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Abstract

In this paper, we propose a recipe for B-model computation of genus 1 Gromov-Witten invariants of

Calabi-Yau and Fano Projective Hypersurfaces. Our formalism can be applied equally to both Calabi-Yau

and Fano cases. In Calabi-Yau case, drastic cancellation of terms used in our formalism occurs and it results

in another representation of BCOV-Zinger formula for projective Calabi-Yau hypersurfaces.

1 Introduction

Evaluation of higher genus Gromov-Witten invariants has been one of the most exciting and challenging topics
in the study of topological strings and mirror symmetry.

In 1993, Bershadsky, Cecotti, Ooguri and Vafa evaluated genus 1 Gromov-Witten invariants of quintic Calabi-
Yau 3-fold and several other Calabi-Yau 3-folds by combining the idea of holomorphic anomaly equation and
mirror symmetry [1]. Soon after the paper appeared, they generalized the method presented in [1] to evaluate
higher genus (g ≥ 2) Gromov-Witten invariants of Calabi-Yau 3-folds [2]. Attempts to generalize their results to
higher dimensional Calabi-Yau manifolds can be seen in [19].

On the other hand, study of evaluation of higher genus Gromov-Witten invariants of Fano manifolds began
after the celebrated paper [17], which derived associativity equation of quantum cohomology ring by using
analysis of Chow ring of moduli space of genus 0 stable curves with four marked points, appeared. It enabled us
to evaluate genus 0 Gromov-Witten invariants of Fano manifolds. In 1997, Getzler derived Getzler’s equation,
a kind of generalization of associativity equation to genus 1 Gromov-Witten invariants, from analysis of Chow
ring of moduli space of genus 1 stable curves with four marked points [7]. In the same year, Eguchi, Hori and
Xiong proposed Virasoro conjecture, which has potential ability to evaluate all genus Gromov-Witten invariants
of Fano manifolds by combining with topological recursion relation [5]. These are results which use differential
equations of generating function of Gromov-Witten invariants.

There exists another trend of evaluation of Gromov-Witten invariants. In 1994, Kontsevich directly evaluated
genus 0 Gromov-Witten invariants of Projective hypersurfaces by combining the idea of moduli space of stable

1

http://arxiv.org/abs/2404.07591v5


maps with Bott residue formula [16]. Actual computational process of this method is extremely hard, but it
shedded light on geometrical study on Gromov-Witten invariants. In 1997, Graber and Pandharipande generalized
the method in [16] to the case of higher genus Gromov-Witten invariants of projective space [8]. In [8], we can
see that crucial point of generalization is consideration on Hodge bundle on moduli space of higher genus stable
curves. As far as we know, the results in [8] is also applicable to evaluate higher genus local Gromov-Witten
invariants of projective space [15], but not applicable to the case of compact projective hypersurface (at least
compact Calabi-Yau hypersurface). Let us summarize this trend by the word “localization”.

We summarize here situations of study of Gromov-Witten invariants around 90’s. At the genus 0 level,
mirror symmetry conjecture became tractable by invention of localization method. But in order to attack BCOV
conjecture in mathematics sense, localization method can not be applied, at least to the case of compact Calabi-
Yau manifold. On the other hand, associativity equation is not effective for evaluation of genus 0 Gromov-Witten
invariants of Calabi-Yau manifolds. Getzler’s equation and Virasoro conjecture are also not effective for evaluation
of higher genus Gromov-Witten invariants of Calabi-Yau manifolds.

In 2009, Zinger introduced the idea of reduced Gromov-Witten invariants and by combining this idea with a
kind of localization, he derived a closed formula for generating function of genus 1 Gromov-Witten invariants of
projective Calabi-Yau hypersurfaces [20]. Since then, there appeared many literatures in mathematics on higher
genus Gromov-Witten invariants of Calabi-Yau 3-folds. We call the formula proved in [20] BCOV-Zinger formula,
because Zinger’s formula in the case of quintic 3-fold is nothing but the formula proposed in [1]. From a lot of
experimental computations, we believe his formula is correct, but it is hard for us to understand his logic used
in the proof of his formula. This may be so because we originally have physics origin.

The motivation of this paper is “to construct our original approach to genus 1 Gromov-Witten
invariants of projective hypersurfeces from the point of view of the theory of moduli space of
quasimaps we have constructed so far”.

Let us briefly review our study of classical mirror symmetry of projective hypersurface. Let Mk
N be de-

gree k non-singular hypersurface in CPN−1. We denote by h hyperplane class in H1,1(CPN−1,C). Quantum
cohomology ring of Mk

N is defined by the following multiplication rule:

Oh · OhN−2−m =

∞∑

d=0

1

k
〈OhOhN−2−mOhm−1+(N−k)d〉0,dedtOhN−1−m−(N−k)d , (1.1)

where 〈OhOhN−2−mOhm−1+(N−k)d〉0,d is genus 0 and degree d Gromov-Witten invariant of Mk
N .

In [3], we defined LN,k,d
m by 1

k
〈OhOhN−2−mOhm−1+(N−k)d〉0,d, which is structure constant of quantum cohomol-

ogy ring of Mk
N and proved recursive formulas that describe LN,k,d

m in terms of weighted homogeneous polynomial

of LN+1,k,d′

m′ ’s (d′ ≤ d) up to d = 3. These recursive formulas take the same form if N − k ≥ 2. But in the
case of N − k = 1, 0, we have to modify these recursive formulas. Then we applied the recursive formula for
the N − k ≥ 2 cases formally to the N − k = 1, 0 case and found that resulting “virtual structure constant”
becomes expansion coefficient of the generalized hypergeometric series used in mirror computation of Gromov
Witten invariants of Mk

k and of derivative of the mirror map. We then denote by L̃k,k,d
m the resulting number

and call it “virtual structure constant.” This is the beginning of the notion: “virtual structure constant” and it
plays the role of B-model analogue of the strucure constant (Gromov-Witten invariant) of quantum cohomology
ring of Mk

k .

In [9, 10], we showed that the virtual structure constant L̃k,k,d
m is given as intersection number d

k
·w(Ohk−2−mOm−1)0,d

of moduli space of quasimaps from CP 1 with two marked points to CP k−1, which we denote by M̃p0,2(k, d)
1 .

Then we began to call w(OhaOhb)0,d, which is defined as intersection number of M̃p0,2(k, d) (it was generalized to

general hypersurface Mk
N), “virtual structure constant”, by which we mean B-model analogue of Gromov-Witten

invariants.
In [13], we constructed moduli space of quasimaps from CP 1 with 2 + n marked points to CPN−1, which

we denote by M̃p0,2|n(N, d), and defined multi-point virtual structure constant w(OhaOhb |
∏N−2

p=0 (Ohp)mp)0,d

for Mk
N as intersection number of M̃p0,2|n(N, d). It is expected to play the role of B-model analogue of genus

0 Gromov-Witten invariant 〈OhaOhb

∏N−2
p=0 (Ohp)mp〉0,d of Mk

N but it generically does not coincide with the
corresponding Gromov-Witten invariant. Then we defined “mirror map”, which is defined as generating function

1For another approach of moduli space of quasimaps, please refer to [4]
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of w(OhaO1|
∏N−2

p=0 (Ohp)mp)0,d (see the next section for details), and conjectured that generating function of
multi-point virtual structure constants is translated into generating function of Gromov-Witten invariants via
coodinate change of deformation parameters given by the mirror map (see also the next section for details).
This conjecture enables us to do non-trivial mirror computation of Gromov-Witten invariants for Fano projective
hypersurface, even though mirror map used in mirror computation of structure constants of small quantum
cohomology ring of Fano projective hypersurface is trivial. This construction is the starting point of this paper.

At this stage, we discuss geometrical merit of introducing virtual structure constant, or moduli space of
quasimaps. First of all, geometrical structure of moduli space of quasimaps is far simpler than the one of moduli
space of stable maps. This enables us to write down short proof of mirror theorem of projective hypersurface Mk

N

[11]. Let us illustrate advantage of moduli space of quasimaps by taking localization computation as example. In
localization computation of genus 0 and degree d Gromov-Witten invariant, it is given as sum of contributions
from tree graphs with d edges. We can easily see that number of tree graphs with d edges increases very fast
as d rises. Therefore, computation of Gromov-Witten invariant via localization gets harder and harder as d
rises. On the contrary, in localization computation of virtual structure constant of degree d, it is represented by
a mullti-variable residue integral given as contribution from line graph with d edges. Line graph with d edges
is unique. Therefore, number of graphs needed for evaluation of genus 0 virtual structure constant of degree
d is always one. Moreover, it is represented by multi-variable residue integral, which is more handy for use
of computers than the usual localization computation, which includes summation of characters of torus action.
As can be seen in discussion in [13], mirror transformation from Gromov-Witten invariants to virtual structure
constants can be interpreted as process of “cutting useless edges of tree graph into line graph “. In other words,
mirror transformation from A-model to B-model is interpreted as process of “linearization of modulli space” in
our context.

In this paper, we present final results of our trial to find multi-variable residue integral formula that corrsponds
to this “linearization of moduli space “ at the level of genus 1 Gromov-Witten invariants of projective hypersurface.

We don’t remember exactly when we began this trial, but it was around 2010. First, we tried to rewrite results
of genus 1 Gromov-Witten invariants of CP 2 obtained from method of Graber and Pandharipande into residue
integrals, and translated them into B-model form by using our mirror map presented in [13] (we had already
obtained the formula of multi-point vertual structure constans). As was expected, this process had the effect of
“cutting useless edges of tree graph with elliptic vertex and one loop graph “, and we observed that expected
residue integral representation would be written as sum of contributions from graphs of type (i) and type (ii)
presented in Section 3 of this paper. But we also found that we also have to introduce type (iii) and (iv) graphs
presented in Section 3 in order to cancel error terms that appear in rewriting localization formulas of moduli space
of stable maps into residue integrals. We called informally these error terms “diagonal anomaly”. It was very
difficult to control this diagonal anomaly, and we temporarily stopped our trial. In spring of 2020, we managed
to rewrite BCOV-Zinger formula as multi-variable residue integral by using type (i) graph and colored one loop
graphs. But residue integrals that correspond to colored one loop graphs contained geometrically unnatural
factors from the point of view of localization of moduli space of quasimaps, and we didn’t publish these formilas
as an official article. Then around winter of 2020, we found how to control “diagonal anomaly” in the CP 2

case, and wrote down final form of residue integral representation of elliptic virtual structure constants of CP 2.
But unfortunately, it had little connection with the residue integral representation of BCOV-Zinger formula we
had at that time. In spring of 2023, adding new member Kuwata, we began to generalize the residue integral
representation of elliptic virtual structure constants of CP 2 to projective Fano hypersurfaces. Generalzation
to higher dimensional projective spaces was easy. But it was hard to find satisfactory formulas for the case of
Fano hypersurfce Mk

N (N > k) with k greater than 1. In March of 2024, Kuwata found satisfactory residue
integral representation of elliptic virtual structure constants of degree 1, which is applicable to all Mk

N ’s (N > k).
Within two weeks from this discovery, we reached the residue integral representation of elliptic virtual structure
constants presented in this paper. Moreover, we found that these formulas are also applicable to Calabi-Yau
hypersurface Mk

k and result in geometrically natural residue integral representation of BCOV-Zinger formula.
Then we decided to write down this paper as soon as possible.

As was explained in the previous paragraph, the process of construction of our residue integral formulas is
purely heuristic. Therefore, we only write down set-up of our mirror computation, integrands of residue integrals
associated with graphs and results of numerical tests of our conjectural formulas.

This paper is organised as follows. In Section 2, we explain set-up of our mirror computation of elliptic
Gromov-Witten invariants of projective Fano hypersurfaces based on the results presented in [13]. In Section
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3, we present our residue integral representation of elliptic virtual structure constants. In Subsection 3.1, we
introduce four types of graphs used in our construction. In Subsection 3.2, we present integrands of residue integral
representation associated with each type of graphs. In Section 4, we test our residue integral representation by
numerical computation using computers. In Subsection 4.1, we present results in the case of Fano projective
hypersurfaces and observe agreement with known results. In Subsection 4.2, we present results in tha case of
Calabi-Yau hypersurface Mk

k and obtain another representaion of BCOV-Zinger formula. In Appendix A, we
collect our numerical results for Fano 3-folds Mk

5 (k = 1, 2, 3, 4) in Tables.
This paper is written from stand point of physicists, and the results presented are all conjectures from the

point of view of mathematicians. In the sequel of future works, we try to give proofs of these conjectures. As
can be seen from the formulas in this paper, we have to use mathematical processing software like Maple or
Mathmatica in order to obtain numerical results from our residue integrals. We plan to publish pdf copy of
worksheet of maple program in Masao Jinzenji’s home page of ReserchGate [14].

Acknowledgment We would like to thank Prof. Y. Kanda, Prof. S. Kobayashi, Prof. H. Iritani and Prof.
K. Ono for valuable discussions. Our research is partially supported by JSPS grant No. 22K03289. Research of
M.J. is partially supported by JSPS grant No. 24H00182.

2 Set-Up of Our Computation

Let Mk
N be a non-singular degree k hypersurface in CPN−1. Apparently, its complex dimension is N − 2. In

this paper, we compute genus 1 (elliptic) Gromov-Witten inbvariants of Mk
N (N ≥ k) by using the mirror

map constructed from multi-point virtual structure constants of Mk
N [13]. We denote by h ∈ H1,1(Mk

N ,C) the
hyperplane class of Mk

N .
Let us briefly review conjectures proposed in [13]. We first introduce the following polynomials:

ek(x, y) :=
k∏

j=0

(jx+ (k − j)y) ,

wa(x, y) :=
xa − ya

x− y
=

a−1∑

j=0

xjya−1−j,

(2.2)

which play the role of building blocks of residue integral representation of genus 0 multi-point virtual structure
constant w(OhaOhb |∏N−2

p=0 (Ohp)mp)0,d of degree d. If d ≥ 1, it is explicitly given as follows.

w(OhaOhb |
N−2∏

p=0

(Ohp)mp)0,d

=
1

(2π
√
−1)d+1

∮

Cz0

dz0

∮

Cz1

dz1 · · ·
∮

Czd

dzd

×(z0)
a

( ∏d
j=1 ek(zj−1, zj)

∏d−1
i=1 kzi(2zi − zi−1 − zi+1)

)
(zd)

b

(
N−2∏

p=0

(
d∑

n=1

wp(zn−1, zn)

)mp)

×
d∏

q=0

1

(zq)N
. (2.3)

In the above residue integral,
∮
Cz0

dz0 and
∮
Czd

dzd represent operation of taking residues at z0 = 0 and zd = 0

respectively. On the other hand,
∮
Czj

dzj (j = 1, 2, · · · , d−1) means taking residues at zj = 0 and zj =
zj−1+zj+1

2 .

In this case, the result of integration does not depend on order of integration.
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If d = 0, it is 0 except for the following cases.

w(OhaOhb |Ohc)0,0 = kδa+b+c,N−2. (2.4)

If d ≥ 1, we can see the following condition holds.

w(OhaOhb |
N−2∏

p=0

(Ohp)mp)0,d 6= 0 =⇒ a+ b+
N−2∑

p=0

(p− 1)mp = N − 3 + (N − k)d. (2.5)

Figure 1: The Graph used in Computing Genas 0 Degree d Virtual Structure Constants

We can easily see the following characterristics of w(OhaOhb |
∏N−2

p=0 (Ohp)mp)0,d:

w(OhaOhb |
N−2∏

p=0

(Ohp)mp)0,d = δm0,0 · dm1w(OhaOhb |
N−2∏

p=2

(Ohp)mp)0,d (d ≥ 1), (2.6)

since we have w0(x, y) = 0 and w1(x, y) = 1. Next, we introduce “perturbed two-point function:

w(OhaOhb)0(x
0, x1, · · · , xN−2) :=

∞∑

m0=0

· · ·
∞∑

mN−2=0

∞∑

d=0

w(OhaOhb |
N−2∏

p=0

(Ohp)mp)0,d

N−2∏

q=0

(xq)mq

mq!
. (2.7)

(2.4) and (2.6) lead us to the following simplification:

w(OhaOhb)0(x
0, x1, · · · , xN−2)

= kxN−2−a−b +

∞∑

m2=0

· · ·
∞∑

mN−2=0

∞∑

d=1

edx
1

w(OhaOhb |
N−2∏

p=2

(Ohp)mp)0,d

N−2∏

q=2

(xq)mq

mq!
. (2.8)

Therefore, we only consider w(OhaOhb |∏N−2
p=2 (Ohp)mp)0,d from now on. In [13], we defined “mirror map”, or

coordinate change of deformation variables as follows.

tp(x0, x1, · · · , xN−2) :=
1

k
w(OhN−2−pO1)0 (p = 0, 1, · · · , N − 2). (2.9)

(2.8) tells us that the above mirror map has the following structure:

tp(x0, x1, · · · , xN−2) = xp +
1

k

∞∑

m2=0

· · ·
∞∑

mN−2=0

∞∑

d=1

edx
1

w(OhN−2−pO1|
N−2∏

p=2

(Ohp)mp)0,d

N−2∏

q=2

(xq)mq

mq!
. (2.10)

This sturucture allows us to invert the mirror map:

xp = xp(t0, t1, · · · , tN−2) (p = 0, 1, · · · , N − 2). (2.11)

At this stage, we introduce Gromov-Witten invariant 〈∏N−2
a=0 (Oha)ma〉g,d of genus g and degree d. In this

paper, genus g is limited to take the value 0 or 1. We omit here rigorous definition of this invariant, but we
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mention some of its characteristics. In general, it is non-zero only if the follwing condition is satisfied.

〈
N−2∏

a=0

(Oha)ma〉0,d 6= 0 =⇒
N−2∑

a=0

ma(a− 1) = N − 5 + d(N − k),

〈
N−2∏

a=0

(Oha)ma〉1,d 6= 0 =⇒
N−2∑

a=0

ma(a− 1) = d(N − k).

(2.12)

If d = 0 and g = 0, it is zero except for the following case:

〈OhaOhbOhc〉0,d = k · δN−2,a+b+c. (2.13)

If d = 0 and g = 1, it is zero except for the following case:

〈Oh〉1,0 = − 1

24

∫

Mk
N

h ∧ cN−3(T
′Mk

N ), (2.14)

where cN−3(T
′Mk

N) is the second-top Chern class of T ′Mk
N , the homorphic tangent bundle of Mk

N . If d ≥ 1, it
satisfies the following equality:

〈
N−2∏

a=0

(Oha)ma〉g,d = δm0,0d
m1〈

N−2∏

a=2

(Oha)ma〉g,d. (2.15)

Then we restate the conjecture on genus 0 Gromov-Witten invariants of Mk
N proposed in [13]. As was done in

(2.7), we intoroduce perturbed two-point genus 0 Gromov-Witten invariant:

〈OhaOhb〉0(t0, t1, · · · , tN−2)

:=

∞∑

m0=0

· · ·
∞∑

mN−2=0

∞∑

d=0

〈OhaOhb

N−2∏

p=0

(Ohp)mp〉0,d
N−2∏

q=0

(tq)mq

mq!

= ktN−2−a−b +

∞∑

m2=0

· · ·
∞∑

mN−2=0

∞∑

d=1

edt
1〈OhaOhb

N−2∏

p=2

(Ohp)mp〉0,d
N−2∏

q=2

(tq)mq

mq!
. (2.16)

Then the conjecture is given as follows:

Conjecture 1 [13]

〈OhaOhb〉0(t0, t1, · · · , tN−2) = w(OhaOhb)0(x
0(t∗), x1(t∗), · · · , xN−2(t∗)), (2.17)

where xp(t∗) is abbreviation of xp(t0, t1, · · · , tN−2) given in (2.11).

This conjectre gives us a recipe for computing genus 0 Gromov-Witten invariants ofMk
N and it has been confirmed

numerically for low degrees in many examples.
In this paper, we also introduce elliptic multi-point virtual structure constant w(

∏N−2
p=0 (Ohp)mp)1,d of degree

d, whose definition in the d ≥ 1 case will be given in the next section. In the d = 0 case, it is 0 except for the
following case.

w(Oh)1,0 := 〈Oh〉1,0 = − 1

24

∫

Mk
N

h ∧ cN−3(T
′Mk

N). (2.18)

In the d ≥ 1 case, we can show the following characteristics of w(
∏N−2

p=0 (Ohp)mp)1,d by using the definition which
will be given in the next section.

w(

N−2∏

p=0

(Ohp)mp)1,d = δm0,0d
m1w(

N−2∏

p=2

(Ohp)mp)1,d. (2.19)
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We then introduce generating function of w(
∏N−2

p=0 (Ohp)mp)1,d’s:

FN,k,B
1,vir. (x0, x1, · · · , xN−2)

:=

∞∑

d=0

∞∑

m0=0

· · ·
∞∑

mN−2=0

w(

N−2∏

p=0

(Ohp)mp)1,d

N−2∏

q=0

(xq)mq

mq!

= − 1

24

(∫

Mk
N

h ∧ cN−3(T
′Mk

N )

)
x1 +

∞∑

d=1

∞∑

m2=0

· · ·
∞∑

mN−2=0

edx
1

w(

N−2∏

p=2

(Ohp)mp)1,d

N−2∏

q=2

(xq)mq

mq!
. (2.20)

In going from the second line to the third line, we used (2.18) and (2.19). On the other hand, we also prepare
genereting function of genus 1 Gromov-Witten invariants of Mk

N .

FN,k,A
1 (t0, t1, · · · , tN−2)

:=

∞∑

d=0

∞∑

m0=0

· · ·
∞∑

mN−2=0

〈
N−2∏

p=0

(Ohp)mp〉1,d
N−2∏

q=0

(tq)mq

mq!

= − 1

24

(∫

Mk
N

h ∧ cN−3(T
′Mk

N )

)
t1 +

∞∑

d=1

∞∑

m2=0

· · ·
∞∑

mN−2=0

edt
1〈

N−2∏

p=2

(Ohp)mp〉1,d
N−2∏

q=2

(tq)mq

mq!
. (2.21)

With this set-up, we state our main conjecture in this paper.

Conjecture 2 ( Main Conjecture)

FN,k,A
1 (t0, t1, · · · , tN−2) = FN,k,B

1,vir. (x0(t∗), x1(t∗), · · · , xN−2(t∗)), (2.22)

where xp(t∗) is the inversion of the mirror map given in (2.11).

Together with the explicit definition of the elliptic multi-point veirtual structure canstants in the next section, this
gives us a recipe for computing genus 1 Gromov-Witten invariants of Mk

N . In Section 4, we test this conjecture
by comparing our predictions with known results of genus 1 Gromov-Witten invariants of Mk

N .

3 Perturvative Definitions of Elliptic Multi-Point Virtual Structure

Constants

3.1 Graphs

In order to explain structure of Graphs used in our computation, we first introduce partition of positive integer
d.

σ = (d1, d2, · · · , dl(σ)) (d1 ≥ d2 ≥ · · · dl(σ) > 0,

l(σ)∑

i=1

di = d), (3.23)

where we call l(σ) length of the partition σ. We denote by Pd set of partitions of positive integer d.

Pd := {σ = (d1, d2, · · · , dl(σ)) | d1 ≥ d2 ≥ · · · dl(σ) > 0,

l(σ)∑

i=1

di = d }. (3.24)

For later use, we define symmetry factor associated with σ ∈ Pd:

Sym(σ) :=
(l(σ)− 1)!

∏d
j=1 mul(σ; j)!

(σ ∈ Pd), (3.25)

7



where mul(σ; j) is multiplicity of i (1 ≤ i ≤ d) that appears in σ = (d1, d2, · · · , dl(σ)). We also define the
following rational number:

RN,k(d) :=
(N − 1)kd− 2(Nk − 1)

2kd2
, (3.26)

wihich plays a role of symmetry factor for specific graphs.
In our computation, we use graphs with normal edges represented as “—” and three types of vertices.

(i) Normal Vertex

(ii) Elliptic Vertex

(iii) Cluster Vertex of degree d

These are graphically represented by the following symbols.

Figure 2: Vertices used in Our Construction

Single edge is assgned with degree 1. Single normal vertex, elliptic vertex and cluster vertex of degree d are
assigned with degree 0, 0 and d respectively. Graphs used in computing elliptic virtual constants of degree d are
classified by the following four types.

(i) Star graph associated with σ ∈ Pd having elliptic vertex as its center

(ii) Loop graph with d edges and d normal vertices (d ≥ 2)

(iii) Star graph associated with σ ∈ Pd−f (1 ≤ f ≤ d− 1) having cluster vertex of degree f as its center

(iv) Graph which consists of a single cluster vertex of degree d

We write down examples of these four types in the following figures.

Figure 3: An example of Type (i) Graph

8



Figure 4: An example of Type (ii) Graph

Figure 5: An example of Type (iii) Graph

Figure 6: An example of Type (iv) Graph
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We then write down all the graphs used in computing elliptic vertual constants of d = 1, 2, 3.

Figure 7: Graphs used in Computing Elliptic Degree 1, 2 Virtual Structure Constants

Figure 8: Graphs used in Computing Elliptic Degree 3 Virtual Structure Constants

We can easily see that number of graphs used in computing elliptic vertual constants of degree d (which we
denote by Nd)is given by,

Nd =

{
2 (d = 1),∑d

j=1(Pj)
♯ + 1 (d ≥ 2).

(3.27)

Therefore, generating function of Nd is given by,

1 +

∞∑

d=1

Ndq
d =

q2

1− q
+

1

1− q

(
∞∏

m=1

1

1− qm

)

= 1 + 2q + 5q2 + 8q3 + 13q4 + 20q5 + 31q6 + 46q7 + 68q8 + 98q9 + 140q10 + · · · . (3.28)

We can see that number of graphs increases rather slowly as d rises.
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3.2 Integrands of Residue Integrals

Elliptic vertual structure constant w(
∏N−2

a=0 (Oha)ma)1,d is computed by summing up contributions from these
graphs of degree d. Contribution from each graph is given as residue integral of multi variables determined from
the graph. Let us write down integrand of the residue integral associated with the four types of graphs,

We begin with type (i) graph accosiated with σ = (d1, d2, · · · , dl) ∈ Pd. In this case, we prepare (d + 1)
complex variables z0 and zi,j (1 ≤ i ≤ l, 1 ≤ j ≤ di). z0 is asscoiated with center elliptic vertex and zi,j is
associated with vertex in a tail of star graph with di edges. It is well-known that total Chern class of T ′Mk

N is
given by,

c(T ′Mk
N ) =

(1 + h)N

1 + kh
, (3.29)

and top Chern class cN−2(T
′Mk

N) is given as hN−2 multiplied by coefficient of hN−2 in c(T ′Mk
N ). Then we define

cT (z), which is monomial in z, by the following equality.

cT (h) = cN−2(T
′Mk

N ). (3.30)

Then integrand associated with the graph is given as follows.

Sym(σ)
1

24

cT (z0)

(kz0)l−1

(
l∏

i=1

ek(z0, zi,1)

zi,1 − z0

)


l∏

i=1




di−1∏

j=1

ek(zi,j , zi,j+1)

(2zi,j − zi,j−1 − zi,j+1)kzi,j






×
(

1

(z0)N

)


l∏

i=1

di∏

j=1

1

(zi,j)N






N−2∏

a=2




l∑

i=1

di∑

j=1

wa(zi,j−1, zi,j)




ma

 ,

(zi,0 = z0 (i = 1, 2, · · · , l)). (3.31)

Integrand for type (ii) loop graph of degree d is given by,

1

2d




d∏

j=1

ek(zj , zj+1)

(2zj − zj−1 − zj+1)kzj






N−2∏

a=2




d∑

j=1

wa(zj , zj+1)




ma

 ·




d∏

j=1

1

(zj)N


 ,

(z0 = zd, zd+1 = z1). (3.32)

Integrand for type (iii) graph of degree d with cluster vertex of degree f (1 ≤ f ≤ d − 1) associated with
σ = (d1, d2, · · · , dl) ∈ Pd−f is given as follows.

Sym(σ)
1

24

(
−N − 1

N

1

wN
− N + 1

N

1

(z0)N

)
1

(w − z0)2
ek(w, z0)

kw

(
ek(z0, z0)

kz0

)f−1

× 1

(kz0)l−1

(
l∏

i=1

ek(z0, zi,1)

zi,1 − z0

)


l∏

i=1




di−1∏

j=1

ek(zi,j , zi,j+1)

(2zi,j − zi,j−1 − zi,j+1)kzi,j





(

1

(z0)N(f−1)

)


l∏

i=1

di∏

j=1

1

(zi,j)N




×




N−2∏

a=2


wa(w, z0) + (f − 1)wa(z0, z0) +

l∑

i=1

di∑

j=1

wa(zi,j−1, zi,j)




ma

 ,

(zi,0 = z0 (i = 1, 2, · · · , l)). (3.33)

Lastly, integrand for type (iv) graph of degree d is given by,

1

24
RN,k(d)

(
ek(z0, z0)

kz0

)d
(

N−2∏

a=2

(dwa(z0, z0))
ma

)
1

(z0)Nd+1

=
1

24
RN,k(d)

kkd
∏N−2

a=2 (da)ma

z0
. (3.34)

Let Γ be the graph of degree d introduced so far, and Graphd be set of all the graphs of degree d from type (i) to
(iv). Then we denote by fΓ the integrand defined above. In the following, we define a map Res : fΓ → R, which
corresponds to operation of taking residue of fΓ.
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Definition 1 Res : fΓ → R is defined for each type of graphs as follows.

(i) We first take residue of fΓ at z0 = 0. Next we take residue of the resulting function at zi,j = 0 and

zi,j =
zi,j−1+zi,j+1

2 and add them up sequently in ascending order of j (1 ≤ j ≤ di − 1). Lastly, we take
residue of the resulting function at zi,di

= 0. The order among different i’s does not matter.

(ii) We take residue of fΓ at zj = 0 and zj =
zj−1+zj+1

2 and add them up sequently in ascending order of j
(1 ≤ j ≤ d).

(iii) We first take residue of fΓ at w = z0. Then remaining process is the same as the case of type (i).

(iv) We take residue of fΓ at z0 = 0.

Then elliptic multi-point virtual structure constant is defined as follows.

Definition 2

w(

N−2∏

a=2

(Oha)ma)1,d :=
∑

Γ∈Graph
d

Res(fΓ) (d ≥ 1). (3.35)

In the next section, we explicitly compute w(
∏N−2

a=2 (Oha)ma)1,d’s by using this definition for various Mk
N7s and

test Conjecture 2 by comaparing our predictions with known results.

4 Numerical Tests by Various Examples

4.1 Tests for Fano Hypersurfaces

First, we test Conjecture 2 by using projective surface CP 2 = M1
4 , quadric surface M2

4 and cubic surface M3
4 as

examples. We present here explicit processes of computation in the CP 2 case. In this case, generating function
of elliptic virtual structure constants F 4,1,B

1,vir. has the following structure,

F 4,1,B
1,vir. (x

0, x1, x2) = −1

8
x1 +

∞∑

d=1

edx
1

w((Oh2 )3d)1,d
(x2)3d

(3d)!
, (4.36)

where we used c(T ′M1
4 ) = (1 + h)3 = 1 + 3h+ 3h2 and the condition:

w((Oh2 )a)1,d 6= 0 =⇒ a = (N − k)d = 3d. (4.37)

We abbreviate w((Oh2 )a)1,d to wa and present the results of computation by using Definition 2 in Table 1.

Therefore, F 4,1,B
1,vir. is explicitly given by,

F 4,1,B
1,vir. (x

0, x1, x2)

= −1

8
x1 − 1

16
ex

1

(x2)3 − 7

80
e2x

1

(x2)6 − 77789

362880
e3x

1

(x2)9 − 21344159

31933440
e4x

1

(x2)12 − 15774542951

6604416000
e5x

1

(x2)15 − · · ·
(4.38)

On the other hand, the mirror map is evaluated by using (2.3) as follows.

t0 = x0 +
1

2
(x2)2ex

1

+
8

15
(x2)5e2x

1

+
983

840
(x2)8e3x

1

+
4283071

1247400
(x2)11e4x

1

+
4019248213

340540200
(x2)14e5x

1

+ · · · ,

t1 = x1 +
1

2
(x2)3ex

1

+
7

10
(x2)6e2x

1

+
2593

1512
(x2)9e3x

1

+
2668063

498960
(x2)12e4x

1

+
120501923

6306300
(x2)15e5x

1

+ · · · ,

t2 = x2 +
1

4
(x2)4ex

1

+
33

70
(x2)7e2x

1

+
16589

12600
(x2)10e3x

1

+
143698921

32432400
(x2)13e4x

1

+
75631936691

4540536000
(x2)16e5x

1

+ · · · .
(4.39)
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In order to obtain F 4,1,A
1 (t0, t1, t2) from Conjecture 2, we only need x1 = x1(t1, t2), x2 = x2(t1, t2) since both

F 4,1,B
1,vir. and F 4,1,A

1 do not depend on x0 and t0. After inverting (4.39), they are given as follows:

x1 = t1 − 1

2
(t2)3et

1 − 3

40
(t2)6e2t

1 − 3827

30240
(t2)9e3t

1 − 4914517

19958400
(t2)12e4t

1 − 10460869973

18162144000
(t2)15e5t

1 − · · ·

x2 = t2 − 1

4
(t2)4et

1 − 27

280
(t2)7e2t

1 − 7811

50400
(t2)10e3t

1 − 82505777

259459200
(t2)13e4t

1 − 1014012107

1320883200
(t2)16e5t

1 − · · · ,
(4.40)

By substituting (4.40) into F 4,1,B
1,vir. (x

1, x2), we obtain from Conjecture 2,

F 4,1,A
1 (t1, t2) = F 4,1,B

1,vir. (x
1(t1, t2), x2(t1, t2))

= −1

8
t1 +

1

362880
(t2)9e3t

1

+
1

2128896
(t2)12e4t

1

+
173

2594592000
(t2)15e5t

1

+ · · · . (4.41)

Then we have,

〈(Oh2)3〉1,1 = 0, 〈(Oh2)6〉1,2 = 0, 〈(Oh2)9〉1,3 =
1

362880
· 9! = 1, 〈(Oh2)12〉1,4 =

1

2128896
· 12! = 225,

〈(Oh2)15〉1,5 =
173

2594592000
· 15! = 87192. (4.42)

These results are summarized in Table 1, where 〈(Oh2)a〉1,d is abbreviated to N1
d,a.

Table 1: M1
4

d a N1
d,a wa

1 3 0 − 3
8

2 6 0 −63
3 9 1 −77789
4 12 225 −320162385
5 15 87192 −3123359504298

Thses results coincide with those presented in the paper [7] by Getzler. In this paper, we computed only up
to d = 5 because runnning time of computers to evaluate residue integrals increases rather fast as degree rises.

As for quadric surface and cubic surface, we only present structure of FN,k,B
1,vir. ’s, mirror maps and Tables of

wa’s and N1
d,a’s. Processes of computation are the same as those of M1

4 .

F 4,2,B
1,vir. and F 4,3,B

1,vir. have the following structure.

F 4,2,B
1,vir. (x

0, x1, x2) = −1

6
x1 +

∞∑

d=1

edx
1

w2d
(x2)2d

(2d)!
,

F 4,3,B
1,vir. (x

0, x1, x2) = −1

8
x1 +

∞∑

d=1

edx
1

wd

(x2)d

d!
. (4.43)

Mirror map of M2
4 is given by,

t0 = x0 + 2x2ex
1

+ 10(x2)3e2x
1

+
320

3
(x2)5e3x

1

+
53856

35
(x2)7e4x

1

+
74056288

2835
(x2)9e5x

1

+ · · · ,

t1 = x1 + 3(x2)2ex
1

+
131

6
(x2)4e2x

1

+
12329

45
(x2)6e3x

1

+
121475

28
(x2)8e4x

1

+
370005883

4725
(x2)10e5x

1

+ · · · ,

t2 = x2 + 2(x2)3ex
1

+
313

15
(x2)5e2x

1

+
10764

35
(x2)7e3x

1

+
15178391

2835
(x2)9e4x

1

+
458817242

4455
(x2)11e5x

1

+ · · · ,
(4.44)
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and that of M3
4 is given as follows.

t0 = x0 + 6ex
1

++144x2e2x
1

++7398(x2)2e3x
1

+ 520344(x2)3e4x
1

+ 43392510(x2)4e5x
1

+ · · · ,

t1 = x1 + 21x2ex
1

+
1611

2
(x 2)2e2x

1

+ 52191(x2)3e3x
1

+
16915311

4
(x2)4e4x

1

+ 388313757(x2)5e5x
1

+ · · · ,

t2 = x2 + 21(x2)2ex
1

+ 1305(x2)3e2x
1

+ 106056(x2)4e3x
1

+
49255533

5
(x2)5e4x

1

+
4964539329

5
(x2)6e5x

1

+ · · · .
(4.45)

Tables of wa’s and N1
d,a’s are given as follows.

Table 2: M2
4

d a N1
d,a N1

d,a/2
a wa

1 2 0 0 −1
2 4 0 0 − 262

3

3 6 0 0 − 98632
3

4 8 256 1 −29153744
5 10 40960 40 −47360066944

Table 3: M3
4

d a N1
d,a N1

d,a/3
a wa

1 1 0 0 − 21
8

2 1 0 0 − 1611
8

3 3 27 1 − 156465
4

4 4 2187 27 − 50682753
4

5 5 183708 756 −5815337247

In these tables, N1
d,a/k

a’s are presented because Poincare dual of a point in Mk
N is given by 1

k
h2 instead of

h2. Therefore, N1
d,a/k

a’s turn out to be integers.

Next, we test Conjecture 2 for N = 5 cases, i.e., complex Fano 3-folds: M1
5 ,M

2
5 ,M

3
5 ,M

4
5 . In these cases, we

compute elliptic virtual structure constantw((Oh2)a(Oh3)b)1,d and genus 1 Gromov-Witten invariant 〈(Oh2)a(Oh3)b〉1,d.
These are non-zero only if the following condition is satisfied:

a+ 2b = (N − k)d (= (5− k)d). (4.46)

We abbreviate thsese to wa,b and N1
d,a,b and present results of numerical computations by using Conjecture 2 in

Tables. These are collected in Appendix A. In 3-fold cases, N1
d,a,b is not always an integer because of degenerate

contributions from genus 0 Gromov-Witten invariants N0
d,a,b = 〈(Oh2)a(Oh3)b〉0,d. It is non zero only if (4.46) is

satisfied. According to the paper [18] by Pandharipande, the contribution is given by,

− 1

24
((N − k)d− 2)N0

d,a,b. (4.47)

Hence we expect that,

1

24
((N − k)d− 2)N0

d,a,b.+N1
d,a,b, (4.48)

becomes integer because it is expected to count number of genus 1 curves in Mk
N that satisfies “passing-through”

conditions imposed by operator insertions. We can observe that this combination is integer-valued in the Tables
presented in Appendix A. Results of M1

5 = CP 3 coincide with those presented in the paper [7] by Getzler, and
results ofM3

5 coincide with those obtained from Virasoro Conjecture by Eguchi et al. [6]. In comparing our results
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with those presented in [6], we have to divide N1
d,a,b and N0

d,a,b by ka+b = 3a+b. This is because fundamental

integral cohomology classes of H2,2(Mk
5 ,C) and H3,3(Mk

5 ,C) are given by 1
k
h2 and 1

k
h3 respectively, In [6], 1

k
h2

and 1
k
h3 are used as cohomology class that corresponds to operator insertions, but we use h2 and h3 instead.

Hence we have to divide our results by ka+b. We omit mirror maps used in deriving our results of Fano 3-folds,
which we leave to readers as exercises.

4.2 Tests for Calabi-Yau Hypersurfaces and Relation to BCOV-Zinger formula

In this subsection, we consider Calabi-Yau hypersurface Mk
k in CP k−1. Let us introduce the following power

series in ex, which was originally intoroduced in [3].

L̃k,k
m (ex) := 1 +

∞∑

d=1

w(Ohk−2−mOhm−1 |Oh)0,d
k

edx. (4.49)

In this case, we also introduce two-point virtual structure constant defined by,

w(OhaOhb)0,d

=
1

(2π
√
−1)d+1

∮

Cz0

dz0

∮

Cz1

dz1 · · ·
∮

Czd

dzd(z0)
a

( ∏d
j=1 ek(zj−1, zj)

∏d−1
i=1 kzi(2zi − zi−1 − z+1)

)
(zd)

b




d∏

j=0

1

(zq)N


 ,

(4.50)

where integration paths are the same as those used in defining w(OhaOhb |
∏N−2

p=0 (Ohp)mp)0,d. It satisfies the
condition:

w(OhaOhb)0,d 6= 0 =⇒ a+ b = k − 3. (4.51)

Then we define two-point virtual structure constant perturbed by x:

w(Ohk−2−mOhm−1)0(x) := kx+

∞∑

d=1

edxw(Ohk−2−mOhm−1)0,d. (4.52)

As was shown in [10, 12], the mirror map t = t(x) used in mirror computation of Gromov-Witten invariants of
Mk

k is given by,

t(x) =
1

k
w(Ohk−3O1)0(x). (4.53)

In [11], we proved that Gromov-Witten invariant 〈Ohk−2−mOhm−1〉0,d is computed via the following equality:

kt+

∞∑

d=1

edt〈Ohk−2−mOhm−1〉0,d = w(Ohk−2−mOhm−1)0(x(t)), (4.54)

where x = x(t) is inversion of the mirror map t = t(x). We can easily see the following relation.

w(OhaOhb |Oh)0,d = d · w(OhaOhb)0,d. (4.55)

Hence the generating function L̃k,k
m (ex) is related to w(Ohk−2−mOhm−1)0(x) in the following way.

L̃k,k
m (ex) :=

d

dx

w(Ohk−2−mOhm−1)0(x)

k
. (4.56)

Especially, we have,

L̃k,k
1 (ex) :=

dt

dx
. (4.57)
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We also mention the following equality that was proved in [12].

L̃k,k,
0 (ex) := 1 +

∞∑

d=1

w(Ohk−2Oh−1 |Oh)0,d
k

edx =
∞∑

d=0

(kd)!

(d!)k
edx. (4.58)

With this set-up, BCOV-Zinger formula[1, 20] is given as follows.

F k,k,B
1 (x) = − 1

24

(∫

Mk
k

ck−3(T
′Mk

k ) ∧ h

)
x+

1

24
χ(Mk

k ) log
(
L̃k,k
0 (ex)

)

−k − 1

48
log(1− kkex)−

k−3
2∑

p=0

(k − 1− 2p)2

8
log
(
L̃k.k
p (ex)

)
(k : odd),

F k,k,B
1 (x) = − 1

24

(∫

Mk
k

ck−3(T
′Mk

k ) ∧ h

)
x+

1

24
χ(Mk

k ) log
(
L̃k,k
0 (ex)

)

−k − 4

48
log(1− kkex)−

k−4
2∑

p=0

(k − 2p)(k − 2p− 2)

8
log
(
L̃k.k
p (ex)

)
(k : even), (4.59)

where χ(Mk
k ) is Euler number of Mk

k given by,

χ(Mk
k ) =

∫

Mk
k

ck−2(T
′Mk

k ). (4.60)

In [20], Zinger proved the following theorem:

Theorem 1 (Zinger [20])

F k,k,A
1 (t) := − 1

24

(∫

Mk
k

ck−3(T
′Mk

k ) ∧ h

)
t+

∞∑

d=1

〈∗〉1,dedt

= F k,k,B
1 (x(t)), (4.61)

where 〈∗〉1,d is Gromov-Witten invariant of Mk
k of genus 1 and of degree d with no operator insertions and

x = x(t) is inversion of the mirror map t = t(x) given in (4.53).

At this stage, we look back at Conjecture 2. In the N = k case, w(
∏N−2

p=2 (Ohp)mp)1,d is non-zero only if

m2 = m3 = · · · = mN−2 = 0. Hence F k,k,B
1,vir. has the following structure:

F k,k,B
1,vir. (x

1)

= − 1

24

(∫

Mk
k

h ∧ ck−3(T
′Mk

k )

)
x1 +

∞∑

d=1

edx
1

w(∗)1,d, (4.62)

where the symbol ∗ represents having no operator insertions. On the other hand, F k,k,A
1 also has the same

structure:

F k,k,A
1 (t1)

= − 1

24

(∫

Mk
k

h ∧ ck−3(T
′Mk

k )

)
t1 +

∞∑

d=1

edt
1〈∗〉1,d. (4.63)

Therefore, we only need the mirror map that relates x1 to t1.

t1(x1) = x1 +
1

k

∞∑

d=1

edx
1

w(Ohk−3O1|∗)0,d. (4.64)
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Then Conjecture 2 asserts the following equality:

F k,k,A
1 (t1) = F k,k,B

1.vir. (x
1(t1)). (4.65)

On the other hand, the mirror map which relates x to t in (4.53) has the structure:

t(x) = x+
1

k

∞∑

d=1

edx
1

w(Ohk−3O1)0,d. (4.66)

By comparing the r.h.s.’s of (2.3) and (4.50), we can easily see the equality:

w(Ohk−3O1|∗)0,d = w(Ohk−3O1)0,d. (4.67)

holds. In this way, we can identify t1 and x1 in Conjecture 2 with t and x in Theorem 1 respectively. This
naturally leads us to the following conjecture.

Conjecture 3

F k,k,B
1,vir. (x) = F k,k,B

1 (x). (4.68)

In the following, we present results of numerical tests of this conjecture.
By Definition 2, w(∗)1,d in (4.62) is given by sum of residues of integrands fΓ’s associated with Γ ∈ Graphd,

w(∗)1,d =
∑

Γ∈Graphd

Res(fΓ). (4.69)

We denote by Graph
(i)
d , · · · ,Graph

(iv)
d sets of graphs of type (i),· · · ,(iv) of degree d respectively. We also denote

by Γloop
d and Γpoint

d , the unique graphs that belong to Graph
(ii)
d and Graph

(iv)
d respectively2. Then the above

equality is rewritten as follows.

w(∗)1,d =
∑

Γ∈Graph(i)
d

Res(fΓ) +
∑

Γ∈Graph(ii)
d

Res(fΓ) +
∑

Γ∈Graph(iii)
d

Res(fΓ) +
∑

Γ∈Graph(iv)
d

Res(fΓ)

=
∑

Γ∈Graph(i)
d

Res(fΓ) + Res(fΓloop

d

) +
∑

Γ∈Graph(iii)
d

Res(fΓ) + Res(fΓpoint

d

), (4.70)

By numerical computations for lower k’s and d’s, we obtain the following conjectures.

Conjecture 4 For any positive d and any Γ ∈ Graph
(iii)
d , Res(fΓ) vanishes.

Conjecture 5 The following equality holds.

∞∑

d=1




∑

Γ∈Graph(i)
d

Res(fΓ)


 edx =

1

24
χ(Mk

k ) log
(
L̃k,k
0 (ex)

)
. (4.71)

On the other hand, Res(fΓpoint

d

) is immediately computed from (3.34).

Res(fΓpoint

d

) =
1

24
Rk,k(d)k

kd

=
1

24

(
(k − 1)

2

1

d
− k2 − 1

k

1

d2

)
kkd. (4.72)

2Of course, we have to note that Graph
(ii)
1 = ∅.
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Hence we obtain,

∞∑

d=1

Res(fΓpoint

d

)edx = −k − 1

48
log(1− kkex) +

k2 − 1

24k

∫ x

−∞

log(1− kkes)ds. (4.73)

By combining these conjectures, we obtain,

F k,k,B
1,virt.(x) = − 1

24

(∫

Mk
k

ck−3(T
′Mk

k ) ∧ h

)
x+

1

24
χ(Mk

k ) log
(
Lk,k
0 (ex)

)

+

∞∑

d=2

Res(fΓloop

d

)edx − k − 1

48
log(1− kkex) +

k2 − 1

24k

∫ x

−∞

log(1 − kkes)ds. (4.74)

This is another representerion of BCOV-Zinger formula obtained from Conjecture 3. Therefore,
Conjecture 3 is restated as the following identities.

Conjecture 6

∞∑

d=2

Res(fΓloop

d

)edx +
k2 − 1

24k

∫ x

−∞

log(1− kkes)ds

= −
k−3
2∑

p=0

(k − 1− 2p)2

8
log
(
L̃k.k
p (ex)

)
(k : odd),

∞∑

d=2

Res(fΓloop

d

)edx − 1

16
log(1− kkex) +

k2 − 1

24k

∫ x

−∞

log(1 − kkes)ds

= −
k−4
2∑

p=0

(k − 2p)(k − 2p− 2)

8
log
(
L̃k.k
p (ex)

)
(k : even). (4.75)

We numerically confirmed these identitiies for k = 4, 5, 6, 7, 8 cases up to d = 5. We present here numerical data
up to d = 5 in the k = 5 (quintic 3-fold) case.

Generating function of loop amplitudes is given as follows.

∞∑

d=2

Res(fΓloop

d

)edx

= −1174875

4
e2x − 6913090625

9
e3x − 31054165371875

16
e4x − 5008379074144375e5x− · · · . (4.76)

We also have,

1

5

∫ x

−∞

log(1− 55es)ds

= −625ex − 1953125

4
e2x − 6103515625

9
x3 − 19073486328125

16
e4x − 2384185791015625e5x− · · · . (4.77)

Then, the l.h.s. of (4.75) turns out to be,

∞∑

d=2

Res(fΓloop

d

)edx +
1

5

∫ x

−∞

log(1− 55es)ds

= −625ex − 782000e2x − 4338868750

3
e3x − 3132978231250e4x− 7392564865160000e5x− · · · . (4.78)
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On the othe hand, log
(
L̃5.5
0 (ex)

)
and log

(
L̃5.5
1 (ex)

)
are given as follows.

log
(
L̃5.5
0 (ex)

)

= 120ex + 106200e2x + 155136000e3x + 280511415000e4x+ 571399451565120e5x+ · · · ,
log
(
L̃5.5
1 (ex)

)

= 770ex + 1139200e2x +
6816105500

3
e3x + 5143910802500e4x+ 12499531924059520e5x+ · · · . (4.79)

And the r.h.s. of (4.75) becomes,

−2 log
(
L̃5.5
0 (ex)

)
− 1

2
log
(
L̃5.5
1 (ex)

)

= −625ex − 782000e2x − 4338868750

3
e3x − 3132978231250e4x− 7392564865160000e5x− · · · . (4.80)

In this way, the identity (4.75) in the k = 5 case is numerically confirmed up to d = 5.
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A Tables for N=5 cases

Table 4: M1
5

d (a,b) N0
d,a,b N1

d,a,b
2d−1
12 N0

d,a,b +N1
d,a,b wa,b

1 (0,2) 1 − 1
12 0 − 7

12

1 (2,1) 1 − 1
12 0 − 5

6

1 (4,0) 2 − 1
6 0 − 7

6

2 (0,4) 0 0 0 − 76
3

2 (2,3) 1 − 1
4 0 − 853

12

2 (4,2) 4 −1 0 −198
2 (6,1) 18 − 9

2 0 − 1097
2

2 (8,0) 92 −23 0 − 4541
3

3 (0,6) 1 − 5
12 0 − 19959

4

3 (2,5) 5 − 25
12 0 − 62338

3

3 (4,4) 30 − 25
2 0 − 516827

6

3 (6,3) 190 − 469
6 1 − 1068442

3

3 (8,2) 1312 − 1598
3 14 − 4408330

3

3 (10,1) 9864 −3960 150 − 18159922
3

3 (12,0) 80160 −31900 1500 − 74719852
3

4 (0,8) 4 − 4
3 1 − 7111330

3

4 (2,7) 58 − 179
6 4 − 26141813

2

4 (4,6) 480 −248 32 −71830274

4 (6,5) 4000 − 6070
3 310 − 1182256279

3

4 (8,4) 35104 − 51772
3 3220 −2159333004

4 (10,3) 327888 −156594 34674 − 35458691818
3

4 (12,2) 3259680 −1515824 385656 − 193936379144
3

4 (14,1) 34382544 −15620216 4436268 −353359995764
4 (16,0) 383306880 −170763640 52832040 −1930689790136
5 (0,10) 105 − 147

4 42 − 8363354113
4

5 (2,9) 1265 − 2379
4 354 − 28682135389

2

5 (4,8) 13354 − 13047
2 3492 − 196198477325

2

5 (6,7) 139098 − 132549
2 38049 − 2010681907978

3

5 (8,6) 1492616 −677808 441654 − 13724961403006
3

5 (10,5) 16744080 −7179606 5378454 − 93619004917238
3

5 (12,4) 197240400 −79637976 68292324 −212735629674372
5 (14,3) 2440235712 −928521900 901654884 − 4348697671027760

3

5 (16,2) 31658432256 −11385660384 12358163808 −9873859605646752
5 (18,1) 429750191232 −146713008096 175599635328 − 201722432909390752

3

5 (20,0) 6089786376960 −1984020394752 2583319387968 − 1373530281059327936
3
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Table 5: M2
5

d (a,b) N0
d,a,b N1

d,a,b
3d−2
24 N0

d,a,b +N1
d,a,b wa,b

1 (1,1) 4 − 1
6 0 − 13

6

1 (3,0) 8 − 1
3 0 −3

2 (0,3) 8 − 4
3 0 − 287

3

2 (2,2) 16 − 8
3 0 −264

2 (4,1) 64 − 32
3 0 − 2174

3

2 (6,0) 320 − 160
3 0 − 5956

3

3 (1,4) 64 − 56
3 0 − 104500

3

3 (3,3) 320 − 280
3 0 − 429196

3

3 (5,2) 2048 − 1792
3 0 − 1759552

3

3 (7,1) 15104 − 13216
3 0 − 7209584

3

3 (9,0) 123904 − 108416
3 0 − 29527616

3

4 (0,6) 384 −160 0 − 18667312
3

4 (2,5) 2560 − 3200
3 0 − 101879272

3

4 (4,4) 18944 − 22912
3 256 − 555449168

3

4 (6,3) 163840 − 194048
3 3584 − 3026251616

3

4 (8,2) 1583104 − 1849856
3 43008 − 16485590720

3

4 (10,1) 16687104 −6440960 512000 − 89806527616
3

4 (12,0) 189358080 −72652800 6246400 −163085218816
5 (1,7) 27136 − 41792

3 768 − 28726121392
3

5 (3,6) 229376 − 331264
3 13824 − 195282001984

3

5 (5,5) 2232320 − 3049984
3 192512 − 1326874482304

3

5 (7,4) 24391680 −10660352 2551808 − 9013280450048
3

5 (9,3) 291545088 −123583488 34336768 − 61226330115584
3

5 (11,2) 3750199296 −1553444864 477913088 −138652119786496

5 (13,1) 51384877056 −20917362688 6916112384 − 2826429058966016
3

5 (15,0) 744875950080 −299359264768 104115208192 − 19209989184830464
3
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Table 6: M3
5

d (a,b) N0
d,a,b N1

d,a,b
d−1
12 N0

d,a,b +N1
d,a,b wa,b

1 (0,1) 18 0 0 − 21
2

1 (2,0) 45 0 0 − 27
2

2 (0,2) 54 − 9
2 0 − 2187

2

2 (2,1) 378 − 63
2 0 −2862

2 (4,0) 2187 − 729
4 0 − 30501

4

3 (0,3) 648 −81 27 −299943
3 (2,2) 7452 −1161 81 −1188027

3 (4,1) 65610 −10449 486 − 9537669
2

3 (6,0) 623295 − 200475
2 3645 −19201644

4 (0,4) 15552 −1701 2187 − 279086715
2

4 (2,3) 248832 −48357 13851 −740281275
4 (4,2) 2991816 −616734 131220 −3968742582
4 (6,1) 37161504 −7846956 1443420 −21341675475

4 (8,0) 491956902 − 211336371
2 17321040 − 229871126583

2

5 (0,5) 583200 972 195372 −92893454856
5 (2,4) 11955600 −2005236 1979964 −617546315223
5 (4,3) 183760488 −35803377 25450119 − 8281495651131

2

5 (6,2) 2838367332 −584014293 362108151 −27840191130297
5 (8,1) 45746559378 −9717064074 5531789052 −187479083534526
5 (10,0) 776682421065 −169540839261 89353301094 −1263878784214992

Table 7: M4
5

d (a,b) N0
d,a,b N1

d,a,b
d−2
24 N0

d,a,b +N1
d,a,b wa,b

1 (1,0) 320 40
3 0 − 344

3

2 (0,1) 3888 0 0 − 84848
3

2 (2,0) 27200 0 0 − 222080
3

3 (1,1) 672768 −24192 3840 −32895232

3 (3,0) 8388608 − 971776
3 25600 − 390036992

3

4 (0,2) 18323712 −861696 665280 −13842672128
4 (2,1) 284802048 −14229504 9504000 − 221036603392

3

4 (4,0) 5100273664 − 905199616
3 123289600 − 1171415220224

3

5 (1,2) 9830744064 −148801536 1080041472 − 113572126965760
3

5 (3,1) 206561083392 −4948770816 20871364608 −252561662754816
5 (5,0) 4821100789760 −202932748288 399704850432 − 5041038692581376

3
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