algorithm is 𝑂 (𝑘)
and that for one thread is 𝑂 (1).

4.2 Zig-Zag Parallel Reservoir Sampling
Although DPRS accesses the global memory in a coalesced pattern,

we find that DPRS can have performance issues when process-

ing long vertex sequences. Specifically, a GPU thread group has a

limited number of threads, for example, a warp has 32 threads. Con-

sequently, given a long vertex sequence (e.g., millions of vertices),

5

v₁ v₄ v₂ v₅ v₃ v₆𝑺′

DPRS ZPRS

It
e

ra
ti

o
n

 1

𝑊𝑃 = 2

𝐓𝟏

Load

Prefix

Sum

Select 𝑟 = 0.5 <
𝑊 1

𝑊𝑃 + 𝑤𝐵

𝐶 = 1

𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 3

It
e

ra
ti

o
n

 2

𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 4 (v₄)

𝑊𝑃 = 5

𝐓𝟐

𝑊𝑃 = 10

𝐓𝟑

Reduction

Load

Prefix

Sum

Select

Reduction

(𝑟 = 0.9) >
𝑊 2

𝑊𝑃 + 𝑤𝐵

𝐶 = 0

𝑟 = 0.2 <
𝑊 3

𝑊𝑃 + 𝑤𝐵

𝐶 = 3

𝑊𝑃 = 10

(𝑟 = 0.4) >
𝑊 6

𝑊𝑃 + 𝑤𝐵

𝐶 = 0

𝑊𝑃 = 6

(𝑟 = 0.6) >
𝑊 5

𝑊𝑃 + 𝑤𝐵

𝐶 = 0

𝑊𝑃 = 4

(𝑟 = 0.1) <
𝑊 4

𝑊𝑃 + 𝑤𝐵

𝐶 = 4

𝑊 1 = 2 𝑊 2 = 3 𝑊 3 = 5

𝑊 6 = 4𝑊 5 = 2𝑊 4 = 4

It
e

ra
ti

o
n

 2
It

e
ra

ti
o

n
 1

𝑊𝑃 = 0

𝐓𝟏

𝑊𝑃 = 6

𝐓𝟐

𝑊𝑃 = 11

𝐓𝟑

Load

Prefix

Sum

Load

Select

𝑊𝑃 = 𝑊𝑃 +𝑊 1

(𝑟 = 0.5) <
𝑊 1

𝑊𝑃

𝐶 = 1

Load

Select

𝑊𝑃 = 𝑊𝑃 +𝑊 2

(𝑟 = 0.9) >
𝑊 2

𝑊𝑃

𝐶 = 0

𝑊𝑃 = 𝑊𝑃 +𝑊 3

(𝑟 = 0.2) <
𝑊 3

𝑊𝑃

𝐶 = 3

𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 3 (v₃)
Reduction

𝑊 1 ,𝑊[4] 𝑊 2 ,𝑊[5] 𝑊 3 ,𝑊[6]

𝑊 1 = 2 𝑊 2 = 3 𝑊 3 = 5

𝑊 4 = 4 𝑊 5 = 2 𝑊 6 = 4

𝑊𝑃 = 𝑊𝑃 +𝑊 4

𝑟 = 0.1 <
𝑊 4

𝑊𝑃

𝐶 = 4

𝑊𝑃 = 𝑊𝑃 +𝑊 5

(𝑟 = 0.6) >
𝑊 5

𝑊𝑃

𝐶 = 0

𝑊𝑃 = 𝑊𝑃 +𝑊 6

(𝑟 = 0.4) >
𝑊 6

𝑊𝑃

𝐶 = 3

𝑾 3 5 4 2 42

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔 𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔

𝑤𝐵 = 10

𝑤𝐵 = 0

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔𝑺

Scan along the sequence of 𝑺 Scan along the zig-zag sequence of 𝑺

Graph Information of 𝒗𝟎

Figure 3: The comparison of DPRS and ZPRS on sampling a neighbor of 𝑣0 in Figure 1a using three threads. DPRS scans𝑊 once,
but the number of collective operations depends on the number of iterations. ZPRS performs two collective operations only,
but scans𝑊 twice. Logically, DPRS scans along the sequence of 𝑆 , whereas ZPRS scans in a zig-zag order of 𝑆 .

Algorithm 3: Direct Parallel Reservoir Sampling(DPRS)

Input: a vertex sequence 𝑆 , the corresponding weight sequence𝑊 ,

the sequence length 𝑛 and 𝑘 threads;

Output: a vertex sampled from 𝑆 based on𝑊 ;

1 parallel for 𝑗 ← 1 to 𝑘 do
2 𝐶 [𝑗] ← 0,𝑊𝐿 [𝑗] ← 0,𝑊𝑃 [𝑗] ← 0;

3 𝑤𝐵 ← 0;

4 for 𝑖 ← 0 to ⌈ 𝑛
𝑘
⌉ − 1 do

5 parallel for 𝑗 ← 1 to 𝑘 do
6 𝑊𝐿 [𝑗] ←𝑊 [𝑗 + 𝑖 × 𝑘];
7 𝑊𝑃 ←parallel_inclusive_prefix_sum(𝑊𝐿, 𝑘);

8 parallel for 𝑗 ← 1 to 𝑘 do
9 if random(0, 1) < 𝑊𝐿 [𝑗]

𝑊𝑃 [𝑗]+𝑤𝐵
then𝐶 [𝑗] ← 𝑗 + 𝑖 × 𝑘 ;

/* Get the maximum value in 𝐶. */

10 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ←parallel_reduction(𝐶,𝑘);

11 𝑤𝐵 ← 𝑤𝐵 +𝑊𝑃 [𝑘];
12 return 𝑆 [𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑];

DPRS frequently performs parallel collective operations that incur

expensive costs due to communication overhead among threads. As

real-world graphs have vertices with large degrees and processing

these vertices dominates the random walk cost, the performance

issue degrades the computation speed.

To solve the problem, we design the zig-zag parallel reservoir

sampling (ZPRS), which not only has coalesced memory access

patterns but also reduces the number of parallel collective oper-

ations. In particular, different from DPRS scanning and sampling

vertices along the order of 𝑆 , ZPRS scans vertices along the order

but samples in a zig-zag order 𝑆 ′. Algorithm 4 presents the details.

𝑆 can be divided into 𝑘 sets where 𝑆 𝑗 = {𝑣𝑚 ∈ 𝑆 |𝑚 mod 𝑘 = 𝑗}.

We first compute the weight sum for vertices in 𝑆 𝑗 and store the

value to𝑊𝐿 [𝑗] (Lines 3-5). Next, we compute the exclusive prefix

sum on𝑊𝐿 such that𝑊𝑃 [𝑗] =
∑𝑗−1
𝑚=1

∑
𝑣∈𝑆𝑚 𝑤𝑣 . After that, thread

𝑗 replaces the selected vertex with 𝑣 in the probability
𝑤𝑣

𝑊𝑃 [𝑗] . To
pick the last sampled vertex, we select the last item that is greater

than 0 in 𝐶 in parallel (Line 11).

Example 4.2. Figure 3 presents a running example of ZPRS where

𝑛 = 6 and 𝑘 = 3. Threads 𝑇1−3 first load six weights in parallel at

two iterations and then calculate the exclusive prefix sum. As this

procedure is simple, we omit the details of the two iterations and

directly show𝑊𝑃 values. After that, 𝑇1−3 performs the sampling

independently. For example, at Iteration 1, 𝑇3 first loads𝑊 [3] and
then sets the selected index 𝐶 to 3 because the random number

𝑟 = 0.2 is less than
𝑊 [3]
𝑊𝑃

= 0.31. After processing all elements,𝑇1−3
performs a parallel reduction to get the last𝐶 value such that𝐶 > 0.

The result is 3 and the selected item is 𝑣3. The parallel sampling

order is equivalent to along a zig-zag order of 𝑆 .

Analysis. First, we prove Proposition 2 based on the correctness

of Algorithm 2, which is proved in the technical report.

Proposition 2. Given a sequence 𝑆 of vertices and the correspond-

ing weight sequence𝑊 , Algorithm 4 picks 𝑣 with the probability
𝑤𝑣∑
𝑊

where𝑤𝑣 is the weight of 𝑣 .

Proof. Consider a sequence 𝑆 of𝑛 elements with corresponding

weights𝑊 and 𝑘 threads. Define 𝑆𝑖 as a sub-sequence of 𝑆 such

that 𝑆 [𝑗] ∈ 𝑆𝑖 if 𝑗 mod 𝑘 = 𝑖 for 1 ⩽ 𝑗 ⩽ 𝑛, and set 𝑆𝑘 = 𝑆0.

This construction yields a new sequence 𝑆 ′ = (𝑆1, 𝑆2, . . . , 𝑆𝑘) and
its associated weight sequence𝑊 ′. As shown in Lines 7-10, each

thread 𝑖 processes 𝑆𝑖 independently. Given 𝑣 = 𝑆𝑖 [𝑗] , thread 𝑖

6

Algorithm 4: Zig-Zag Parallel Reservoir Sampling(ZPRS)

Input: a vertex sequence 𝑆 , the corresponding weight sequence𝑊 ,

the sequence length 𝑛 and 𝑘 threads;

Output: a vertex sampled from 𝑆 based on𝑊 ;

1 parallel for 𝑗 ← 1 to 𝑘 do
2 𝐶 [𝑗] ← 0,𝑊𝐿 [𝑗] ← 0,𝑊𝑃 [𝑗] ← 0;

3 for 𝑖 ← 0 to ⌈ 𝑛
𝑘
⌉ − 1 do

4 parallel for 𝑗 ← 1 to 𝑘 do
5 𝑊𝐿 [𝑗] ←𝑊𝐿 [𝑗] +𝑊 [𝑗 + 𝑖 × 𝑘];

6 𝑊𝑃 ←parallel_exclusive_prefix_sum(𝑊𝐿, 𝑘);

7 for 𝑖 ← 0 to ⌈ 𝑛
𝑘
⌉ − 1 do

8 parallel for 𝑗 ← 1 to 𝑘 do
9 𝑊𝑃 [𝑗] ←𝑊𝑃 [𝑗] +𝑊 [𝑗 + 𝑖 × 𝑘];

10 if random(0, 1) < 𝑊 [𝑗+𝑖×𝑘]
𝑊𝑃 [𝑗]

then𝐶 [𝑗] ← 𝑗 + 𝑖 × 𝑘 ;

/* Get the last item greater than 0 in 𝐶. */

11 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ←parallel_reduction(𝐶,𝑘);

12 return 𝑆 [𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑];

replaces its current selected vertex with a probability
𝑊 ′ [𝑗]∑𝑗

𝑙=1
𝑊 ′ [𝑙]

.

Line 11 ensures that the element chosen by thread 𝑖 is replaced by

the selection of thread 𝑗 if 𝑖 < 𝑗 . Consequently, parallel processing

mirrors serial sampling along 𝑆 ′. By Proposition 1, each element

𝑆 ′ [𝑖] is selected with probability
𝑊 ′ [𝑖]∑

𝑊 ′ . So Proposition 2 holds. □

We next analyze the time cost of Algorithm 4. Compared with

DPRS, ZPRS only requires two collective operations (Lines 6 and 11).

In contrast, ZPRS scans the weight sequence twice (Lines 3-5 and

7-10). Therefore, the time cost of ZPRS is ⌈𝑛
𝑘
⌉×(2×𝛼+𝛾)+2×𝛽 log𝑘 .

The time complexity is 𝑂 (𝑛
𝑘
+ log𝑘) and the speedup over the se-

quential method is 𝑂 (𝑘 × (1 − 𝑘 log𝑘

𝑛+𝑘 log𝑘
)). When processing long

sequences, ZPRS has a better speedup than DPRS and generally

runs much faster than DPRS in practice, because modern GPUs

have a big bandwidth and a large cache, e.g., A100 has 1.5-2 TB/s

bandwidth and 40 MB L2 cache. But for the cases where the transi-

tion probability requires an expensive computation (i.e., 𝛼 is high),

ZPRS can run slower than DPRS in practice because it has to calcu-

late the probability for each element twice. Experiment results in

Section 6.3 confirm our analysis. The space complexity of ZPRS is

𝑂 (𝑘), which is the same as DPRS.

4.3 Implementation
Both DPRS and ZPRS access global memory in a coalesced pattern.

In their implementation, we focus on reducing the cost of collective

operations 𝛽 and that of random number generation.

In principle, both DPRS and ZPRS can be executed in parallel

with any number of threads. However, in practice, modern GPUs

manage threads with warps, blocks, and grids. Moreover, they only

support efficient communication and synchronization for warps

and blocks. Due to this constraint, we implement the warp and block

samplers, which execute with one warp and one block, respectively.

The parallel collective operations have been extensively studied [11,

15, 23, 32]. In our implementation, we use CUB [24] to conduct the

prefix sum and reduction operations. Variables such as 𝐶,𝑊𝐿 , and

𝑊𝑃 can be held with a register, and the collective calculation merely

requires a shared memory buffer.

The cuRAND library [25] generates a random number by updat-

ing a curandState, which is a C struct containing a small integer

array to record the generator state. As both DPRS and ZPRS gen-

erate a random number for each vertex in 𝑆 , a simple method is

to maintain an array of curandState for the warp (or block) with

each thread having one state. However, this leads to uncoalesced

global memory accesses. To resolve the issue, we transform the ar-

ray of structures into a structure of arrays to optimize the memory

access pattern. Similar to NextDoor [13], we store this structure

in shared memory to further accelerate the computation. The op-

timization can bring up to 20.3× speedup in our experiment in

Section 6.3. Investigating the efficient generation of massive ran-

dom numbers (e.g., each thread has a random number generator)

on GPUs constitutes a compelling topic for future study.

5 FLOWWALKER ENGINE
An RW application consists of massive random walk queries and

each query is a sequence of walking steps. Steps from different

queries can be processed independently, while steps from the same

query have dependency. Under the sampler-centric computation

model, threads in GPUs are organized into samplers and each step

is a task unit. Specifically, given a step of a query, a sampler updates

the query by selecting a neighbor of the current residing vertex. To

process these tasks efficiently, we encounter two challenges caused

by the workload and hardware properties. First, the workload of

a step is determined by the degree of the current residing vertex.

Due to degree skewness among vertices, workloads among differ-

ent tasks are imbalanced. Second, although an RW application is

embarrassingly parallel, modern GPUs support tens of thousands

of threads executing concurrently, which leads to load imbalance is-

sues among computing resources. Additionally, the communication

and synchronization cost on GPUs is expensive.

In this section, we design an efficient walking engine on the

top of our parallel reservoir samplers. In this engine, thread blocks

are independent workers. Given a set of tasks, a thread block pro-

cesses them by organizing its threads into different-level samplers

(i.e., samplers with different threads) to handle variant workloads.

Moreover, we design an effective scheduling mechanism based on

multi-level task pools to keep load balance among workers. In the

following, we will introduce the computation in a thread block, and

then we will elaborate on the scheduling mechanism. Finally, the

time and memory cost will be discussed.

5.1 Computation
To address workload imbalance, we can organize thread blocks to

warp and block samplers and assign tasks to different thread blocks

based on their degrees. However, under the query-centric model, a

query needs to move between different thread blocks frequently.

As the communication and synchronization cost among blocks

is very expensive in GPUs, this approach can incur significant

overhead. Therefore, instead of moving queries among different

blocks, FlowWalker sticks a query to a thread block and processes

tasks with variant workloads.

Figure 4 presents the computation in thread blocks. Each thread

block has a local task pool 𝑃𝐿 that maintains the queries assigned

to it. An element in 𝑃𝐿 stores the status of a query 𝑄 , which has

7

Query

Query

Query

Stop?

Query

PL
N

Y
①

𝒅 ≤ 𝒅𝒕
Warp Samplers

𝒅 > 𝒅𝒕
Block Sampler

②

Sampler

③

④

PG

⑤.1

⑤.2

Figure 4: Computation in a thread block. A query will not
be evicted from a thread block until stop conditions are met.
Tasks are processed in two stages. First, warp samplers pro-
cess tasks in which the degree of the current residing vertex
is no greater than 𝑑𝑡 . Then, the block sampler processes the
remaining tasks. After sampling, if one query meets the stop
conditions, a new query will be fetched from the global task
pool (𝑃𝐺) and added to the local task pool (𝑃𝐿) (Step 5○.1).
Otherwise, we update the query state in 𝑃𝐿 (Step 5○.2).
the current residing vertex 𝑣 , the degree 𝑑 (𝑣), the location of 𝑁 (𝑣),
the location of the result sequence 𝑄.𝑠𝑒𝑞, and the length |𝑄.𝑠𝑒𝑞 | of
the sequence. 𝑃𝐿 resides in shared memory because it is frequently

accessed, while 𝑁 (𝑣) and 𝑄.𝑠𝑒𝑞 are stored in the global memory.

At the first stage, the thread block forms
|𝑇 |
32

warp samplers to

process the small tasks, the degrees 𝑑 (𝑣) of which are no greater

than a threshold 𝑑𝑡 . |𝑇 | denotes the number of threads in a block.

As the warp is the basic scheduling unit in GPUs and executes in-

dependently, these samplers process small tasks in 𝑃𝐿 concurrently.

Note that for the cases where the number of small tasks is less

than warp samplers, the strategy still works well in modern GPUs

because 1) the idle samplers incur a negligible cost, and 2) multiple

thread blocks run concurrently on an SM to fully utilize hardware

resources. After completing small tasks, the thread block forms a

block sampler to process the remaining tasks one by one.

After the two stages, we store sampling results in the global

memory and update the query status in 𝑃𝐿 . If a query stops, we will

get a new query from the global task pool, which will be introduced

in the next subsection. In summary, queries in 𝑃𝐿 are processed

iteratively and move one step at one iteration. A query will be

processed in a specific block once it is fetched into the local task

pool. This can eliminate the communication and synchronization

costs among blocks. Moreover, the two-stage execution scheme

processes tasks with variant workloads efficiently.

5.2 Scheduling
A simple method to handle massive queries is to evenly assign

queries among workers (i.e., thread blocks). The static scheduling

method works well on CPUs [35, 45]. However, we find that it can

incur performance issues on modern GPUs because 1) GPUs have

much higher parallelism than CPUs; and 2) thread block scheduling

is transparent to users and certain thread blocks can start much later

than others. To address this issue, we design a simple and effective

dynamic scheduling method that cooperates with the two-stage

computation scheme.

Stream 1

Stream 2

time

Batch ①

Batch ②

Batch ③

I/OI/O Compute

Global

Task Pool

…

h

fetched

tasks

fetch

Block①

Local Task Pool (full)

Block②

Local Task Pool (not full)

Block③

Local Task Pool (not full)

Figure 5: Queries are grouped into batches which execute al-
ternatively in two CUDA streams. ℎ refers to the head pointer
of the global task pool. Thread blocks fetch tasks in a pre-
emptive way if they have empty slots.

Figure 5 describes the dynamic scheduling strategy. We have

a global task pool 𝑃𝐺 , which keeps all queries in the device. Par-

ticularly, 𝑃𝐺 is an array where an element is the start vertex of

a query. Correspondingly, the result pool is the array storing the

query sequence with the size as |𝑃𝐺 | × 𝐿𝑚𝑎𝑥 where 𝐿𝑚𝑎𝑥 is the

maximum length of a query. The result sequence of a query is stored

continuously. As discussed in Section 5.1, thread blocks execute

independently. Upon finding that there are empty slots in the local

task pool, they will fetch queries from the global task pool to fill

these empty slots. The thread blocks fetch tasks from the head of 𝑃𝐺
in a preemptive manner. The concurrent accesses are supported by

an atomic integer pointing to the first available queries in the pool.

A thread block gets a query by increasing the integer atomically.

The local task pool size is very small compared with the number of

queries. Therefore, fine-grained scheduling can keep load balance

among thread blocks to fully utilize computing resources. We do

not adopt any work-stealing techniques because a query takes a

short time and the communication and synchronization cost among

thread blocks is expensive.

The number of queries residing on GPU is constrained by the

result pool size. For the cases where the results exceed the result

pool size, we process them in multiple batches. Specifically, we

divide queries into multiple batches such that the result sequences

of each batch can be held by the result pool. To overlap the GPU

I/O time with computation time, we adopt the classical ping-pong

buffer technique and process batches alternatively with two CUDA

streams. The number of queries in a batch is determined by Equa-

tion 3 where𝑀 represents the total GPU memory size and𝑀𝐺 is

the memory allocated for the graph.𝑀𝑣 is the memory required to

store a single vertex. The overarching strategy aims to fully utilize

available GPU memory for the result pool to minimize batch pro-

cessing. Notice that: 1) the equation includes a division by two as a

ping-pong buffer employs two alternating buffers; and 2) 𝐿𝑚𝑎𝑥 + 1
includes the memory allocated for the start vertex for each query

(i.e., the global task pool 𝑃𝐺). In summary, FlowWalker is capable of

handling scenarios where the result sequence exceeds the available

GPU memory.

8

|𝑃𝐺 | = ⌊
𝑀 −𝑀𝐺

2 × (𝐿𝑚𝑎𝑥 + 1) ×𝑀𝑣
⌋ (3)

5.3 Analysis and Comparison
In the following, we analyze the cost of FlowWalker and compare

it with C-SAW and Skywalker, two GPU-based systems.

Memory Consumption. The input is a graph 𝐺 and start ver-

tices of queries Q, and the output is the result sequence for each

query. Their memory consumption is compulsory for all competing

frameworks. Thus, we focus on the memory consumption for aux-

iliary data structures. The global task pool of FlowWalker is based

on the array storing start vertices of walkers, which has no extra

memory consumption, and the local task pool resides in the shared

memory. Moreover, both warp and block samplers do not consume

any global memory. Therefore, FlowWalker has no auxiliary data

structures consuming the global memory.

In contrast, both C-SAW and Skywalker need an auxiliary data

structure with 𝑂 (𝑑𝑚𝑎𝑥) to serve one query. This incurs expensive

memory overhead for large graphs. Additionally, Skywalker uses

a task pool with the memory consumption of 𝑂 (𝐿𝑚𝑎𝑥 × |Q|) to
keep load balance among thread blocks. In summary, FlowWalker

is memory-efficient, which brings two advantages: 1) FlowWalker

can support larger graphs; and 2) the number of queries that can

be processed simultaneously by FlowWalker is determined by com-

puting resources, whereas that of C-SAW and Skywalker is limited

by the available memory space.

Time.We first compare the time cost of processing one step of a

query. As analyzed in Section 4, the time complexity of moving one

step of a query using ZPRS is 𝑂 (𝑑
𝑘
+ log𝑘), while that of C-SAW is

𝑂 (𝑑
𝑘
× log𝑘 + log𝑑) where 𝑑 is the degree of𝑄.𝑐𝑢𝑟 . Skywalker uses

the alias table sampling method to perform sampling. Although its

time complexity is 𝑂 (𝑑
𝑘
+ log𝑘), the practical performance is slow

due to the complex alias table building process.

Next, we compare their techniques for keeping load balance.

C-SAW can process a query with a warp only and uses a static

scheduling method, which ignores both the load imbalance among

tasks and thread blocks. Skywalker can adopt the parallelism based

on degrees. However, Skywalker schedules queries among thread

blocks with a global queue at each step. Consequently, each step

requires a pop and a push operation, which incurs expensive over-

head. And the queue consumes a large amount of memory space as

discussed above. NextDoor assigns a single thread to a sampling

function. This design ignores the variance of neighbor set sizes.

Moreover, NextDoor operates in a BSP manner [5], advancing all

queries by one step per iteration. This approach, however, may lead

to two issues: 1) overhead from global synchronization, especially

with queries of varying lengths such as PPR; and 2) the necessity

to materialize all query results.

Under the sampler-centric model, FlowWalker handles variant

tasks with different samplers and uses the multi-level task pool

based scheduling strategy to keep load balance efficiently and ef-

fectively. Particularly, thread blocks can fetch a query by an atomic

incremental operation, and a query sticks to the block until it is

completed, which requires no communication and synchroniza-

tion overhead among blocks. In our experiments, we show that

Table 1: The detailed statistics of graphs.

Dataset Name |𝑉 | |𝐸 | 𝑑𝑚𝑎𝑥 Size(GB)

com-youtube YT 1.1 M 6 M 28K 0.05

cit-patents CP 3.8 M 33 M 793 0.26

Livejournal LJ 4.8 M 86 M 20K 0.66

Orkut OK 3.1 M 234 M 33K 1.76

EU-2015 EU 11 M 522M 399K 3.93

Arabic-2005 AB 23 M 1.1B 576K 8.34

UK-2005 UK 39 M 1.6B 1.7M 11.82

Twitter TW 42 M 2.4 B 3M 18.08

Friendster FS 66 M 3.6 B 5K 27.16

SK-2005 SK 51 M 3.6 B 8.5M 27.16

FlowWalker runs much faster than its counterparts. Additionally,

FlowWalker stands out as the only solution capable of handling

cases where the result sequence exceeds available GPU memory.

6 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the

performance of FlowWalker.

6.1 Experimental Setup
We study five frameworks in the experiments.DGL 1[42] is a widely
used GNN framework. LightRW2 [37] (LRW) is a FPGA-based
DGRW framework. ThunderRW3 [35] (TRW), which is the state-

of-the-art CPU-based framework, Skywalker4 [43] (SW), which
is a GPU-based framework, and FlowWalker (FW), which is the

GPU framework proposed in this paper. ThunderRW executes with

the ITS sampling method, which achieves the optimal performance

in the online computation mode. We also contemplated using C-

SAW
5
. However, it encounters memory issues when handling more

than 10
5
queries. Therefore we exclude it from our experimental

baselines. We do not involve NextDoor because it can only support

the offline computation mode as discussed in Section 2.3.

Implementation and Experiment Environments. FW is im-

plemented with ∼6000 lines of CUDA code. The experiments of

DGL, SW, and FW are conducted on a Linux server equipped with

the 40 GB A100 GPU. It contains 108 streaming multiprocessors

(SMs) each of which has 64 FP32 cores. The shared memory size of

each SM is configured to 100 KB. The PCIe type is PCI-E 4.0 × 16,
and the maximum bandwidth is 31.5GB/s. The server is equipped

with one Intel(R) Xeon(R) Silver 4310 CPU and 256GB host RAM.We

test TRW on a Linux server equipped with one Intel Xeon Platinum

8336C CPU, which has 16 physical cores with hyper-threading

enabled. The size of the host RAM is 128 GB. LRW is tested on

HACC@NUS
6
with an AMD Alveo U250 FPGA. We use NVCC of

version 11.6, g++ of version 9.4.0 and the optimization flag -O3 for

compilation.

Datasets and Workloads. We select a variety of real-world

graphs from different fields such as social networks, citations, and

1
https://github.com/junyimei/dgl

2
https://github.com/Xtra-Computing/LightRW

3
https://github.com/Xtra-Computing/ThunderRW

4
https://github.com/wpybtw/Skywalker

5
https://github.com/concept-inversion/C-SAW

6
https://xacchead.d2.comp.nus.edu.sg/

9

websites. The detailed statistics are listed in Table 1. YT, CP, LJ,

OK, and FS are downloaded from Stanford SNAP [20], and EU, AB,

UK, TW, and SK are from LAW [2, 3]. We have data sizes ranging

from tens of megabytes to tens of gigabytes (with weight). To keep

consistent with previous work [35, 49], we generate a real number

randomly from an interval [1, 5) as the edge weight and an integer

from the interval [0, 4] as the edge label.
We study DeepWalk, PPR, Node2Vec, and MetaPath in the ex-

periments. For DeepWalk, we set the target depth to 80. For PPR,

we set the stop probability to 0.2. For Node2Vec, we set the target

length to 80, 𝑎 = 2.0 and 𝑏 = 0.5. For MetaPath, we set the schema

to (0, 1, 2, 3, 4). We issue a query from every vertex in the graph

for DeepWalk, Node2Vec, and MetaPath. For PPR, |𝑉 | queries start
from the same vertex. We set the vertex to that with the maximum

degree in 𝐺 . In detailed evaluation, we follow the settings of Deep-

Walk and set the number of queries to 10
6
because SW frequently

encounters performance issues and has no valid experiment results

for comparison. For the comparison purpose, all applications, in-

cluding SGRW are executed in the dynamic manner. As a result,

the results on SGRW may diverge from those reported in previous

papers [35, 43], which are obtained with static mode.

FW executes Node2Vec with DPRS, while the other three appli-

cations with ZPRS. DGL implements Node2Vec on CPUs, while the

other three applications on GPUs. SW does not support MetaPath

because it cannot handle labeled graphs. LRW, the FPGA-based

framework, currently supports Node2Vec and MetaPath only. TRW

and FW implement all these four applications.

Metrics. The execution time refers to the total time required

for computation, excluding the time spent on loading the graph

data into GPUs. The results are averaged through three runs. OOT

signifies that the method exceeds the time limit, which is set as 8

hours for our experiments, whileOOM indicates amemory overflow.

For a more comprehensive analysis, we employ NVIDIA Nsight

Compute to profile GPU memory consumption.

Parameters. FW requires two hyperparameters: the local task

pool size |𝑃𝐿 |, and the degree threshold 𝑑𝑡 . |𝑃𝐿 | dictates the number

of queries that a thread block can hold, and 𝑑𝑡 serves as the thresh-

old for selecting between the warp sampler and block sampler. We

empirically tune their values and set |𝑃𝐿 | and 𝑑𝑡 to 64 and 1024,

respectively, across our experiments. FW achieves a good perfor-

mance on the settings. Due to space limits, we include a detailed

evaluation of hyperparameter impacts in the technical report.

6.2 Overall Comparison
Table 2 showcases the overall comparison of execution times across

different frameworks. Notably, FW is the only method capable of

completing all test cases. In contrast, DGL, LRW, TRW, and SW

struggle with larger graphs, encountering either time-out (OOT)

or memory overflows (OOM). Specifically, FW finishes all cases

within merely 2.2 hours. Among scenarios where all five frame-

works succeed, FW achieves remarkable speedups. Compared with

DGL on GPU, the maximum speedup is 92.2×, while this number is

315.8× for DGL on CPU (executing Node2Vec). FW reaches up to

16.4×, 752.2× and 72.1× speedup compared to LRW, TRW and SW

respectively, underscoring its superior performance.

FW takes considerably longer time to process the UK, TW, and

SK graphs compared to other datasets, while DGL, LRW, TRW, and

SW often fail to complete within the time limit for these graphs.

This increased time is attributed to the high degree of skewness

in these graphs, as indicated in Table 1. High-degree vertices are

visited more frequently, thereby dominating the processing time.

These results underscore the importance of employing different

levels of samplers for vertices with varying degrees. Despite its

large size, the FS graph is processed relatively quickly due to its

sparsity. Although both DeepWalk and Node2Vec have the same

target length, the execution time on Node2Vec is longer than that on

DeepWalk because the cost of calculating the transition probability

of Node2Vec is higher than that of DeepWalk.

FW eliminates the need for auxiliary data structures for each

query’s sampling, thereby reducing the space cost per query from

𝑂 (𝑑max) to 𝑂 (1), where 𝑑max is the maximum degree of a graph.

This efficiency enables FW to support large graphs and a substantial

number of concurrent queries. FW also exhibits superior perfor-

mance on smaller graphs due to the improvement of scheduling and

sampling methods. We evaluate these techniques in Section 6.3. In

summary, FW surpasses existing CPU, GPU, and FPGA frameworks

in DGRW performance and is capable of efficiently handling large

graphs.

6.3 Detailed Evaluation
In this subsection, we have a detailed evaluation of the performance

of FW. Due to space limitations, some evaluations such as the

comprehensive ablation study are provided in the technical report.

Memory Consumption. Table 3 presents a comparison of mem-

ory consumption between FW and SW across different datasets,

with query sizes |Q| = 10
6
and |Q| = 10

7
. SW can exceed GPUmem-

ory capacity due to its use of unified virtual memory (UVM). The

“extra” memory usage (E) is calculated by subtracting the dataset

size from the total memory consumption.

Remarkably, the extra memory consumption of FW remains

consistent across all graph sizes, whereas SW exhibits a marked

increase in memory use for larger graphs. This stability is attribut-

able to the design of FW. FW minimizes per-query memory usage

from 𝑂 (𝑑) to 𝑂 (1), which is independent of graph size. It requires

no auxiliary data structures in the global memory to support the

execution. In contrast, SW requires a buffer of size 𝑂 (𝑑𝑚𝑎𝑥) for
each query and has a large task queue for load balance.

For |Q| = 10
6
, query sequences occupy approximately 309 MB

of memory, with a 32-bit integer representation for each vertex.

For |Q| = 10
7
, this figure rises to 3090 MB. Beyond storing query

sequences, FW uses no additional memory for auxiliary data struc-

tures. These findings confirm two key points: 1) existing GPU frame-

works struggle with significant memory consumption issues, and

2) FW excels in memory efficiency.

Evaluation of Sampling Methods.We assess the performance

of ZPRS, ITS, and ALS on GPUs by sampling a cumulative 2GB of el-

ements, partitioned into tasks of varying sampling sizes. “Sampling

size” refers to the number of elements involved in a single sampling

operation, and all tasks within a single workload share the same

sampling size. Figure 6a reveals that ITS on warp performs com-

parably to ZPRS, while ZPRS on block outperforms ITS on block.

10

Table 2: The overall comparison on execution time (seconds).
Dataset YT CP LJ OK EU AB UK TW FS SK

DeepWalk

DGL 0.93 0.30 1.25 1.84 68.11 3492.19 OOM OOM OOM OOM

TRW 6.90 3.81 14.28 20.86 739.97 3298.71 OOT OOT 496.52 OOT

SW 7.82 3.20 21.89 28.88 431.61 1410.01 OOT OOT OOM OOT

FW 0.45 0.42 0.95 0.99 17.40 59.86 736.52 2674.25 24.26 1509.83

PPR

DGL 1.03 0.29 2.76 2.91 138.20 7728.80 OOM OOM OOM OOM

TRW 7.50 0.52 20.17 21.66 1900.78 3591.19 OOT OOT 56.67 OOT

SW 4.10 0.85 10.85 11.70 690.55 1763.33 OOT OOT OOM OOT

FW 0.23 0.10 0.74 0.69 32.60 82.29 1041.55 897.61 3.83 2797.56

Node2Vec

DGL 273.71 132.65 428.92 583.50 15988.82 OOT OOT OOM OOM OOM

TRW 66.69 28.65 260.63 553.65 5936.80 23042.37 OOT OOT 27329.18 OOT

SW 40.39 12.07 134.23 130.38 1065.75 2498.27 OOT OOT OOM OOT

LRW 12.68 7.13 18.16 24.70 758.57 2771.56 OOM OOM OOM OOM

FW 0.89 0.44 1.86 2.60 50.64 192.31 2044.09 7514.67 65.51 4688.86

MetaPath

DGL 0.04 0.09 0.13 0.10 1.67 35.17 376.55 OOM OOM OOM

TRW 0.22 0.42 2.43 13.32 121.96 2144.53 OOT OOT 202.27 OOT

LRW 0.11 0.19 0.36 0.61 9.13 40.24 422.24 OOM OOM OOM

FW 0.01 0.02 0.05 0.07 0.65 2.85 37.45 132.62 0.98 74.36

4

8

16

32

64

128

256

512

2⁸ 2¹⁰ 2¹² 2¹⁴ 2¹⁶ 2¹⁸ 2²⁰

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Sampling Size

ZPRS (warp) ZPRS (block)

ITS (warp) ITS (block)

ALS (warp) ALS (block)

(a) Comparison of ZPRS, ITS, and ALS.

0

5

10

15

20

25

2⁸ 2¹⁰ 2¹² 2¹⁴ 2¹⁶ 2¹⁸ 2²⁰

S
p
e
e
d
u
p

Sampling Size

warp sampler
block sampler

20.3×

(b) Impact of RNG optimization on ZPRS.

0

5

10

15

20

25

30

35

2⁸ 2¹⁰ 2¹² 2¹⁴ 2¹⁶ 2¹⁸ 2²⁰

E
x
e

c
u
ti
o

n
 T

im
e
 (

m
s
)

Sampling Size

ZPRS (warp) ZPRS (block)
DPRS (warp) DPRS (block)

(c) Comparison of ZPRS and DPRS.
Figure 6: Detailed evaluation of ZPRS and DPRS: warp and block indicate task processing at warp and block levels, respectively.

Table 3: Memory usage (GB). T refers to the total memory
consumption, and E refers to the extramemory consumption
(subtracting the size of dataset from T).

Data-
set

|Q| = 10
6 |Q| = 10

7

FW SW FW SW
T E T E T E T E

YT 0.35 0.31 2.07 2.02 3.10 3.05 18.41 18.36

CP 0.57 0.30 2.08 1.81 3.31 3.05 18.42 18.15

LJ 0.96 0.30 2.62 1.95 3.71 3.05 18.96 18.29

OK 2.06 0.30 3.81 2.04 4.81 3.05 20.15 18.38

EU 4.24 0.31 8.63 4.66 6.99 3.06 24.97 21.00

AB 8.64 0.30 14.32 5.90 11.39 3.05 30.66 22.24

UK 12.12 0.30 26.50 14.5 14.87 3.05 42.83 30.87

TW 18.38 0.30 41.60 23.4 21.13 3.05 57.93 39.70

FS 27.46 0.30 29.01 1.61 30.21 3.05 45.35 17.95

SK 27.47 0.31 90.99 63.6 30.22 3.06 107.3 79.98

This discrepancy arises because ITS necessitates frequent collective

operations, which are more efficiently executed on warps than on

blocks. ALS lags behind its counterparts due to the complex alias

table construction. Recall that ZPRS has a space complexity of𝑂 (1),
while ITS has a space complexity of 𝑂 (𝑑). Our results demonstrate

that ZPRS outperforms existing samplers without auxiliary data

structures.

Unlike ITS, ALS, and RS, the performance of Rejection Sampling

(RJS) depends on the underlying probability distribution. We ob-

serve that on less biased distributions, RJS can surpass RS at some

sampling sizes due to its lower initialization cost. However, as the

distribution grows more biased, RJS’s performance significantly de-

teriorates. This variability can impact the stability of performance.

Detailed results are presented in the technical report.

Figure 12 highlights the substantial speedup achieved through

optimizing random number generation (RNG) in ZPRS. These re-

sults underscore both the necessity and effectiveness of RNG op-

timization in ZPRS, as each element requires the generation of a

random number. The observed speedup for ZPRS when processed

on blocks is minimal for small sampling sizes because small tasks do

not fully utilize the hardware capabilities. Conversely, speed gains

on warps are limited for large sampling sizes, as processing ex-

tended sequences on warps does not maximize memory bandwidth

utilization.

For the same reason, both ZPRS and DPRS on warps run faster

than on blocks for small sampling sizes but slower for large sizes in

11

Figure 6c. When the sampling size is larger than 2
9
, DPRS lags be-

hind ZPRS for both warp and block samplers due to communication

costs between threads.

Ablation Study.We conduct an ablation study to analyze the

contributions of each individual technique to the overall speedup.

Initially, we implement a baseline version of FW with DPRS, RNGs

stored in global memory, and a basic static scheduler. This setup is

referred to as FW. Subsequently, we enhance FW by optimizing

RNG, which we denote as FW + RNG. Following this, we replace
DPRS with ZPRS, marked as FW + ZPRS. Finally, we integrate

dynamic scheduling, labeled as FW + DS.
The speedup of SW on DeepWalk with 10

6
queries against LJ,

EU, and TW is illustrated in Figure 7. The data indicates that FW

achieves a speedup range of 2.1× to 6.1× over SW without any

optimizations. The optimized shared-memory RNG contributes an

additional 2.5× to 4.4× speedup. The adoption of ZPRS further

results in a speedup of 1.1× to 2.0×. Lastly, the implementation

of dynamic scheduling offers an additional 1.1× to 2.3× speedup.

These findings affirm the efficacy of each technique introduced in

our paper. It is noteworthy that ZPRS, despite being a basic operator,

contributes a significant 1.1× to 2.0× speedup to the overall system

performance. The effect of dynamic scheduling is relevant to the

degree skewness of the graph. This is the reason that the speedup

of FW + DS on TW is smaller than EU and LJ. We will elaborate

on this in the technical report, as well as the ablation study results

of all datasets and applications.

1 1 1

6.1

2.1
4.0

15.3

5.0

17.4 16.3

10.1

25.5
26.9

23.4

27.2

0

10

20

30

40

LJ EU TW

S
p
e
e
d
u
p

Dataset

SW FW FW+RNG FW+ZPRS FW+DS

DeepWalk

Figure 7: Speedup breakdown on DeepWalk with 10
6 queries.

The value is normalized to SkyWalker (SW).

6.4 Case Study
GNNs are important for ByteDance operations, spanning video

recommendations, friend suggestions, and fraud detection. In this

case study, we focus on Douyin friend recommendation scenarios.

The utilized framework is a business-specific adaptation of Graph-

Learn [52], running on a CPU-only cluster of 20 machines with

560 cores. The RW phase in the training is to perform DeepWalk

where Graph-Learn executes in the dynamic mode. The test graph

comprises 227 million vertices and 2.71 billion edges.

Figure 8 breaks down the execution time for a single training

epoch. The process is composed of several key components: data

loading, random walk generation, and embedding learning. Com-

pleting one epoch takes nearly 10 hours, subdivided into data load-

ing (0.25 hours), random walk (RW) generation (3.49 hours), and

network training (6.32 hours). RW occupies 35% of the total pro-

cessing time. If more advanced RW algorithms like Node2Vec are

used, RW can consume much more time, as evidenced by DeepWalk

vs. Node2Vec in Table 2. We do not include Node2Vec in the case

study since Graph-Learn cannot support it.

As shown in Figure 8, FlowWalker reduces the RW time tomerely

13 minutes (3% of the total cycle time), offering significant efficiency

gains. On the other hand, ThunderRW requires more than 10 hours

on a single machine. Skywalker is omitted from the comparison

because it encounters a memory failure. These findings highlight

the compelling performance advantages of FlowWalker.

0 1 2 3 4 5 6 7 8 9 10

Graph-
Learn

ThunderRW

FlowWalker

Time (h)

Load
RW
Train

35%

3%

Figure 8: Time breakdown of training one epoch.

7 CONCLUSION
In this paper, we propose FlowWalker, a memory-efficient and high-

performance GPU-based framework for dynamic graph random

walks. We develop DPRS and ZPRS, two parallel reservoir sampling

algorithms to perform fast sampling with no extra global memory

and pre-processing cost. We implement a GPU walking engine to

process a massive number of walking queries based on the sampler-

centric paradigm. The effectiveness of FlowWalker is evaluated

through a variety of datasets, and the results show that FlowWalker

achieves up to 752.2× speedup on four representative random walk

applications. At last, the case study reveals that FlowWalker can

reduce the time cost of dynamic random walk from 35% to 3% of

the GNN training pipeline.

REFERENCES
[1] Paolo Boldi and Marco Rosa. 2012. Arc-community detection via triangular

random walks. In 2012 Eighth Latin American Web Congress. IEEE, 48–56.

[2] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered

Label Propagation: A MultiResolution Coordinate-Free Ordering for Compress-

ing Social Networks. In Proceedings of the 20th international conference on World

WideWeb, Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravin-

dra, Elisa Bertino, and Ravi Kumar (Eds.). ACM Press, 587–596.

[3] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Com-

pression Techniques. In Proc. of the Thirteenth International World Wide Web

Conference (WWW 2004). ACM Press, Manhattan, USA, 595–601.

[4] Min-Te Chao. 1982. A general purpose unequal probability sampling plan.

Biometrika 69, 3 (1982), 653–656.

[5] Thomas H Cormen and Michael T Goodrich. 1996. A bridging model for parallel

computation, communication, and I/O. ACM Computing Surveys (CSUR) 28, 4es

(1996), 208–es.

[6] Xiaoheng Deng, Genghao Li, Mianxiong Dong, and Kaoru Ota. 2017. Finding

overlapping communities based onMarkov chain and link clustering. Peer-to-peer

Networking and Applications 10 (2017), 411–420.

[7] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:

Scalable representation learning for heterogeneous networks. In Proceedings of

the 23rd ACM SIGKDD international conference on knowledge discovery and data

mining. 135–144.

[8] Dániel Fogaras, Balázs Rácz, Károly Csalogány, and Tamás Sarlós. 2005. Towards

scaling fully personalized pagerank: Algorithms, lower bounds, and experiments.

Internet Mathematics 2, 3 (2005), 333–358.

[9] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on

Knowledge discovery and data mining. 855–864.

12

[10] Yu He, Yangqiu Song, Jianxin Li, Cheng Ji, Jian Peng, and Hao Peng. 2019. Het-

eSpaceyWalk: A Heterogeneous Spacey Random Walk for Heterogeneous In-

formation Network Embedding. In Proceedings of the 28th ACM International

Conference on Information and Knowledge Management (Beijing, China) (CIKM

’19). Association for Computing Machinery, New York, NY, USA, 639–648.

https://doi.org/10.1145/3357384.3358061

[11] W. Daniel Hillis and Guy L. Steele. 1986. Data Parallel Algorithms. Commun.

ACM 29, 12 (dec 1986), 1170–1183. https://doi.org/10.1145/7902.7903

[12] Lorenz Hübschle-Schneider and Peter Sanders. 2022. Parallel weighted random

sampling. ACM Transactions on Mathematical Software (TOMS) 48, 3 (2022),

1–40.

[13] Abhinav Jangda, Sandeep Polisetty, Arjun Guha, and Marco Serafini. 2021. Accel-

erating graph sampling for graph machine learning using GPUs. In Proceedings

of the Sixteenth European Conference on Computer Systems. 311–326.

[14] Yong-Yeon Jo, Myung-Hwan Jang, Hyungsoo Jung, and Sang-Wook Kim. 2018.

A High-Performance Graph Engine for Efficient Social Network Analysis. In

Companion of the The Web Conference 2018 on The Web Conference 2018, WWW

2018, Lyon , France, April 23-27, 2018, Pierre-Antoine Champin, Fabien Gandon,

Mounia Lalmas, and Panagiotis G. Ipeirotis (Eds.). ACM, 61–62. https://doi.org/

10.1145/3184558.3186929

[15] Peter M Kogge and Harold S Stone. 1973. A parallel algorithm for the efficient

solution of a general class of recurrence equations. IEEE transactions on computers

100, 8 (1973), 786–793.

[16] Aapo Kyrola. 2013. DrunkardMob: billions of random walks on just a PC. Pro-

ceedings of the 7th ACM conference on Recommender systems (2013).

[17] Aapo Kyrola. 2013. Drunkardmob: billions of random walks on just a pc. In

Proceedings of the 7th ACM conference on Recommender systems. 257–264.

[18] Aapo Kyrola, Guy E. Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-Scale

Graph Computation on Just a PC. In 10th USENIX Symposium on Operating

Systems Design and Implementation, OSDI 2012, Hollywood, CA, USA, October

8-10, 2012. 31–46. https://www.usenix.org/conference/osdi12/technical-sessions/

presentation/kyrola

[19] Ni Lao and William W Cohen. 2010. Relational retrieval using a combination of

path-constrained random walks. Machine learning 81 (2010), 53–67.

[20] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[21] Xueting Liao, Yubao Wu, and Xiaojun Cao. 2019. Second-Order CoSimRank for

Similarity Measures in Social Networks. In ICC 2019 - 2019 IEEE International

Conference on Communications (ICC). 1–6. https://doi.org/10.1109/ICC.2019.

8761899

[22] Xin Lv, Yuxian Gu, Xu Han, Lei Hou, Juanzi Li, and Zhiyuan Liu. 2019. Adapting

Meta Knowledge Graph Information for Multi-Hop Reasoning over Few-Shot

Relations. In Proceedings of the 2019 Conference on Empirical Methods in Natural

Language Processing and the 9th International Joint Conference on Natural Lan-

guage Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019,

Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (Eds.). Association for

Computational Linguistics, 3374–3379. https://doi.org/10.18653/v1/D19-1334

[23] Pedro J. Martín, Luis F. Ayuso, Roberto Torres, and Antonio Gavilanes. 2012.

Algorithmic strategies for optimizing the parallel reduction primitive in CUDA.

In 2012 International Conference on High Performance Computing & Simulation

(HPCS). 511–519. https://doi.org/10.1109/HPCSim.2012.6266966

[24] NVIDIA. 2022. CUB Documentation. https://nvlabs.github.io/cub/index.html,

Last accessed on 2023-6-25.

[25] NVIDIA. 2023. CUDA Toolkit Documentation, cuRAND. https://docs.nvidia.

com/cuda/curand/index.html, Last accessed on 2023-6-25.

[26] S. Olver and A. Townsend. 2013. Fast inverse transform sampling in one and

two dimensions. arXiv: Numerical Analysis (2013).

[27] Santosh Pandey, Lingda Li, Adolfy Hoisie, Xiaoye S Li, and Hang Liu. 2020. C-

SAW: A framework for graph sampling and random walk on GPUs. In SC20:

International Conference for High Performance Computing, Networking, Storage

and Analysis. IEEE, 1–15.

[28] Serafeim Papadias, Zoi Kaoudi, Jorge-Arnulfo Quiané-Ruiz, and Volker Markl.

2022. Space-efficient random walks on streaming graphs. Proceedings of the

VLDB Endowment 16, 2 (2022), 356–368.

[29] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining. 701–710.

[30] Christian Robert and George Casella. 2013. Monte Carlo statistical methods. In

Springer Science & Business Media.

[31] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and

Gabriele Monfardini. 2009. The Graph Neural Network Model. IEEE Transactions

onNeural Networks 20, 1 (2009), 61–80. https://doi.org/10.1109/TNN.2008.2005605

[32] Shubhabrata Sengupta, Aaron Lefohn, and John D Owens. 2006. A work-efficient

step-efficient prefix sum algorithm. (2006).

[33] Yingxia Shao, Shiyue Huang, XupengMiao, Bin Cui, and Lei Chen. 2020. Memory-

aware framework for efficient second-order random walk on large graphs. In

Proceedings of the 2020 ACM SIGMOD international conference on management of

data. 1797–1812.

[34] Baoxu Shi and TimWeninger. 2016. Discriminative predicate path mining for fact

checking in knowledge graphs. Knowledge-based systems 104 (2016), 123–133.

[35] Shixuan Sun, Yuhang Chen, Shengliang Lu, Bingsheng He, and Yuchen Li. 2021.

ThunderRW: An In-Memory Graph Random Walk Engine. Proc. VLDB Endow.

14, 11 (2021), 1992–2005. http://www.vldb.org/pvldb/vol14/p1992-sun.pdf

[36] Yizhou Sun and Jiawei Han. 2012. Mining heterogeneous information networks:

a structural analysis approach. SIGKDD Explor. 14, 2 (2012), 20–28. https:

//doi.org/10.1145/2481244.2481248

[37] Hongshi Tan, Xinyu Chen, Yao Chen, Bingsheng He, and Weng-Fai Wong. 2023.

LightRW: FPGA Accelerated Graph Dynamic Random Walks. Proc. ACM Manag.

Data 1, 1, Article 90 (may 2023), 27 pages. https://doi.org/10.1145/3588944

[38] Alok Tripathy, Katherine Yelick, and Aydin Buluc. 2023. DistributedMatrix-Based

Sampling for Graph Neural Network Training. arXiv preprint arXiv:2311.02909

(2023).

[39] Jeffrey S Vitter. 1985. Random sampling with a reservoir. ACM Transactions on

Mathematical Software (TOMS) 11, 1 (1985), 37–57.

[40] Alastair J. Walker. 1977. An Efficient Method for Generating Discrete Random

Variables with General Distributions. ACM Trans. Math. Softw. 3, 3 (1977), 253–

256. https://doi.org/10.1145/355744.355749

[41] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, B. Zhao, and D. Lee. 2018.

Billion-scale Commodity Embedding for E-commerce Recommendation in Al-

ibaba. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining (2018).

[42] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li,

Jinjing Zhou, Qi Huang, Chao Ma, et al. 2019. Deep graph library: Towards

efficient and scalable deep learning on graphs. arXiv preprint arXiv:1909.01315

(2019).

[43] Pengyu Wang, Chao Li, Jing Wang, Taolei Wang, Lu Zhang, Jingwen Leng,

Quan Chen, and Minyi Guo. 2021. Skywalker: Efficient Alias-Method-Based

Graph Sampling and Random Walk on GPUs. In 30th International Conference on

Parallel Architectures and Compilation Techniques, PACT 2021, Atlanta, GA, USA,

September 26-29, 2021. IEEE, 304–317. https://doi.org/10.1109/PACT52795.2021.

00029

[44] Pengyu Wang, Cheng Xu, Chao Li, Jing Wang, Taolei Wang, Lu Zhang, Xiaofeng

Hou, and Minyi Guo. 2023. Optimizing GPU-based Graph Sampling and Random

Walk for Efficiency and Scalability. IEEE Trans. Comput. (2023).

[45] Rui Wang, Yongkun Li, Hong Xie, Yinlong Xu, and John CS Lui. 2020.

{GraphWalker}: An {I/O-Efficient} and {Resource-Friendly} Graph Analytic

System for Fast and Scalable Random Walks. In 2020 USENIX Annual Technical

Conference (USENIX ATC 20). 559–571.

[46] Shuke Wang, Mingxing Zhang, Ke Yang, Kang Chen, Shaonan Ma, Jinlei Jiang,

and Yongwei Wu. 2023. NosWalker: A Decoupled Architecture for Out-of-

Core Random Walk Processing. In Proceedings of the 28th ACM International

Conference on Architectural Support for Programming Languages and Operating

Systems, Volume 3. 466–482.

[47] Yubao Wu, Yuchen Bian, and Xiang Zhang. 2016. Remember where you came

from: on the second-order random walk based proximity measures. Proceedings

of the VLDB Endowment 10, 1 (2016), 13–24.

[48] Ke Yang, XiaosongMa, Saravanan Thirumuruganathan, Kang Chen, and Yongwei

Wu. 2021. Random walks on huge graphs at cache efficiency. In Proceedings of

the ACM SIGOPS 28th Symposium on Operating Systems Principles. 311–326.

[49] Ke Yang, Mingxing Zhang, Kang Chen, Xiaosong Ma, Yang Bai, and Yong Jiang.

2019. KnightKing: a fast distributed graph random walk engine. In Proceedings of

the 27th ACM Symposium on Operating Systems Principles, SOSP 2019, Huntsville,

ON, Canada, October 27-30, 2019, Tim Brecht and Carey Williamson (Eds.). ACM,

524–537. https://doi.org/10.1145/3341301.3359634

[50] Hongbo Yin, Yingxia Shao, Xupeng Miao, Yawen Li, and Bin Cui. 2022. Scalable

Graph Sampling on GPUs with Compressed Graph. In Proceedings of the 31st

ACM International Conference on Information & Knowledge Management (Atlanta,

GA, USA) (CIKM ’22). Association for Computing Machinery, New York, NY,

USA, 2383–2392. https://doi.org/10.1145/3511808.3557443

[51] Dalong Zhang, Xin Huang, Ziqi Liu, Jun Zhou, Zhiyang Hu, Xianzheng Song,

Zhibang Ge, Lin Wang, Zhiqiang Zhang, and Yuan Qi. 2020. AGL: A Scalable

System for Industrial-Purpose Graph Machine Learning. Proc. VLDB Endow. 13,

12 (aug 2020), 3125–3137. https://doi.org/10.14778/3415478.3415539

[52] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong

Li, and Jingren Zhou. 2019. AliGraph: a comprehensive graph neural network

platform. Proceedings of the VLDB Endowment 12, 12 (2019), 2094–2105.

13

https://doi.org/10.1145/3357384.3358061
https://doi.org/10.1145/7902.7903
https://doi.org/10.1145/3184558.3186929
https://doi.org/10.1145/3184558.3186929
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/kyrola
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/kyrola
http://snap.stanford.edu/data
https://doi.org/10.1109/ICC.2019.8761899
https://doi.org/10.1109/ICC.2019.8761899
https://doi.org/10.18653/v1/D19-1334
https://doi.org/10.1109/HPCSim.2012.6266966
https://nvlabs.github.io/cub/index.html
https://docs.nvidia.com/cuda/curand/index.html
https://docs.nvidia.com/cuda/curand/index.html
https://doi.org/10.1109/TNN.2008.2005605
http://www.vldb.org/pvldb/vol14/p1992-sun.pdf
https://doi.org/10.1145/2481244.2481248
https://doi.org/10.1145/2481244.2481248
https://doi.org/10.1145/3588944
https://doi.org/10.1145/355744.355749
https://doi.org/10.1109/PACT52795.2021.00029
https://doi.org/10.1109/PACT52795.2021.00029
https://doi.org/10.1145/3341301.3359634
https://doi.org/10.1145/3511808.3557443
https://doi.org/10.14778/3415478.3415539

APPENDIX
A DIFFERENCES WITH EXISTING MEMORY

REDUCTION STRATEGIES
FlowWalker effectively eliminates the need for large auxiliary data

structures in graph random walk processing. This approach enables

the simultaneous execution of a vast number of randomwalks, fully

leveraging GPU computing power. In contrast, GraSS [50] focuses

on graph compression. However, when processing graph random

walk queries, the significant overhead from per-query auxiliary

data structures restricts the number of concurrent queries, lead-

ing to suboptimal utilization of computing resources. Essentially,

graph compression techniques like GraSS are complementary to our

work. They can be integrated with FlowWalker to further minimize

memory usage.

Training GNN on a large graph usually involvesmini-batchmeth-

od. Mini-batch training effectively reduces memory consumption

by limiting the number of vertices in each batch. However, the

sampling process for generating mini-batches in GNN, due to its

stochastic nature, often requires operating on the entire graph [38].

Additionally, several prominent graph learning frameworks, such

as AGL [51], adopt a two-stage processing approach. This involves

initial sampling followed by mini-batch training, a method that

ensures reproducibility of embedding queries and training results.

The first stage entails executing a large number of random queries

on the graph. It is pertinent to note that our work is primarily aimed

at enhancing the efficiency of random walk queries.

B CORRECTNESS PROOF OF ALGORITHM 2
As the correctness proof of Algorithm 4 depends on the correct-

ness of Algorithm 2, we first prove the correctness of Algorithm

2. The algorithm selects the element 𝑆 [𝑖] with the probability

𝑝 (𝑖) = 𝑝 (𝑖) = 𝑊 [𝑖]∑𝑛
𝑗=1𝑊 [𝑗]

given a sequence 𝑆 with 𝑛 elements and

the corresponding weight sequence𝑊 . We prove this using the

constructive method.

Base Case. The algorithm apparently works for 𝑛 = 1.

Induction Assumption. Given a sequence with 𝑛 elements and

an arbitrary integer 𝑖 where 𝑛 > 1 and 1 ⩽ 𝑖 ⩽ 𝑛 + 1, we assume

that 𝑆 [𝑖] is selected with a probability of
𝑊 [𝑖]∑𝑛
𝑗=1𝑊 [𝑗]

.

Inductive Step. Give a sequence with 𝑛 + 1 elements and an

arbitrary integer 𝑖 where 1 ⩽ 𝑖 ⩽ 𝑛, want to prove that 𝑆 [𝑖] is
selected with the probability of

𝑊 [𝑖]∑𝑛+1
𝑗=1 𝑊 [𝑗]

.

As shown in Line 4 in Algorithm 2, 𝑆 [𝑛 + 1] is chosen with a

probability of
𝑊 [𝑛+1]∑𝑛+1
𝑗=1 𝑊 [𝑗]

. Thus, the current selected element has a

probability of 1 − 𝑊 [𝑛+1]∑𝑛+1
𝑗=1 𝑊 [𝑗]

=

∑𝑛
𝑗=1𝑊 [𝑗]∑𝑛+1
𝑗=1 𝑊 [𝑗]

to stay (not be replaced

by element 𝑛 + 1). According to the inductive assumption, for the

elements 𝑆 [𝑖] positioned before 𝑆 [𝑛+1] in the sequence, 𝑆 [𝑖] has the
probability of

𝑊 [𝑖]∑𝑛
𝑗=1𝑊 [𝑗]

to be the currently selected vertex. Then,

all these elements 𝑆 [𝑖] has a probability of 𝑊 [𝑖]∑𝑛
𝑗=1𝑊 [𝑗]

×
∑𝑛

𝑗=1𝑊 [𝑗]∑𝑛+1
𝑗=1 𝑊 [𝑗]

=

𝑊 [𝑖]∑𝑛+1
𝑗=1 𝑊 [𝑗]

to be the selected element after processing 𝑆 [𝑛+1]. Thus,

all the 𝑛+1 elements has the probability of
𝑊 [𝑖]∑𝑛+1
𝑗=1 𝑊 [𝑗]

to be selected.

The correctness of Algorithm 2 is proved. The correctness proof of

ZPRS is detailed in Section 4.2.

C SUPPLEMENTARY EVALUATION
C.1 Comparison with Rejection Sampling
In this section, we discuss and evaluate the performance of rejec-

tion sampling (RJS). Given a neighbor set 𝑁 (𝑣) of a vertex 𝑣 , RJS
samples a vertex 𝑢 from 𝑁 (𝑣) in two phases. The initialization

phase calculates 𝑝𝑚𝑎𝑥 = max𝑢∈𝑁 (𝑣) 𝑝 (𝑢) where 𝑝 (𝑢) is the selec-
tion probability of 𝑢. Subsequently, the selection phase has two

steps: 1) randomly select a vertex 𝑢 from 𝑁 (𝑣); and 2) randomly

generate a real number 𝑝 in [0, 𝑝𝑚𝑎𝑥). If 𝑝 < 𝑝 (𝑢), then 𝑢 is the

sampling result. Otherwise, RJS repeats the selection phase. The

time complexity of initialization is 𝑂 (𝑑 (𝑣)), and that of selection is

𝑂 (E) where E =
𝑑 (𝑣)×𝑝𝑚𝑎𝑥∑

𝑝 (𝑢) .

We empirically compare the performance of reservoir sampling

(RS) with RJS under different distributions in Figure 9. Specifically,

we generate the weights using log-normal distribution with the

mean value 𝜇 as 0 and the standard deviation 𝜎 varying from 1 to 3.

The sampling size is the number of elements in a single operation.

When 𝜎 = 1, we can see that RS is faster than RJS on small sampling

sizes (e.g., 2
8
). This is because the selection phase of RJS incurs

expensive overhead. However, RS is slower on large sampling sizes

(at most 2.6×) because RS needs to generate a random number for

each element that dominates the cost. When 𝜎 = 2 and 𝜎 = 3, the

performance of RJS significantly degrades because the selection

phase needs to be repeatedmany times. In contrast, the performance

of RS is steady and significantly outperforms RJS (up to 39.6×).
Response - rjs

0

20

40

60

80

100

120

140

2⁸ 2¹⁰ 2¹² 2¹⁴ 2¹⁶ 2¹⁸ 2²⁰

E
xe

c
u
ti
o

n
 T

im
e

 (
m

s
)

Sampling Size

σ = 1.0

RS RJS

2⁸ 2¹⁰ 2¹² 2¹⁴ 2¹⁶ 2¹⁸ 2²⁰
Sampling Size

σ = 2.0

RS RJS

2⁸ 2¹⁰ 2¹² 2¹⁴ 2¹⁶ 2¹⁸ 2²⁰
Sampling Size

σ = 3.0

RS RJS

Figure 9: Comparison of RS and RJS on different weight dis-
tributions with varying sampling sizes.

In summary, the running time of RJS is non-deterministic and

heavily depends on the probability distribution. This can affect the

system stability given the complex real-world scenarios, e.g., Table

4 and Table 5 present experiment results on weighted Node2Vec

and weighted MetaPath with different distributions. Nevertheless,

an interesting research direction is to dynamically select the sam-

pling method given the input. However, this requires an efficient

and effective adaptive sampling method selection mechanism at

runtime, which we will leave as a future work.

C.2 Impact of Hyperparameters
FlowWalker requires two hyperparameters: the local task pool size

|𝑃𝐿 |, and the degree threshold𝑑𝑡 . |𝑃𝐿 | dictates the number of queries

that a thread block can hold. A small |𝑃𝐿 | would underutilize the

14

55

57

59

61

63

65

0

0.5

1

1.5

2

2.5

2⁰ 2² 2⁴ 2⁶ 2⁸
T

W
E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

L
J
,
E

U
 E

x
e
c
u
ti
o

n
 T

im
e
 (

s
)

Local Task Pool Size

LJ EU TW

Response - parameter

67

68

69

70

71

72

73

0

0.5

1

1.5

2

2.5

2⁹ 2¹⁰ 2¹¹ 2¹² 2¹³ 2¹⁴ 2¹⁵

T
W

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

L
J
,
E

U
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Threshold

LJ EU TW

(a) Local task pool size.

55

57

59

61

63

65

0

0.5

1

1.5

2

2.5

2⁰ 2² 2⁴ 2⁶ 2⁸

T
W

E
x
e

c
u
ti
o

n
 T

im
e
 (

s
)

L
J

,
E

U
 E

x
e

c
u
ti
o

n
 T

im
e
 (

s
)

Local Task Pool Size

LJ EU TW

Response - parameter

67

68

69

70

71

72

73

0

0.5

1

1.5

2

2.5

2⁹ 2¹⁰ 2¹¹ 2¹² 2¹³ 2¹⁴ 2¹⁵

T
W

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

L
J

,
E

U
 E

x
e

c
u
ti
o

n
 T

im
e
 (

s
)

Threshold

LJ EU TW

(b) Warp-block threshold.

Figure 10: Impact of hyperparameters on the performance.
Table 4: Comparison of RS and RJS performance in weighted
Node2Vec across various weight distributions. Values are
derived using a log-norm generator with standard deviations
ranging from 1 to 3.

𝜎 = 1 𝜎 = 2 𝜎 = 3

Dataset RS RJS RS RJS RS RJS
YT 0.94 1.02 0.87 3.40 0.76 8.11

CP 0.42 0.80 0.42 1.44 0.41 1.81

LJ 1.84 2.81 1.72 8.46 1.67 17.71

OK 2.51 3.62 2.55 12.11 2.50 30.15

EU 49.87 38.66 49.75 156.25 48.97 615.80

AB 192.06 133.79 190.54 434.28 186.18 1825.56

UK 2060.20 1251.38 2061.07 1743.77 2057.86 9429.69

TW 7570.73 4727.40 7594.72 7303.92 7600.89 OOT

FS 64.33 100.22 64.09 360.87 63.80 819.82

SK 4717.55 2834.26 4691.10 4913.34 4647.53 23776.17

Table 5: Comparison of RS and RJS performance in weighted
MetaPath across various label distributions. Values are de-
rived using a log-norm generator with standard deviations
ranging from 1 to 3.

𝜎 = 1 𝜎 = 2 𝜎 = 3

Dataset RS RJS RS RJS RS RJS
YT 0.01 0.01 0.01 0.04 0.01 0.09

CP 0.02 0.02 0.02 0.03 0.02 0.03

LJ 0.04 0.05 0.04 0.12 0.04 0.22

OK 0.06 0.09 0.06 0.25 0.06 0.52

EU 0.63 0.69 0.62 3.52 0.62 12.06

AB 1.54 2.63 1.51 13.03 1.50 51.59

UK 77.80 24.22 78.59 54.19 78.08 348.52

TW 87.72 85.72 86.71 227.87 86.53 1448.48

FS 1.32 1.73 1.32 4.42 1.31 7.28

SK 40.93 48.41 40.35 172.70 39.92 912.44

computational resources, while a large |𝑃𝐿 | would lead to coarse-

grained task fetching andmay aggravate load imbalance. Besides, as

GPUs have limited shared memory sizes, a large |𝑃𝐿 | can exceed the

shared memory limitations. Following this guideline, we can tune

|𝑃𝐿 | by varying it from 1 to |𝑇 | where 𝑇 is the number of threads

in a block. Figure 10a displays the experimental results with |𝑃𝐿 |
varying from 1 to 512. It is observed that the execution time remains

relatively stable within the range of

[
2
5, 28

]
, but exhibits a slight

increase beyond this interval. Consequently, the performance of

FlowWalker demonstrates robustness to changes in |𝑃𝐿 |, leading
us to set 64 as the default value for all datasets.

The parameter 𝑑𝑡 serves as the threshold for selecting between

the warp sampler and block sampler. To assess the impact of this

threshold on performance, we conducted micro-benchmarking ex-

periments. The results are depicted in Figure 10b. Our observations

reveal that the execution time remains consistent when 𝑑𝑡 ranges

from 2
9
to 2

12
, showing a slight increase for values of 𝑑𝑡 larger than

this range. Consequently, FlowWalker exhibits robust performance

relative to variations in 𝑑𝑡 . Based on these findings, we have chosen

1024 as the default value for 𝑑𝑡 .
In summary, the performance of FlowWalker is robust with re-

spect to the hyperparameters. Users can adhere to the default set-

tings for optimal performance. In light of the reviewer’s comments,

we expand our discussion in Section 6.1 in the revision to include

guidelines on parameter settings and their impacts.

C.3 GPU Resource Utilization
We analyze GPU resource utilization using NVIDIA Nsight Compute.

Figure 11 showcases the performance metrics of DeepWalk and

Node2Vec on the LJ dataset. As evidenced in Figure 11a, FW boasts

substantially higher SM (StreamingMultiprocessor) utilization com-

pared to SW, highlighting superior parallelism of FW. Additionally,

Figure 11b reveals that FW enjoys a significantly higher memory

bandwidth, which is attributed to its efficient coalesced memory

access.

For FW, both the SM utilization and memory bandwidth are

marginally lower for Node2Vec than for DeepWalk. This is due to

the binary search operations required for transition probability cal-

culation, which lead to some randommemory accesses. Despite this,

FW still outperforms SW in overall resource utilization, demon-

strating the efficacy of our approach.

55.70%
51.39%

11.35%
14.32%

0%

10%

20%

30%

40%

50%

60%

70%

DeepWalk Node2Vec

U
ti
liz

a
ti
o
n
 R

a
ti
o

Profiling metrics

209.96 193.21

11.95

2.74

1

2

4

8

16

32

64

128

256

512

1024

DeepWalk Node2Vec

T
h
ro

u
g
h
p
u
t

(G
B

/s
)

FlowWalker
SkyWalker

FlowWalker
Skywalker

(a) Maximum SM utilization.

55.70%
51.39%

11.35%
14.32%

0%

10%

20%

30%

40%

50%

60%

70%

DeepWalk Node2Vec

U
ti
liz

a
ti
o

n
 R

a
ti
o

FlowWalker
SkyWalker

Profiling metrics

209.96 193.21

11.95

2.74

1

2

4

8

16

32

64

128

256

512

1024

DeepWalk Node2Vec

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

FlowWalker
Skywalker

(b) Memory bandwidth.

Figure 11: Comparison of GPU resource utilization on LJ.

C.4 RNG Performance Evaluation
Figure 12 highlights the substantial speedup achieved through opti-

mizing random number generation (RNG) in ZPRS. These results

underscore both the necessity and effectiveness of RNG optimiza-

tion in ZPRS, as each element requires the generation of a random

number. The observed speedup for ZPRS when processed on blocks

is minimal for small sampling sizes because small tasks do not

fully utilize the hardware capabilities. Conversely, speed gains on

warps are limited for large sampling sizes, as processing extended

15

sequences on warps does not maximize memory bandwidth utiliza-

tion.
0

5

10

15

20

25

2⁸ 2¹⁰ 2¹² 2¹⁴ 2¹⁶ 2¹⁸ 2²⁰

S
p
e

e
d

u
p

Sampling Size

warp sampler
block sampler

20.3×

0

5

10

15

20

25

2⁸ 2¹⁰ 2¹² 2¹⁴ 2¹⁶ 2¹⁸ 2²⁰

S
p
e

e
d

u
p

Sampling Size

warp sampler
block sampler20.3×

Figure 12: Impact of RNG optimization on ZPRS.

C.5 Scalability Evaluation
We assess the scalability of FlowWalker by examining throughput

under varying numbers of walking queries and walking lengths.

Specifically, throughput is defined as the number of edges processed

per second. We opt for this metric over the number of vertices

processed to avoid bias introduced by degree skewness. By default,

we conduct 10
6
walking queries starting from randomly selected

vertices with a walking length of 80.

Figure 13a illustrates how throughput varies as the number of

queries changes from 10
2
to 10

7
. The throughput is suboptimal at

low query counts because the workload is insufficient to fully utilize

the computational capacity of the GPUs. It plateaus at around 10
6

queries, indicating strong scalability in relation to the number of

queries.

In Figure 13b, the throughput stabilizes when the query length

exceeds 20, confirming the system scalability with respect to query

length. During these experiments, we observed significantly higher

throughput on the TW and EU datasets compared to LJ. This can

be attributed to the degree distribution of tasks: over 97% of tasks

on LJ have small degrees. Consequently, the system efficiency is

lower when processing a large volume of tasks that each involves

scanning only a short sequence of neighbors, as opposed to EU and

TW having many tasks that each scan a longer sequence.

0

50

100

150

10² 10³ 10⁴ 10⁵ 10⁶ 10⁷

T
h

ro
u

g
h

p
u

t
(B

ill
io

n
 E

d
g

e
s
 /

s
)

Number of Queries

LJ
EU
TW

scale

0

50

100

150

200

10 20 40 60 80 100 150 200

T
h

ro
u

g
h

p
u

t
(B

ill
io

n
 E

d
g

e
s
 /

s
)

Length

LJ EU TW

(a) Varying number of queries.

0

50

100

150

10² 10³ 10⁴ 10⁵ 10⁶ 10⁷

T
h

ro
u

g
h

p
u

t
(B

ill
io

n
 E

d
g

e
s
 /

s
)

Number of Queries

LJ
EU
TW

scale

0

20

40

60

80

100

120

140

160

180

10 20 40 60 80 100 150 200

T
h

ro
u

g
h

p
u

t
(B

ill
io

n
 E

d
g

e
s
 /

s
)

Length

LJ EU TW

(b) Varying length of queries.

Figure 13: Throughput of FW with varying walker number
and query length.

C.6 Ablation Study
We conduct the ablation study on all datasets and four applications,

assessing the impact of each technique individually. Notice that

the original Skywalker code has bugs leading to fewer sampling

steps. We add some thread fence to eliminate this problem
7
in

this section. However, the Skywalker we used as the baseline in

the paper is in its original state without any modification
8
. The

findings reveal that ZPRS contributes to speedups of 1.1×-2.8×,
while the implementation of DS leads to speedups of 1.03×-19.0×.
Notably, DPRS is utilized by default in Node2Vec to mitigate the

transition probability computation overhead, resulting in DPRS

outperforming ZPRS by 1.1× to 1.7×. This outcome validates our

cost analysis for DPRS and ZPRS, underscoring the significance

of both techniques. Specifically, on five billion-scale graphs—AB,

UK, TW, FS, and SK—ZPRS and DS facilitate up to 2.8× and 19.0×
speedup, respectively, showcasing their efficiency on large-scale

graph datasets. The results demonstrate the effectiveness of the

techniques proposed in this paper.

We develop a baseline version of FlowWalker (FW), featuring

DPRS, RNGs in global memory, and a simple static scheduler. This

configuration is identified as FW. We then improved FW by op-

timizing RNG storage, creating the variant FW + RNG. Next, we
substituted DPRS with ZPRS. For Node2Vec, we incorporate ZPRS

in FW, and replace it with DPRS in this step. Therefore we denote

this configuration as FW + Z(D)PRS. Finally, we incorporated dy-

namic scheduling, producing FW + DS. For Node2Vec experiments,

FW initially uses ZPRS.

Figure 14 and Figure 15 depict the results of all the datasets listed

in Table 1. The results are normalized to Skywalker (SW). Specifi-

cally, for MetaPath, we normalize the results to FW as SW does not

support MetaPath. According to the data, the proposed optimization

methods in FlowWalker are able to enhance performance in the

majority of scenarios (146 of 150 cases), and FlowWalker (FW+DS)
outperforms SW on all cases. The performance varies across dif-

ferent datasets and different applications. We broadly summarize

several general patterns as follows.

The performance of FW surpasses SW on all datasets without

any optimizations, including the shared-memory RNG. And the

speedup is substantial on many datasets. Especially for the applica-

tion Node2Vec, the baseline FW can provide up to 27.6× speedup,

which is much higher than the speedup from RNG (up to 1.8×),
DPRS (up to 1.7×), and dynamic scheduling (up to 18.2×). This
demonstrates the effectiveness of reservoir sampling.

The optimized RNG improves performance in all scenarios, but it

is not the main contribution to the enhancement. The performance

gain with RNG of PPR is higher than the other three applications,

with a range of 3.6× to 4.8× speedup. This is because the PPR queries

start from the vertex with the highest degree in the experiment

setting. The average amount of randomnumbers generated is higher

than the other applications. In terms of MetaPath, RNG contributes

up to 1.3× speedup to the overall performance. This is because in

MetaPath, edge labels have to match the given pattern. FlowWalker

only needs to generate random numbers for the matched edges.

7
https://github.com/junyimei/Skywalker

8
https://github.com/wpybtw/Skywalker

16

https://github.com/junyimei/Skywalker
https://github.com/wpybtw/Skywalker

1 1 1

5.5

2.5

11.6

1

16.6
11.0

20.9

1.2

27.0 20.4 23.9

2.3

41.1
22.9

34.8

7.0

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

YT

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

14.5

5.6

27.6

1

18.2 20.4
29.9

1.0

12.2

27.6 46.4

0.7

12.9
26.7

52.7

1.1

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

CP

SW FW FW+RNG FW+Z(D)PRS FW+DS

(a) Ablation study on YT.

1 1 1

5.5

2.5

11.6

1

16.6
11.0

20.9

1.2

27.0 20.4 23.9

2.3

41.1
22.9

34.8

7.0

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

YT

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

14.5

5.6

27.6

1

18.2 20.4
29.9

1.0

12.2

27.6 46.4

0.7

12.9
26.7

52.7

1.1

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

CP

SW FW FW+RNG FW+Z(D)PRS FW+DS

(b) Ablation study on CP.

1 1 1

5.5

2.5

11.6

1

16.6
11.0

20.9

1.2

27.0 20.4 23.9

2.3

41.1
22.9

34.8

7.0

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath
S

p
e

e
d

u
p

YT

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

14.5

5.6

27.6

1

18.2 20.4
29.9

1.0

12.2

27.6 46.4

0.7

12.9
26.7

52.7

1.1

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

CP

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

6.0

2.6

11.7

1

15.0 10.5 13.7

1.2

15.9 21.3 21.3

1.6

26.3 24.5
40.4

3.6

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

LJ

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

7.5

3.0

10.7

1

18.5
12.7 12.2

1.1

21.9 23.3 18.2

1.7

33.9
27.5

33.1

3.8

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

OK

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

9.3

2.7
5.7

1

21.8
12.1

6.3

1.1

44.1
23.6

7.7

2.3

25.9 37.2

7.2

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

EU

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

2.4 3.1 2.8

1

5.8
13.8

3.5

1.2

12.1
26.9

4.2
2.4

38.4 29.3
15.3

11.3

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

AB

SW FW FW+RNG FW+Z(D)PRS FW+DS

101.8

(c) Ablation study on LJ.

1 1 1

5.5

2.5

11.6

1

16.6
11.0

20.9

1.2

27.0 20.4 23.9

2.3

41.1
22.9

34.8

7.0

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

YT

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

14.5

5.6

27.6

1

18.2 20.4
29.9

1.0

12.2

27.6 46.4

0.7

12.9
26.7

52.7

1.1

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

CP

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

6.1

2.6

11.7

1

15.4
10.5 13.7

1.2

23.2 21.3 21.3

1.6

38.5
24.5

40.4

3.6

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

LJ

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

7.5

3.0

10.7

1

18.5
12.7 12.2

1.1

21.9 23.3 18.2

1.7

33.9
27.5

33.1

3.8

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

OK

SW FW FW+RNG FW+Z(D)PRS FW+DS

(d) Ablation study on OK.

1 1 1

5.5

2.5

11.6

1

16.6
11.0

20.9

1.2

27.0 20.4 23.9

2.3

41.1
22.9

34.8

7.0

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

YT

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

14.5

5.6

27.6

1

18.2 20.4
29.9

1.0

12.2

27.6 46.4

0.7

12.9
26.7

52.7

1.1

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

CP

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

6.0

2.6

11.7

1

15.0 10.5 13.7

1.2

15.9 21.3 21.3

1.6

26.3 24.5
40.4

3.6

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

LJ

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

7.5

3.0

10.7

1

18.5
12.7 12.2

1.1

21.9 23.3 18.2

1.7

33.9
27.5

33.1

3.8

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

OK

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

9.3

2.7
5.7

1

21.8
12.1

6.3

1.1

44.1
23.6

7.7

2.3

25.9 37.2

7.2

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

EU

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

2.4 3.1 2.8

1

5.8
13.8

3.5

1.2

12.1
26.9

4.2
2.4

38.4 29.3
15.3

11.3

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

AB

SW FW FW+RNG FW+Z(D)PRS FW+DS

101.8

(e) Ablation study on EU.

Figure 14: The results of ablation study on small and medium graphs. For DeepWalk, PPR, and Node2Vec, the results are
normalized to Skywalker (SW). For MetaPath, we normalize the results to FW as SW does not support MetaPath.

ZPRS contributes 1.1× to 2.8× speedup to the overall system

performance. For Node2Vec, DPRS provides 1.1× to 1.7× speedup.

The improvement is non-trivial for a primitive operator.

Dynamic scheduling enhances the system in most cases (149 of

150 cases), especially on skewed datasets. EU, AB, and UK greatly

benefit from the dynamic schedulingmethod. For the highly skewed

dataset UK, the speedup reaches at most 19.0×. The performance

rise of dynamic scheduling is relevant to the workload. For example,

in our experiment setting of PPR, all queries start from the same

vertex with the highest degree, and there is a minor discrepancy

between the workloads. Therefore the speedup of PPR is not as high

as other applications, and for dataset CP, the performance even

drops by 3%. Despite this, dynamic scheduling is still an effective

optimization approach.

Next, we showcase the ablation study results on five billion-scale

graphs and analyze the dynamic scheduling performance on TW.

The graphs include AB (Figure 15a), UK (Figure 15b), TW (Figure

15c), FS (Figure 15d), and SK (Figure 15e). ZPRS (DPRS in Node2Vec)

facilitates up to 2.1×, 2.8×, 1.7×, 1.7×, and 1.9× improvement for

five datasets respectively. The results demonstrate the effectiveness

of ZPRS on the billion-scale graphs. Dynamic scheduling offers up

to 4.7×, 19.0×, 1.4×, 1.2×, and 2.4× speedup on these datasets.

As discussed above, the effectiveness of dynamic scheduling

varies among different datasets, depending on the graph degree

distribution. Take the datasets UK and TW as two examples. Figure

16a and Figure 16b depict the CDF curves of their degree distribu-

tions. The x-axis in the graph represents the degree distribution,

for example, 10% stands for the vertices with the least 10% degrees.

And the y-axis depicts the vertex numbers. UK is a highly skewed

graph with 80% of the vertices having the lowest 10% degrees, and

the vertices with the highest 20% degrees take up only 3.4% of all

the nodes. Compared with UK, the degree distribution of TW is

more uniform, with 80% vertices having degrees less than 28%, and

14% vertices fall into the degree range of 80% - 100%. The skewed

workload brought by skewed degree distribution in UK incurs sig-

nificant performance rise of dynamic scheduling. In contrast, the

speedup for TW is marginal due to the uniform workload.

The optimization techniques can lead to negative speedup in a

minority of scenarios (4 of 150 cases). ZPRS incurs a performance

drop when computing DeepWalk on CP (about 30%) and FS (about

10%). This is because CP and FS are sparse graphs, with a maximum

degree of 793 and 5214 respectively. This number is much smaller

17

1 1 1

5.5

2.5

11.6

1

16.6
11.0

20.9

1.2

27.0 20.4 23.9

2.3

41.1
22.9

34.8

7.0

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

YT

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

14.5

5.6

27.6

1

18.2 20.4
29.9

1.0

12.2

27.6 46.4

0.7

12.9
26.7

52.7

1.1

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

CP

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

6.1

2.6

11.7

1

15.4
10.5 13.7

1.2

23.2 21.3 21.3

1.6

38.5
24.5

40.4

3.6

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

LJ

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

7.5

3.0

10.7

1

18.5
12.7 12.2

1.1

21.9 23.3 18.2

1.7

33.9
27.5

33.1

3.8

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

OK

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

2.1 2.7
5.7

1

4.8
12.1

6.3

1.1

10.6
23.6

7.7

2.3

26.4 25.9 37.2

7.2

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

EU

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

2.4 3.1 2.8

1

5.8
13.8

3.5

1.2

12.1
26.9

4.2
2.4

38.4 29.3
15.3

11.3

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

AB

SW FW FW+RNG FW+Z(D)PRS FW+DS

(a) Ablation study on AB.

1 1 11.3
1.9

1.2 1

2.1

8.0

1.6
1.1

5.7
13.7

1.7
3.0

76.0

14.2
30.5

57.7

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

UK

SW FW FW+RNG FW+Z(D)PRS FW+DS

(b) Ablation study on UK.

1 1 11.3
1.9

1.2 1

2.1

8.0

1.6
1.1

5.7
13.7

1.7
3.0

76.0

14.2
30.5

57.7

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p
UK

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

4.2 3.4 5.4

1

18.5 14.8
7.8

1.2

27.2 27.2

11.1

2.0

29.0 29.6

12.6

2.7

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

TW

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

2.7 3.4
7.4

1

7.7
14.2

8.4

1.2

7.0

22.3
14.2

1.8

7.7

24.2
17.3

2.0

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

FS

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

12.3

3.5

14.0

1

32.1

15.2 18.4

1.2

57.9
27.9 23.0

2.2

29.9 41.9

5.3

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

SK

SW FW FW+RNG FW+Z(D)PRS FW+DS

106.5

(c) Ablation study on TW.

1 1 11.3
1.9

1.2 1

2.1

8.0

1.6
1.1

5.7
13.7

1.7
3.0

76.0

14.2
30.5

57.7

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

UK

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

3.9 3.4 5.4

1

16.2 14.8
7.8

1.2

23.2 27.2

11.1

2.0

24.9 29.6

12.6

2.7

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

TW

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

2.7 3.4
7.4

1

7.7
14.2

8.4

1.2

7.0

22.3
14.2

1.8

7.7

24.2
17.3

2.0

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

FS

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

12.3

3.5

14.0

1

32.1

15.2 18.4

1.2

57.9
27.9 23.0

2.2

29.9 41.9

5.3

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

SK

SW FW FW+RNG FW+Z(D)PRS FW+DS

106.5

(d) Ablation study on FS.

1 1 11.3
1.9

1.2 1

2.1

8.0

1.6
1.1

5.7
13.7

1.7
3.0

76.0

14.2
30.5

57.7

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

UK

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

3.9 3.4 5.4

1

16.2 14.8
7.8

1.2

23.2 27.2

11.1

2.0

24.9 29.6

12.6

2.7

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

TW

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

2.7 3.4
7.4

1

7.7
14.2

8.4

1.2

7.0

22.3
14.2

1.8

7.7

24.2
17.3

2.0

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p
FS

SW FW FW+RNG FW+Z(D)PRS FW+DS

1 1 1

12.3

3.5

14.0

1

32.1

15.2 18.4

1.2

57.9
27.9 23.0

2.2

29.9 41.9

5.3

0.1

1

10

100

DeepWalk PPR Node2Vec MetaPath

S
p

e
e

d
u

p

SK

SW FW FW+RNG FW+Z(D)PRS FW+DS

106.5

(e) Ablation study on SK.

Figure 15: The results of ablation study on five billion-scale graphs.

0

0.2

0.4

0.6

0.8

1

1.2

N
u

m
b

e
r

Degree Distribution

UK

0

0.2

0.4

0.6

0.8

1

1.2

N
u

m
b

e
r

Degree Distribution

TW

28%
6%

3.4%

14%

(a) Degree CDF of UK.

0

0.2

0.4

0.6

0.8

1

1.2

N
u

m
b

e
r

Degree Distribution

UK

0

0.2

0.4

0.6

0.8

1

1.2

N
u

m
b

e
r

Degree Distribution

TW

28%
6%

3.4%

14%

(b) Degree CDF of TW.

Figure 16: The degree distribution differs in UK and TW.

than the other graphs. As shown in Figure 6c, the performance of

DPRS is better than ZPRS when the vertex degree is small. The

case is the same for MetaPath on CP. Besides, as described above,

dynamic scheduling slightly degrades the performance with 3%

when performing MetaPath on CP. Since dynamic scheduling in-

curs additional overhead compared with the static method. The

performance gain in other cases can offset the overhead, but for

dataset CP, which is a small and sparse graph, dynamic scheduling

degrades the performance.

In summary, the optimization methods in FlowWalker are able to

enhance performance across the majority of scenarios. Combining

all optimizations, FlowWalker significantly outperforms its coun-

terpart in all cases. It is noteworthy that ZPRS contributes 1.1× to

2.8× speedup to the overall system performance. In particular, ZPRS

18

contributes 1.7×-2.8× speedup on billion-scale graphs. The improve-

ment is non-trivial for a primitive operator. Moreover, the speedup

varies across different datasets and applications. Each acceleration

technique possesses a unique zone of superiority, manifesting di-

vergent outcomes across various contexts. Consequently, within

FlowWalker, the incorporation of each optimization approach is

deemed essential.

19

	Abstract
	1 Introduction
	2 Background
	2.1 Graph Random Walk
	2.2 Sampling Methods
	2.3 GPU-based Random Walk Frameworks
	2.4 Other Related Works

	3 An Overview of FlowWalker
	4 Sampling Method
	4.1 Direct Parallel Reservoir Sampling
	4.2 Zig-Zag Parallel Reservoir Sampling
	4.3 Implementation

	5 FlowWalker Engine
	5.1 Computation
	5.2 Scheduling
	5.3 Analysis and Comparison

	6 Experiments
	6.1 Experimental Setup
	6.2 Overall Comparison
	6.3 Detailed Evaluation
	6.4 Case Study

	7 Conclusion
	References
	A Differences with Existing Memory Reduction Strategies
	B Correctness Proof of Algorithm 2
	C Supplementary Evaluation
	C.1 Comparison with Rejection Sampling
	C.2 Impact of Hyperparameters
	C.3 GPU Resource Utilization
	C.4 RNG Performance Evaluation
	C.5 Scalability Evaluation
	C.6 Ablation Study

