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Abstract

Since their introduction, Brauer configuration algebras (BCAs) and
their specialized messages have helped research in several fields of
mathematics and sciences. This paper deals with a new perspective
on using such algebras as a theoretical framework in classical cryptog-
raphy and music theory. It is proved that some block cyphers define
labeled Brauer configuration algebras. Particularly, the dimension of
the BCA associated with a ciphertext-only attack of the Vigenere cryp-
tosystem is given by the corresponding key’s length and the captured
ciphertext’s coincidence index.

On the other hand, historically, Bach’s canons have been consid-
ered solved music puzzles. However, due to how Bach posed such
canons, the question remains whether their solutions are only limited
to musical issues. This paper gives alternative solutions based on the
theory of Brauer configuration algebras to some of the puzzle canons
proposed by Bach in his Musical Offering (BWV 1079) and the canon
â 4 Voc: Perpetuus (BWV 1073). Specifically to the canon â 6 Voc
(BWV 1076), canon 1 â2 (also known as the crab canon), and canon
â4 Quaerendo Invenietis. These solutions are obtained by interpreting
such canons as ciphertexts (via route and transposition cyphers) of
some specialized Brauer messages. In particular, it is noted that the
structure or form of the notes used in such canons can be described
via the shape of the most used symbols in Bach’s works.
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1 Introduction
Brauer configuration algebras were introduced in 2017 to research al-
gebras of wild representation type [1, 2]. Soon afterwards, it was dis-
covered that such algebras are helpful tools for investigating different
fields of mathematics and sciences due to their combinatorial nature.
These algebras are induced by special systems of multisets, which are
suitable tools to deal with the theory of integer partitions and enu-
merative combinatorics [3, 4]. Brauer messages associated with Brauer
configurations have been used in cryptography to study the behavior of
some provably secure hash functions or to give alternative descriptions
to the schedule of an AES (Advanced Encryption Standard) key [5, 6].
This paper shows that behind the definition of some block cyphers is a
Brauer configuration algebra whose invariants allow giving properties
of the corresponding cryptographic system.

We will see that cryptanalysis of a Vigenere cryptosystem provides
formulas for the dimension of its associated Brauer configuration al-
gebra and its center. Similar results can be obtained for the Brauer
configuration algebra associated with the permutation (transposition)
cryptosystem. In fact, the dimension of the Brauer configuration al-
gebra associated with a ciphertext obtained by permutation (or via a
permutation network) equals the dimension of the Brauer configura-
tion algebra associated with the corresponding plaintext.

Musical compositions are another example of the presence of Brauer’s
messages. These musical contents can be seen as ciphertexts of spe-
cialized Brauer messages via an appropriated transposition.

In the Baroque period, musical canons were musical pieces pro-
posed by composers as puzzles to be solved with the help of some
predefined hints. Bach proposed some of the most celebrated canons
in music history in his Musical Offering [7]. We remember that in this
work, Bach proposed ten canons based on a single theme that King
Frederick the Great proposed. Up-to-date, it is accepted that Bach’s
canons were solved by two of Bach’s former students, Johann Friedrich
Agricola and Johann Philip Kirnberger [8, 10, 11, 9].

According to some of Bach’s biographers [10, 11, 12, 13, 14, 15,
16, 17, 18, 19], it is easy to think that many of the canons need to be
solved taking into account another point of view because it is generally
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accepted that Bach used a particular type of symbolism in his music.
We recall that Bach was used to including musical cryptograms in his
works. For instance, his well-known motif is included in musical pieces
such as the Art of Fugue or the Brandenburg Concerto No. 2 [20].
In this line, this paper proposes to consider some of Bach’s canons as
ciphertexts obtained by the transposition of some Brauer messages in
such a way that such messages allow to recover part of Bach’s data
and symbolism via a route deciphering.

1.1 Motivations
One of the main characteristics of Brauer configuration algebras is their
capacity to be adapted in different contexts, provided its combinatorial
definition [1]. The interaction of such algebras with different sciences
and mathematics fields has allowed new perspectives to investigate the
underlying theoretical frameworks [5, 6, 21, 22, 23, 24, 25, 26, 27].

This paper is focused on the interaction between classical crypt-
analysis, music theory, and Brauer configuration algebras. We give
formulas for the dimension of the Brauer configuration algebras in-
duced by ciphertexts obtained via some block cyphers and music pieces
interpreted as ciphertexts of some route and transposition cyphers.
These procedures permit us to give alternative solutions to some of
the canons proposed by Bach.

1.2 Contributions
The main results of this paper are Theorems 1, 2, 3, 4 with Proposition
1. Furthermore, the Brauer analysis of Bach canons â 6 Voc (BWV
1076), 1 â2 (crab canon), and â4 Quaerendo Invenietis realized in
Section 3.4.

Theorem 1 proves that the Brauer configuration algebras associ-
ated with the plaintext and ciphertext of a permutation cryptosystem
coincide. Theorems 2, 3 and Proposition 1 give formulas for the di-
mensions of the Brauer configuration algebra and the corresponding
center associated with a Vigenere ciphertext.

Theorem 4 gives conditions for a musical piece written on the usual
Western staff to be a specialization of a suitable Brauer configuration.
Section 3.5 is devoted to the Brauer analysis of some of Bach’s canons.
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In particular, some commonly used symbols in Bach’s works are built
by representing musical notes as points in the plane. Such points
are vertices of graphs induced by the canons. The graphs’ edges are
obtained by connecting consecutive classes of musical notes (i.e., con-
secutive points) appropriately.

The organization of this paper goes as follows: Background, main
definitions and notation are given in section 2; we remind definitions of
multisets (Section 2.2), Brauer configuration algebras (Section 2.2.1)
and some of their properties. Section 2.3 is devoted to reminding basic
facts about cryptography. We present the main results in section 3.
Concluding remarks are given in section 4.

2 Preliminaries
This section provides basic definitions and notations regarding Brauer
configuration algebras, and cryptography [1, 2, 5, 6, 28, 29, 30, 31, 32].

2.1 Background
Brauer configuration algebras (BCAs) were introduced by Green and
Schroll in 2017 [1, 2]. Soon afterwards, several works were written to
apply these algebras in different fields of mathematics and sciences.
On one hand, Espinosa and Rios wrote their doctoral dissertations
based on these algebras [29, 30]. Espinosa et al. introduced the no-
tion of a message and specialized message of a Brauer configuration to
give a formula for the number of perfect matchings of a snake graph
associated with some Kronecker modules [29, 26]. Rios [30] used such
algebras to describe particular classes of Dyck paths and integer friezes.
This approach allows Dyck-Brauer messages to obtain alternative for-
mulas for cluster variables associated with cluster algebras of type An

[31, 33].

Angarita et al. [23] used BCAs to define alternative methods to
protect biometric databases, and Fúneme et al. [6] introduced Brauer
messages to examine the performance of some provably secure hash
functions as those defined by Zémor and Tillich [34] and Sosnovski
[35] based on the Cayley graph of some semigroups.
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Relationships between BCAs and the graph energy theory were
given by Agudelo et al. [25], who calculated the trace norm of some
matrices induced by so-called {0, 1}-Brauer configurations. It is worth
noting that Espinosa [29] also studied relationships between the graph
energy theory and Brauer messages.

Ballester-Bolinches et al. [21] used BCAs to give solutions to the
Yang-Baxter equation. To do that, the authors specialized Brauer mes-
sages to define some skew braces in the sense of Rump [36]. Espinosa
and Ballester-Bolinches et al. [22] also gave solutions to the Yang-
Baxter equation via previous works written by Espinosa regarding the
interaction between the Kronecker algebra, snake graphs theory and
the theory of Brauer configuration algebras.

Relationships between cryptography and Brauer configuration al-
gebras were given by Marin et al. [5], who define the schedule of an
AES (Advanced Standard Encryption) key in terms of appropriated
mutations of Brauer messages. In this work, such messages allow so-
lutions to some generalizations of the Chicken Mc Nugget problem,
particularly the Frobenius problem.

On the other hand, it is worth pointing out that throughout history,
Bach’s work has been a source of a plethora of research, from the study
of the symbology used to write his compositions to determining their
corresponding fractal dimensions [7, 8, 14, 9, 10, 11, 12, 18, 20, 37, 38,
39, 40, 41, 42]. For instance, Smend [38] applied gematria to name the
number 14 as the Bach number (BACH=2+1+3+8=14), and Tatlow
discusses the use of cryptograms in Bach’s work in [9]. Furthermore,
Niitsuma and Tomita studied Bach’s writing in [40]. Bach journal,
published by the Riemenschneider Bach Institute and Understanding
Bach journal, edited by Ruth Tatlow, are devoted to Bach works in
the Baroque era. Several papers published in these journals regard
Bach’s canons and his writing stylism, including his famous motif [13,
17, 16, 19, 18, 20, 42, 43, 44].

Sylvestre and Costa [14] and Shafer [12] studied some relationships
between Bach’s work, Fibonacci numbers and Fourier analysis.

It is worth noting, that the theory of graphs is a helpful tool to
analyze symbolic music structure, which is an open problem in Music
Information Retrieval (MIR) in this regard Hernandez-Olivan et al.
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[45] used adjacency matrices of some graphs to segment symbolic mu-
sic by its form or structure. According to them, the notes of a music
piece M can be seen as vertices of an appropriated graph (V M, EM)
and the set EM of edges between two of them is partitioned into three
sets, i.e., EM = Eon

⋃
Econs

⋃
Eh, where Eon consists of the edges

connecting notes in the same onset, Econs consists of the edges con-
necting consecutive notes in time. And Eh which is the set of edges
linking overlapping notes in time.

On the other hand, Szeto et al. [46] defined posets (partially or-
dered sets) to facilitate pattern matching in post-tonal music analysis
by using some pitch-class sets. In this work, the authors introduced
the notion of stream, defined as the perceptual impression of connected
series of musical notes. Whereas, stream segregation is the process of
grouping musical notes into streams. According to them, the vertices
or points of the corresponding Hasse diagram are given by events, and
the main objective of the clustering algorithm is to connect an event
to its nearest sequential event.

We also remind that Jeong et al. [47] presented a graph neural
network to learn note representation from music scores in Western
notation.

In this paper, we combine the techniques introduced by Hernandez
Olivan et al. and Szeto et al. to construct appropriated graphs which
can be read as symbols commonly used by Bach in his works.

In the sequel, we introduce some helpful notation and definitions
regarding BCAs and classical cryptography.

2.2 Multisets
A multiset is a set with possibly repeated elements. Formally, a mul-
tiset is a pair of type (M,f) where M is a set and f : M → N is a
map from M to the set of nonnegative integers. In this case, if m ∈M
then f(m) is said to be the multiplicity of m [4, 48].

A permutation of a multiset (M,f) is a word w whose letters are
given by the set M whereas the number of occurrences of a given letter
in w is given by the map f . In this paper, we assume that the word
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w(M) of a multiset (M,f) with M = {m1,m2 . . . ,ms} is given by a
fixed permutation with the form

w(M) = m
f(m1)
1 m

f(m2)
2 . . .mf(ms)

s . (1)

Note that there are (f(m1) + f(m2) + · · ·+ f(ms))! permutations
associated with the multiset (M,f).

If (M1, f1) and (M2, f2) are multisets with M1 = {m1,1 . . . ,m1,r}
and M2 = {m2,1, . . . ,m2,s} then

(M1, f1) ∪ (M2, f2) = (M1 ∪M2, f1,2) with f1,2(x) = max{f1(x), f2(x)}.
(M1, g1) ∩ (M2, g2) = (M1 ∩M2, g1,2) with g1,2(x) = min{f1(x), f2(x)}.

(2)

Let M = {(M1, f1), (M2, f2), . . . , (Mh, fh)} be a collection of mul-
tisets such that if

w(Mi) = (mi,1)
fi(mi,1)(mi,2)

fi(mi,2) . . . (mi,si)
fi(mi,si

) then
si∑
j=1

fi(mi,j) > 1.

In such a case. If M =
h⋃

i=1
Mi,

⋂
x∈I

Mx is the interception of all

multisets containing an element y ∈ M with I ⊆ {1, 2, . . . , h} a fixed
set of indices, and fx(y) is the frequency of y in Mx then

∑
x∈I

fx(y)

is said to be the valency of y denoted val(y). We endow the set
Iy = {Mx | x ∈ I} with a linear order <.

If x, x′ ∈ I, z ∈ Mx ∩Mx′ , z /∈
⋂

Mx∈Iy
Mx, and Mx < Mx′ then

the linear order ≺ associated with Iz is defined in such a way that
Mx ≺ Mx′ . Particularly, for x ∈ I fixed and fx(y) > 1, there is a
subchain Mx,y = M

(1)
x < M

(2)
x < · · · < M

fx(y)
x where M i

x is associated
with a unique copy of Mx named the expansion of Mx induced by y.

A collection of multisets M = {(M1, f1), . . . , (Mt, ft)} is said to be

a system of multisets of type M , if M =
t⋃

j=1
Mj . And it is endowed

with a map ν : M → N+ × N+ such that ν(m) = (j, val(m)), for each
m ∈M .
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Green and Schroll [1] named vertices the elements of M . The pos-
itive integer j in a pair (j, val(m)) associated with a vertex m is the
multiplicity value µ(m) according to them. It is worth pointing out
that µ(m) does not deal with the multiplicity of m as an element of
a multiset. In particular, m ∈ M is said to be non-truncated (trun-
cated) provided that µ(m)val(m) > 1 (µ(m)val(m) = 1). Thus, the
multiplicity function µ classifies the set of vertices M into the set of
truncated and non-truncated vertices. In this work, if val(m) = 1,
it is assumed that µ(m) = 2. Therefore, the considered vertices are
non-truncated.

If y ∈Mi1 ∩Mi2 ∩· · ·∩Mit then a successor sequence Sy associated
with y is a chain with the form

M
(1)
i1

< · · · < M
(f(i1,y))
i1

< M
(1)
i2

< · · · < M
(f(i2,y))
i2

< · · · < M
(1)
it

< · · · < M
(f(it,y))
it

(3)
Successor sequence (3) can be written in the form:

Mi1,y < Mi2,y < · · · < Mit,y. (4)

A Brauer configuration is a system of multisets of type M endowed
with a function ν and an orientation O which is obtained by adding
a relation M

(f(it,y))
it

< M
(1)
i1

(Mit < Mi1) to each successor sequence
Sy, associating in this fashion a family of equivalent circular orders to
any y ∈ M . In this case, the multisets (Mi, fi) are called polygons.
We let M = (M,M1, ν,O) denote a Brauer configuration with M1 =
{(M1, f1), . . . , (Mh, fh)}, map ν and orientation O defined as above
[1, 2].

Note that the completed successor sequences or circular orders as-
sociated with a given vertex y have the form

M
(j)
is

< · · · < M
(f(is,y))
is

< · · · < M
(f(it,y))
it

< M
(1)
i1

< · · · < M
(j−1)
is

.
(5)

The message M(M) of a Brauer configuration is the concatenation
of the words w(Mi), i.e.,

M(M) = w(M1)w(M2) . . . w(Mh). (6)
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We say that a Brauer configuration M is S-labeled if each multiset
(Mi, fi) is labeled by a permutation πi ∈ Sfi(mi,1)+fi(mi,2)+···+fi(mi,si

),
where Sn denotes the symmetric group with n elements. Such a la-
beling means that the permutation πi is applied to the word w(Mi)
for each 1 ≤ i ≤ h [29, 5]. In such a case we write

M(Mπ1,...,πh) = w(M1, π1) . . . w(Mh, πh) = w(π1(M1)) . . . w(πh(Mh)).
(7)

Remark 1. Since Brauer messages are defined by concatenating a
fixed set of words given by a set of suitable permutations, we assume
that all the Brauer configurations presented in this paper are S-labeled.
i.e., polygons are defined by words obtained after the application of an
appropriated permutation.

The Brauer quiver QM = (Q0, Q1, s, t) (or simply Q, if no confusion
arises) induced by a Brauer configuration M = (M,M1, ν,O) is defined
in such a way that there is a bijective correspondence between its set of
vertices Q0 and the set of polygons M1. In such a case, each covering
(Mi, fi) < (Mj , fj) in a circular ordering defines an arrow from (Mi, fi)
to (Mj , fj) in Q1.

2.2.1 Brauer Configuration Algebras

A Brauer configuration algebra ΛM (or simply Λ if no confusion arises)
is a bound quiver algebra ΛM = kQM/⟨ρ⟩ induced by a Brauer quiver
QM bounded by an ideal I = ⟨ρ⟩ generated by a set of relations ρ of
the following types [1, 2]:

• C
µ(i)
i −C

µ(j)
j if i and j are vertices in the same polygon (Mi, fi)

and Cx is a cycle defined by circular relations. These cycles are
said to be special cycles.

• Cµ(i)a if a is the first arrow of a special cycle Ci associated with
a vertex i.

• ab if a, b ∈ Q1 are arrows of different special cycles and ab is an
element of the path algebra induced by QM.

Remark 2. Green and Schroll [1] proved that Brauer configuration al-
gebras are symmetric and multiserial and that there is a bijective corre-
spondence between the indecomposable projective ΛM-modules and the

9



polygons in M1. Furthermore, the number of summands in the heart of
an indecomposable projective ΛM-module P with rad2 P ̸= 0 equals the
number of non-truncated vertices in the corresponding polygon. Par-
ticularly, it holds that

dimk ΛM = 2|M1|+
∑
m∈M

val(m)(val(m)µ(m)− 1). (8)

Sierra [32] obtained the following formula for the dimension of the
center Z(ΛM) of a connected Brauer configuration algebra.

dimk Z(ΛM) = 1+|M1|−|M |+
∑
m∈M

µ(m)+#(Loops(QM))−|{m ∈M | val(m) = 1}|.

(9)

2.3 Cryptography
This section reminds the definition of well-known cryptosystems [28].
Some of them related to the theory of Brauer configuration algebras.

A cryptosystem or cryptographic system is a quintuple of the form
(P, C,K, E ,D), where

• P is a finite set of possible plaintexts.

• C is a finite set of possible ciphertexts.

• K is a finite set of possible keys.

• E (D) is a set of encryption (decryption) functions such that for
each K ∈ K, it holds that eK : P → C ∈ E ( dK : C → P ∈ D),
and dK(eK)(x) = x, for each x ∈ P.

The permutation cryptosystem and the Vigenere cryptosystem are
examples of classical cryptosystems associated with Brauer configura-
tion algebras. The following section will be devoted to clarifying these
relationships.

The permutation or transposition cryptosystem is defined in such a
way that for fixed integers n,m > 1, it holds that P = C = Zm

n , in this
caseK = Sm is the set of all m-element permutations. For π ∈ Sm and
x = (x1, x2, . . . , xm) ∈ P, eπ(x) = (xπ(1), xπ(2), . . . , xπ(m)). Whereas,
for y = (y1, y2, . . . , ym) ∈ C, dπ(y1, y2, . . . , ym) = (yπ−1(1), yπ−1(2), . . . , yπ−1(m)).
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The following is an example of this kind of encryption for P = C = Z4
26,

and π = (3 4 1 2).

Y O H

P T Y

C R A

R G P

(10)

Applying π−1 to each block, it is obtained the following array:

C R A

R G P

Y O H

P T Y

(11)

The path shown in figure 1 gives rise to the plaintext CRYPTOG-
RAPHY. So, it is considered as a route cypher.

•

��

• // •

��

• • •

• • •

• // •

OO

•

Figure 1: The route (path) used to decrypt the message (11) obtained via
permutation.

For fixed integers m,n > 1 fixed, Zm
n = P = C = K in the Vigenere

cryptosystem. In such a case, for a given key K = (k1, k2, . . . , km) ∈ K,
x = (x1, x2, . . . , xm) ∈ P, and y = (y1, y2, . . . , ym) ∈ C, it holds that
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eK(x) = (x1 + k1, x2 + k2, . . . , xm + km) mod n

dK(y) = (y1 − k1, y2 − k2, . . . , ym − km) mod n
(12)

The Vigenere cryptosystem is vulnerable to a ciphertext-only at-
tack introduced by Friedman [28]. It is based on the coincidence index
of a text. In such a case, it is assumed that n is the size of the under-
lying alphabet. For instance, n = 26 if the language is English. The
index of coincidence I(T ) of a string T of alphabetic characters (which
is the probability that two random elements of T be identical) is given
by the following formula:

I(T ) =
25∑
i=0

fi(fi − 1)

n(n− 1)
. (13)

Where n = |T | and for each i, fi denotes the frequency of the ith
character in T (f0 for A, f1 for B, and so on).

Suppose T and T ′ are strings of alphabetic characters. In that
case, the mutual index of coincidence (which is the probability that a
random element of T is identical to an element of T ′) is given by the
following formula.

MI(T, T ′) =

25∑
i=0

fif
′
i

nn′ . (14)

Where n = |T |, n′ = |T ′| and fi (f ′
i) denotes the frequency of the

ith character in T (T ′).

The coincidence index attack is based on the fact that modulo
the length of the key, identical characters are encrypted by the same
alphabetic character. So, if y is a ciphertext obtained by a Vigenere
key k = (k1, k2, . . . , km) of length m. Then y can be split into m lists
y1, y2, . . . , ym whose indices are all close to 0.065.

Since the lists y1, y2, . . . , ym are obtained by applying an appro-
priated shift s and computing the different mutual indices of coinci-

dence MI(yi, y
s
j) =

25∑
fif

′
i−s

nn′ . Then a set of equations with the form
ki − kj = s0 is built for each of these comparisons, where s0 is a value
for which MI(yi, y

s0
j ) is close to 0.065. The solution of the obtained
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system of linear equations (modulo 26) gives the Vigenere key used to
obtain the ciphertext y. Particularly, if m is the length of the key then
I(yi) ∼ 0.065 for any 1 ≤ i ≤ m.

3 Main Results
This section gives the main results regarding the dimension of Brauer
configurations algebras associated with polyalphabetic cryptosystems,
mutations of Brauer configurations, and iterated cyphers. Subsections
3.3 and 3.4 are devoted to the Brauer analysis of musical content,
subsection 3.4 analyzes Bach’s canons.

3.1 Brauer Configuration Algebras Associated
with the Permutation Cryptosystem
Suppose that y = y1y2 . . . ym is a ciphertext obtained by encrypting
a plaintext x divided into m blocks x1, x2, . . . , xm not necessarily of
the same size, i.e., x = x1x2 . . . xm, with |xi| = si = |yi| > 1. The
encryption and decryption rules are given by the following identities:

eK(x) = eπ1(x1)eπ2(x2) . . . eπm(xm) = π1(x1)π2(x2) . . . πm(xm).

dK(y) = dπ−1
1
(x1)dπ−1

2
(x2) . . . dπ−1

m
(xm) = π−1

1 (x1)π
−1
2 (x2) . . . π

−1
m (xm).

(15)

where πi ∈ Si for 1 ≤ i ≤ m.

Plaintexts and ciphertexts in the transposition cryptosystem define
labeled Brauer configurations bearing in mind that x can be seen as a
Brauer message of a labeled Brauer configuration M of the form

x = M(M) = (w(x1), σ1)(w(x2), σ2) . . . (w(xm), σm), σi ∈ Si 1 ≤ i ≤ m.

xi = σi(w(xi)).

(16)

Where for each i, w(xi) = x
fi1
i,1 x

fi2
i,2 . . . x

fimi
i,mi

(fi1 + fi2 + · · ·+ fimi
=

si) is a word determining the polygon Ui ∈ M1 = {U1, U2, . . . , Um}.
Note that, xi,j is a character of a fixed alphabet A. Thus, M =
(M,M1, µ,O), where

13



• M = {xi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ si}.
• M1 = {w(xi) | 1 ≤ i ≤ m}.
• µ(xi,j) = 1 (µ(xi,j) = 2) if val(xi,j) > 1 (val(xi,j) = 1).

• (w(x1), σ1) < (w(x2), σ2) < · · · < (w(xm), σm) in successor se-
quences.

In the same fashion the ciphertext y = π1(x1)π2(x2) . . . πm(xm)
is a labeled Brauer message M(Mπ1,π2,...,πm) obtained by permuting
vertices in xi for 1 ≤ i ≤ m. We let ΛM (ΛMπ1,...,πm ) denote the labeled
Brauer configuration algebra defined by the plaintext x (ciphertext y).

The following result holds:

Theorem 1. ΛM = ΛMπ1,...,πm .

Proof. Note that the system of permutations π1, π2, . . . , πm does
not change vertices, polygons nor the orientation of the polygons in
successor sequences defining the Brauer configuration M. □

3.2 Brauer configuration Algebras Associated
with the Cryptanalysis of the Vigenere Cryp-
tosystem
Suppose that y is a captured ciphertext of a Vigenere cryptosystem.
We can assume that y contains all the characters of an alphabet A of
a natural language L and the frequency fj of any j ∈ A is greatest
than 1. If m is the length of the key K = (k1, k2, . . . , km) then y is a
concatenation of m lists y1, y2, . . . , ym. Thus y can be seen as a Brauer
message M(C) such that:

• C0 = A.

• C1 = {y1, y2, . . . , ym}.
• µ(i) = 1, for any i ∈ A.

• y1 < y2 < · · · < ym in successor sequences.

We have the following result:

Theorem 2. Let ΛC be a Brauer configuration algebra induced by a
Vigenere ciphertext y obtained with a key of length m. Then

dimk ΛC = 2m+ |y|(|y| − 1)I(y). (17)
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Proof. Since the size of the key is m. Then |C1| = m and I(y) =∑
i∈A

fi(fi−1)
|y|(|y|−1|) . □

The following result regards the dimension dimk Z(ΛC) of the cen-
ter of the algebra ΛC induced by a Vigenere ciphertext y.

Theorem 3. Let ΛC be the Brauer configuration algebra induced by
a Vigenere ciphertext y and y1, y2, . . . ym are its corresponding lists
obtained with a key of length m. Then if fi,j denotes the frequency of
the jth alphabetic character in the list yi, it holds that

dimk Z(ΛC) = 1 +m+
m∑
i=1

∑
j∈A

(fi,j − 1). (18)

Proof. Since the length of the key is m then |C1| = m. Further-
more, the number of loops associated with the jth character-vertex of
the alphabet A in the list-polygon yi is fi,j − 1. □

As an example, the Vigenere ciphertext

C = OOPAELRIXFGGBWDODDEPK (19)

is obtained from the plaintext

classicalcryptography (20)

with the key

MDPI (21)

This scheme induces the Brauer configuration C = (C0,C1, µ,O)
such that

• C0 = {O,P,A,E,L,R, I,X,F,G,B,W,D,K}.
• C1 = {y1 = {O,E,X,B,D,K}, y2 = {O,L,F,W,D}, y3 = {P,R,G,D,E}, y4 =
{A, I,G,O,P}}.

• µ(O) = µ(P ) = µ(E) = µ(G) = µ(D) = 1, µ(j) = 2, for the
remaining vertices j ∈M .

• y1 < y2 < y3 < y4 in successor sequences.
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SO = y1 < y2 < y4,

SP = y3 < y4,

SA = y4,

SE = y1 < y3,

SL = y2,

SR = y3,

SI = y4,

SX = y1,

SF = y2,

SG = y3 < y4,

SB = y1,

SW = y2,

SD = y1 < y2 < y3,

SK = y1.

(22)

QC = y1

αO
1

''

βD
1

77

lK1

LL

lX1
��

lB1
��

εE1

77y2

αO
2

''βD
2 //

lF1

++

lW1

LL

lL1

kk y3

βD
3

cc

γG
1

??

lR1

ss

δP1

((

εE2

��
y4

lA1

ss

lI1

RR

αO
3

��

βy
4

__ γG
2

oo

δP2

ll

Figure 2: Brauer quiver of a Vigenere ciphertext.

The following relations define the admissible ideal IC with M =
{αj1

i1
, βj2

i2
, γj3i3 , δ

j4
i4
, εj5i5}.
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• mjs
is
njt
it

, mjs
is
̸= njt

it
, mjs

is
, njt

it
∈M .

• (lj1)
2, for all the possible values of j.

• αO
1 α

O
2 α

O
3 = βD

1 βD
2 βD

3 = εE1 ε
E
2 .

• αO
2 α

O
3 α

O
1 = βD

2 βD
3 βD

1 .

• γG1 γ
G
2 = βD

3 βD
1 βD

2 = εE2 ε
E
1 = δP1 δ

P
2 .

• γG2 γ
G
1 = αO

3 α
O
1 α

O
2 = δP2 δ

P
1 .

• Cj
i f , if Cj

i is a special cycle and f is its first arrow.

It holds that

dimk ΛC = 35,

dimk Z(ΛC) = 1 + 18 + 5− 14 + 4 + 9− 9 = 14,

I(C) =
dimk ΛC − 2(4)

21(20)
=

27

420
= 0, 0642.

(23)

Proposition 1. Let ΛM be a Brauer configuration algebra induced by a
Brauer configuration M = (M,M1, µ,O) with M1 = {(U1, f1), . . . , (Um, fm)}
and for any ui,j ∈ Ui, 1 ≤ i ≤ m it holds that fi(ui,j) = 1. And there
are n vertices α such that val(α) = 1. Then

dimk Z(ΛM) = m+ n+ 1. (24)

Proof. Note that #(Loops(QM)) = |{i ∈ M | val(i) = 1}|, and∑
i∈M

µ(i) = 2n+ |M | −n = n+ |M |. Thus, dimk Z(ΛM) = 1+m+n+

|M | − |M | = 1 +m+ n. We are done. □

3.3 Brauer Configuration Algebras Associated
with Musical Content
This section proves that some musical contents give rise to Brauer
configuration algebras.

Let A = X
⋃
S0 be an alphabet of a language whose letters or

vertices are partitioned into two sets X and S0, X is endowed with
a partial order ⪯ and a subset of real numbers T = {t1, t2, . . . , tk}.
Elements s ∈ S0 are said to be constants. Each element xi ∈ X is
labeled by a unique element ti ∈ T. Therefore, each element xi ∈ X

can be seen as an ordered pair of the form (xi, ti) and

17



X = {(x1, t1), (x2, t2), . . . , (xk, tk)} (25)

(xi, ti) � (xj , tj) if and only if xi ⪯ xj or ti ≤ tj (the usual real
numbers order).

In this case,

min(X) = x1 � x2 � · · ·� xk−1 � xk = max(X) (26)

X is endowed with a circular order of the form

ch = (xh, th)�(xh+1, th+1)�· · ·�(xk, tk)�(x1, t1)�· · ·�(xh−1, th−1)�
(xh, th), 1 ≤ h ≤ k.

Numbers tj in pairs (xj , tj) are given by coverings xj−1 ⪯ xj , i.e.,

xj−1 ⪯ xj −→ tj . (27)

If numbers tj are predefined, then (if no confusion arises), we will
omit their use in the notation of the pairs constituting a set X.

The words w ∈ X∗ defined by the set X have the form:

w = zF1
1 zF2

2 . . . zFs
s . (28)

For each 1 ≤ i ≤ s, zi ∈ Xj ⊂ X∗ for some integer j ≥ 1. Where,
Xj consists of length j words with the shape:

(xih,1 , tih,1)(xih,2 , tih,2) . . . (xih,j , tih,j ), 1 ≤ h ≤ nj . (29)

To define operators, we will assume the notation (xih,j , tih,j ) = yih,j .

We let Fi denote an integral vector Fi = (fi,1, fi,2, . . . , fi,j) such
that

zFi
i = (xih,1 , tih,1)

fi,1(xih,2 , tih,2)
fi,2 . . . (xih,j , tih,j )

fi,j . (30)

Where (xih,1 , tih,1)
fi,1 = (xih,1 , tih,1) . . . (xih,1 , tih,1)︸ ︷︷ ︸

fi,1−times

.

Operators
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Two maps σryih,j
and φh are defined in such a way that if w is

given as in (28) then

σryih,j
(yih′,j′ ) =

(xih,1 , tih,1 +
(tih,1 )(ryih,j

)

2 ), if h = h′ and j = j′,

yih′,j′ , otherwise.

ryih,j ∈ R.

φh((xip,j , tip,j )
fp,j ) = (xip,j , tip,j )

fp,j+hfp,j (31)

σ2(xi−1, ti−1) = (xi, 2ti−1) = (xi, ti)

σ−2(xi, ti) = (xi−1, 0) = (xi−1, ti−1)

σx(σ−x)((xi, ti)) = (xi, ti).

(32)

Note that in the cycle ch, it holds that (xh+k, th+k) = σ2k(xh, th).

Grouping Symbols

Letters within a word w or in different words can be grouped using
parentheses, brackets and braces. Often, parentheses are used to group
letters with the same coordinates. Whereas brackets and braces group
letters within a word with the same frequency.

((x1, t1)
f1(x1, t1)

f1 . . . (x1, t1)
f1︸ ︷︷ ︸(x1, t1)fi)

n−times

= (x1, t1)

f1 + f1 + · · ·+ f1︸ ︷︷ ︸+fi

n−veces

(33)

w = (xi1 , ti1)
fi1 (xi2 , ti2)

fi2 . . . ((xis , tis)
fis )︸ ︷︷ ︸

w1

(xis , tis)
fis )(xj1 , tj1)

fj1︸ ︷︷ ︸
w2

(xj2 , tj2)
fj2︸ ︷︷ ︸

w3

. . . (xjr , tjr)
fjr︸ ︷︷ ︸

wr

(34)

w = {(xi1 , ti1)(xi2 , ti2) . . . (xis , tis)}fj0︸ ︷︷ ︸
w1

(xj1 , tj1)
fj1︸ ︷︷ ︸

w2

(xj2 , tj2)
fj2︸ ︷︷ ︸

w3

. . . (xjr , tjr)
fjr︸ ︷︷ ︸

wr

(35)
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(xi1 , ti1)� (xi2 , ti2)� · · ·� (xis , tis).

We let σΓ
r,x denote a function which applies σr to each occurrence of

a vertex x ∈ Γ0, where Γ0 is the set of vertices of a Brauer configuration
whose polygons are given by words of type w (see (28), (33)-(35) ).

aΓ = {σΓ
r,x | x ∈ Γ0, r ∈ R} (36)

aΓ can be considered part of a Γ labeling, which contains symbols
giving information on the ordering and number of vertices in the poly-
gons.

Identities (37) gives the words determining polygons of a Brauer
configuration Γ = (Γ0,Γ1, µ,O) with

• Γ0 = {a, e, g, σ−1(b), σ−1(g), c0, d0}.
• φn

2
(x)n = xn+

n
2 .

• σ−1(x
n) = (σ−1(x))

n.

• c0 and d0 are constants.

• πj are labeling denoting appropriated permutations.

• wi < wj if i < j for successor sequences.

• µ(α) = 2 or µ(α) = 1 if the valency of a vertex α is whether 1 or
greatest than 1.

w1 = (φ8(e
16)σ−1(φ8(g

16))a16d80e
8, π1)

w2 = (d80σ−1(g
8)d80σ−1(b

8)φ8(a
16)d80, π2)

w3 = (φ8(e
16)σ−1(φ8(g

16))a16d80g
8, π3)

w4 = (d80φ16(e
32)c160 , π4)

w5 = (φ8(e
16)σ−1(g

16)a16d80e
8, π5)

w6 = (d80σ−1(g
8)d80σ−1(b

8)φ8(a
16)d80, π6)

w7 = (φ8(e
16)σ−1(φ8(g

16))a16d80g
8, π7)

w8 = (φ8(e
16)σ−1(φ8(g

16))a16d80g
8, π8)

w9 = (d80φ16(e
32)c160 , π9)

dimk ΛΓ = 90426

dimk Z(ΛΓ) = 612

(37)
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The following result regards Western musical writing without con-
sidering ornaments or interpretation symbols (e.g. fermata, coda,
crescendo-decrescendo symbols or any other dynamic symbol, which
can be included as label polygons).

Theorem 4. Any musical piece M written with the standard staff nota-
tion can be seen as a transposition ciphertext of the message M(M) of a
Brauer configuration M with the following properties: M = (M0,M1, µ,O).

• M0 = {a < σ−1(b) < b < σ−1(c) < c < d < σ−1(e) < e <
σ−1(f) < f < σ−1(g) < g < a}

⋃
H

⋃
S0.

• H = {φ k
2
(xk) | x = a, b, . . . , g, k = 2t for some t > 0}.

• S0 = {a0, b0, c0, d0, e0, f0, g0}.
• Any labeled polygon U ∈ M1 (by a key (Ki, si)) is determined

by a word of type (28) and (33, 28, 35) with fi,j = 2n + k2n/2,
k, n ≥ 0. We assume that if M1 = {U1, U2, . . . , Uk} then Ki is a
permutation of the vertices xi,j in polygon Ui and si ≤ 64 is the
total number of its vertices counting repetitions.

•

µ(α) =

{
2, if val(α) = 1,

1, Otherwise.

• The orientation O is given by enumerating the words w1 < w2 <
· · · < wn associated with the polygons of Γ1 (|Γ1| = n) and as-
suming this order to build the successor sequences.

Proof Consider the following equivalences:

1. x64 ←→ ( ¯ , x)
x32 ←→ ( ˘ “, x)
x16 ←→ ( ˇ “, x)
x8 ←→ ( ˇ “( , x )
x4 ←→ ( ˇ “) , x)
x2 ←→ ( ˇ “* , x)
Finally, the sixty fourth note and its rest have associated the
vertices x1 and g0 respectively.

2.

σ−1(x) = 2x.
σ1(x) = 4x.

σ−nσn(x) = 6x.
(38)
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3. φ32(x
64)←→ ( ¯

·
, x), φ16(x

32)←→ ( ˘ “
·
, x), φ8(x

16)←→
( ˇ “
·
, x) . . .

4. a640 ←→ <
b320 ←→ <
c160 ←→ >
d80 ←→ ?
e40 ←→ @
f2
0 ←→ A

5. a ←→ C
b ←→ D
c ←→ E
d ←→ F
e ←→ G
f ←→ A
g ←→ B

6. Standard scales are given by the following cycles.

(a) a < b < c < d < e < f < g < a.
(b) d < σ−1(e) < e < σ−1(f) < f < σ−1(g) < g < a <

σ−1(b) < b < σ−1(c) < c < d

(c) a < σ−1(b) < b < σ−1(c) < c < d < σ−1(e) < e < σ−1(f) <
f < σ−1(g) < g < a

(d) x+y
2 = σ−1(y) = σ1(x), if x < y.

7. Measures are given by the polygons in M1.

8. Grouping symbols (parentheses, brackets, and braces) in poly-
gons define slurs, ties, tuples and chords.

Therefore, the musical piece M is nothing but a ciphertext of a
transposition cryptosystem S = (P, C,K, E ,D), where

P = {a, b, . . . , g, σ−1(b), σ±1(c), σ±1(e), σ±1(f), σ±1(g)}
⋃
H

⋃
S0,

C = {(n, x) | n is a musical note and x ∈ P}.
K = {n ∈ N | n = 2k, 1 ≤ k ≤ 6}.

e2k(x) = x2
k
= (n, x), for any x ∈ P the duration of n is

d

2k
(see(??)).

(39)
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dn(n, y) = y2
k

if the duration of n =
d

2k
. Furthermore,

dn(2n, y) = σ−1(y
2k).

dn(4n, y) = σ1(y
2k).

dn(6n, y) = y2
k
.

dn(n·
, y) = φ2k−1(y2

k
).

dn(r) = x2
k

0 , where r is a rest of duration
d

2k
. □

(40)

As an example the following is the musical notation of the words
(37) defined by the equivalences described in Theorem 4, the corre-
sponding labeled Brauer configuration induced by these words is said
to be M-reduced :

(ω1,K) = [b8f8e8b8][d8σ−1g
8e8b8]←→ [(�, b)(�, f)(�, e)(�, b)][(�, d)(2�, g)(�, e)(�, b)]

(ω2,K) = σ−1c
16[σ−1g

8e8]b16f16 ←→ (2̌ “, c)[(2�, g)(�, e)]( ˇ “, b)( ˇ “, f)
(ω3,K) = b16[f8σ−1c

8]a16f16 ←→ ( ˇ “, b)[(�, f)(2�, c)]( ˇ “, a)( ˇ “, f)
(ω4,K) = [b8f8e8b8][d8σ−1g

8e8b8]←→ [(�, b)(�, f)(�, e)(�, b)]

[(�, d)(2�, g)(�, e)(�, b)]
(ω5,K) = [σ−1c

8σ−1g
8e8b8][σ−1b

8σ−1b
8σ−1g

8e8]←→ [(2�, c)(2�, g)(�, e)(�, b)]
[(2�, b)(2�, b)(2�, g)(�, e)]

(ω6,K) = b16[f8σ−1c
8]a32 ←→ ( ˇ “, b)[(�, f)(2�, c)]( ˘ “, a)

(ω7,K) = b16[f8σ−1c
8]a16f16 ←→ ( ˇ “, b)[(�, f)(2�, c)]( ˇ “, a)( ˇ “, f)

(41)

The M-reduced Brauer configuration is defined as follows:

• M0 = {(�, b), (2�, b), (2�, c), (�, d), (�, e), (2�, f), (2�, g), ( ˇ “, a), ( ˘ “, a), ( ˇ “, b),
(2̌ “, c), ( ˇ “, f), (�, f)}.

• Γ1 = {(ω1,K), . . . , (ω7,K)}.
• The successor sequences associated with vertices are defined as

follows (if no confusion arises, we use the same notation for copies
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of the same polygon):

S(�,b) = ω1 < ω1 < ω1 < ω4 < ω4 < ω4 < ω5, val((�, b)) = 7,

S
(2�,b) = ω5 < ω5, val((2�, b)) = 2,

S
(2�,c) = ω3 < ω5 < ω6 < ω7, val((�, c)) = 4,

S(�,d) = ω1 < ω4, val((�, d)) = 2,

S(�,e) = ω1 < ω1 < ω2 < ω4 < ω4 < ω5 < ω5, val((�, e)) = 7,

S(�,f) = ω1 < ω3 < ω4 < ω6 < ω7, val((�, f)) = 5,

S
(2�,g) = ω1 < ω2 < ω4 < ω5 < ω5, val((2�, g)) = 5,

S( ˇ “ ,a) = ω3 < ω7, val(( ˇ “, a)) = 2,

S( ˘ “ ,a) = ω6, val(( ˘ “, a)) = 1,

S( ˇ “ ,b) = ω2 < ω3 < ω6 < ω7, val(( ˇ “, b)) = 4,

S
(2̌ “ ,c) = ω2, val((2̌ “, c)) = 1,

S( ˇ “ ,f) = ω2 < ω3 < ω7, val(( ˇ “, f)) = 3.

(42)

• µ((2̌ “, c)) = µ(( ˘ “, a)) = 2, µ(α) = 1, for the remaining vertices
α ∈ Γ0.

• The signature of the key K is given by the pair (H,
n
2m

), mean-

ing that each polygon ωi, 1 ≤ i ≤ 7 has si = n × 26−m vertices
(or its equivalent number).

• dimk ΛM = 14 + 162 = 176.

• dimk Z(ΛM) = 1+10+4−12+7+12−2 = 20 (note that, there
are 2 vertices whose valency equals 1. Furthermore, the Brauer
quiver QM has 12 loops and 7 vertices).

Figure 3 shows the labeled Brauer message M(M,K) written using
the staff notation. Here, the label of the Brauer configuration is given

by a signature of the form K = (J,
2
2
, aM = {σ−1(c), σ−1(g)}), which

means that the circular order associated with the vertices is given by
the following sequence (43) and that each polygon has two half notes
or their equivalents.
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d < σ−1(e) < e < σ−1(f) < f < σ−1(g) < g < a < σ−1(b) < b < σ−1(c) < c < d
(43)

Figure 3: Ciphertext defined by the Brauer configuration (41).

Figure 4 shows the Brauer quiver QM induced by the M-reduced
Brauer configuration (41). Here zj corresponds with a vertex σ−1z

j .

The Brauer configuration algebra ΛM is bounded by an ideal I
generated by relations of the following types:

• C
µ(j)
j − C

µ(i)
i , if i, j belong to the same polygon. Whereas, Ci

and Cj are corresponding special cycles.

• αs′
s α

t′
t if t ̸= t′.

• (ls
′

s )
2, if ls′s is a loop.

• C
µ(j)
j f , if Cj is a special cycle and f is its first arrow.
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Figure 4: Brauer quiver associated with the M-reduced Brauer configuration
(41).

3.4 Brauer Analysis of Bach’s Canons
This section gives some properties of the Brauer configuration alge-
bras induced by Bach’s canons known as canon â 6 Voc, canon â 4.
Voc: Perpetuus (BWV 1073), canon 1, â 2 (the crab canon), canon
â4 Quaerendo Invenietis. The musical notes are represented in the
Euclidean plane to build some of the most common symbols used by
Bach in his manuscripts. In this line, Bach’s canons are interpreted as
ciphertexts of a transposition cryptosystem whose plaintext consists of
such symbols, which give the structure or form of the studied Bach’s
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canons. Algorithm 1 describes the procedure:

Algorithm 1: This algorithm gives the steps to built a graph in-
duced by the musical notes of Bach’s canons.

• Choose a vertex circular order of the set {a, b, . . . , g} according to the
signature clef. The order associated with a treble, (bass, C) clef starts
with the letter e, (d, a, respectively).

• Segregate the notes into classes according to the equivalence relation
∼, such that (n, x) ∼ (n′, x′) if and only if n = n′ and x = x′.

• Associate with the first occurrence of the ith note ni a point (εi,1, εi,2)
in the Euclidean plane. Where, the first coordinate εi,1 is a pair
(n1i,1, n

1
i,2), n1i,1 ∈ { ¯ , ˘ “, ˇ “, . . . }, n2i,2 ∈ {a, b, c, . . . , g} is given by the

appearance order of the note in the musical piece.

• εi,2 is an integer number assigned to the vertical coordinate of the note.
The clef note has assigned the number ε1,2 = 0 and the remaining
notes have assigned the number i if the vertices order is a0 < a1 < . . . ,
ai = n2i,2 ∈ {a, b, c, . . . , g}. It is positive above (below) the clef note
(ε1,1, ε1,2), if it is written in standard (reversed) orientation.

• Each letter or number is built by connecting consecutive points. If
there are repeated notes only the first of them is represented in the
diagram. In such a way that points (εi,1, εi,2) define a discrete
function. Generally, two consecutive points with the same value εi,2

are not connected, such a connection is drawn only for aesthetic
reasons as well as additional lines can be drawn to represent a symbol
containing a cycle (e.g., A, B, α). If necessary, lines of the previous
symbol can be used to construct a new one. In particular, vertical
lines can be used to represent rests.

Figure 5 shows examples of symbols and letters that can be built
using Algorithm 1. Bach was used to inverting some of these symbols
in his manuscripts (see Figures 3.4 and 6, where Bach’s monogram in
his famous wax seal is built upon his initials. And a bass symbol is
used to write the number 6).
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Figure 5: Symbols that are constructed using points and lines. And examples
of symbols written or mentioned in Bach’s manuscripts. Bach’s monogram
on his wax seal based on his initials and different versions of the Greek letters
α and ω [49, 50].
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Bach’s canon Triplex â6 Voc is obtained by reducing the Brauer
message (44). It allows defining the labeled Brauer configuration
MA6 = (MA6

0 ,MA6
1 , µ,O) whose words or polygons (45) are obtained

after an appropriate segmentation.

c160 e16c160 d16c16b16d80[d
8e8f8][g8f8]e16c160 d16g32f16d16e32f32g32f16d16c160 c16d16e16f16a16g16

f16c16c16d16e16.

(44)

(ω1,K) = c160 e16c160 d16 ←→ > ( ˇ “, e) > ( ˇ “, d)
(ω2,K) = c16b16d80[d

8e8f8]←→ ( ˇ “, c)( ˇ “, b) ? [(�, d)(�, e)(�, f)]
ω3,K) = [g8f8]e16c160 d16 ←→ [(�, g)(�, f)]( ˇ “, e) > ( ˇ “, d)
(ω4,K) = g32f16d16 ←→ ( ˘ “, g)( ˇ “, f)( ˇ “, d)
(ω5,K) = e32f32 ←→ ( ˘ “, e)( ˘ “, f)
(ω6,K) = g32f16d16 ←→ ( ˘ “, g)( ˇ “, f)( ˇ “, d)
(ω7,K) = c160 c16d16e16 ←→ > ( ˇ “, c)( ˇ “, d)( ˇ “, e)
(ω8,K) = f16a16g16f16 ←→ ( ˇ “, f)( ˇ “, a)( ˇ “, g)( ˇ “, f)
(ω9,K) = c16c16d16e16 ←→ ( ˇ “, c)( ˇ “, c)( ˇ “, d)( ˇ “, e)

(45)
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The successor sequences are given by the following identities:

S > = ω1 < ω1 < ω3 < ω7,

S( ˇ “ ,e) = ω1 < ω3 < ω7 < ω9,

S( ˇ “ ,d) = ω1 < ω3 < ω4 < ω6 < ω7 < ω9,

S( ˇ “ ,c) = ω2 < ω7 < ω9 < ω9,

S( ˇ “ ,b) = ω2,

S ? = ω2,

S(�,d) = ω2,

S(�,e) = ω2,

S(�,f) = ω2 < ω3,

S(�,g) = ω3,

S( ˘ “ ,g) = ω4 < ω6,

S( ˇ “ ,f) = ω4 < ω6 < ω8 < ω8,

S( ˘ “ ,e) = ω5,

S( ˘ “ ,f) = ω5,

S( ˇ “ ,a) = ω8,

S( ˇ “ ,g) = ω8.

(46)

The following identities give the main properties of the Brauer con-
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figuration algebra ΛMA6 induced by the Bach’s canon â6 Voc.

MA6
0 = { > , ? , ( ˇ “, a), ( ˇ “, b), ( ˇ “, c), ( ˇ “, d), ( ˇ “, e), ( ˇ “, f), ( ˇ “, g), (�, d), (�, e), (�, f),

(�, g), ( ˘ “, e), ( ˘ “, f), ( ˘ “, g)},
MA6

1 = {ω1, . . . , ω9}, (see identities (45)),

K = (J,
4
4
, d < c < b < · · · < f < e < d, 4th line)

{α ∈MA6
0 | val(α) = 1} = {( ˇ “, b), ? , (�, d), (�, e), (�, g), ( ˘ “, e), ( ˘ “, f), ( ˇ “, a), ( ˇ “, g)},

{α ∈MA6
0 | val(α) = 2} = {(�, f), ( ˘ “, g)},

{α ∈MA6
0 | val(α) = 4} = { > , ( ˇ “, e), ( ˇ “, c), ( ˇ “, f)},

{α ∈MA6
0 | val(α) = 6} = {( ˇ “, d)},

|MA6
0 | = 16, there are 14 vertices, excluding the rests.

#Loops QMA6 = 12,

dimk ΛMA6 = 109,

dimk Z(ΛMA6) = 22.

(47)

Figure 6: The reduced Brauer message of the Brauer configuration (47) gives
the Bach’s canon â6 Voc [51].

The following list gives the 14 points (without rests) induced by
canon â6 Voc. Such points are represented in the diagram shown in
Figure 7. The initials of Johann Sebastian Bach and the Greek letters
alpha and omega can be built up via an appropriate connection of the
points.
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(( ˇ “, e); ε1), (( ˇ “, d); ε0), (( ˇ “, c); ε−1)), (( ˇ “, b); ε−2), ((�, d); ε0), ((�, e); ε1), ((�, f); ε2),

((�, g); ε3), (( ˘ “, g); ε3), (( ˇ “, f); ε2), (( ˘ “, e); ε1), (( ˘ “, f); ε2), (( ˇ “, a); ε4), (( ˇ “, g); ε3).
(48)

Figure 7: Fourteen vertices are enough to build up Bach’s initials. Symbols
alpha and omega arise by applying a reflection to these points (see Algorithm
1).

Reductions and segmentations of the Brauer message (49) give rise
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to Bach’s Canon 1, a2 shown in Figure 8. Words ω1−ω18 (see identities
(50)) define the M-reduced Brauer configuration MA2.

f32σ−1d
32b32σ−1a

32σ1σ−1g
32c160 (b16b16)σ−1c

32(σ1σ−1c
16c16)σ1σ−1d

32(σ−1d
16

σ−1d
16)e16σ−1e

16f16σ1σ−1g
16b16f16c16σ−1d

32e32f32σ−1d
32[b8c8b8f8][b8σ−1d

8e8σ−1d
8][c8b8

σ1σ−1a
8σ1σ−1g

8][f8σ−1d
8c8b8][a8e8σ−1d

8c8][b8c8σ−1d
8e8][σ−1d

8c8b8σ−1a
8][σ−1g

8σ−1a
8b8c8]

[b8σ−1a
8σ−1g

8f8][σ−1e
8σ−1g

8σ−1a
8b8][σ1σ−1a

8σ1σ−1g
8f8e8][σ−1d

8f8σ1σ−1g
8σ1σ−1a

8]

[σ1σ−1g
8f8e8σ−1d

8][c8e8b8e8][f8e8σ−1d
8c8][σ−1d

8e8f8σ1σ−1g
8]f8b8σ−1d

8f8.

(49)
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(ω1,K) = f32σ−1d
32 ←→ ( ˘ “, f)(2̆ “, d)

(ω2,K) = b32σ−1a
32 ←→ ( ˘ “, b)(2̆ “, a)

(ω3,K) = σ1σ−1g
32c160 (b16 ←→ (6̆ “, g) > (( ˇ “, b)

(ω4,K) = b16)σ−1c
32(σ1σ−1c

16 ←→ ( ˇ “, b))(2̆ “, c)((6̌ “, c)
(ω5,K) = c16)σ1σ−1d

32(σ−1d
16 ←→ ( ˇ “, c))(6̆ “, d)((2̌ “, d)

(ω6,K) = σ−1d
16)e16σ−1e

16f16 ←→ (2̌ “, d))( ˇ “, e)(2̌ “, e)( ˇ “, f)
(ω7,K) = σ1σ−1g

16b16f16c16 ←→ (6̌ “, g)( ˇ “, b)( ˇ “, f)( ˇ “, c)
(ω8,K) = σ−1d

32e32 ←→ (2̆ “, d)( ˘ “, e)
(ω9,K) = f32σ−1d

32 ←→ ( ˘ “, f)(2̆ “, d)
(ω10,K) = [b8c8b8f8][b8σ−1d

8e8σ−1d
8]←→ [(�, b)(�, c)(�, b)(�, f)][(�, b)(2�, d)(�, e)(2�, d)]

(ω11,K) = [c8b8σ1σ−1a
8σ1σ−1g

8][f8σ−1d
8c8b8]←→ [(�, c)(�, b)(6�, a)(6�, g)]

[(�, f)(2�, d)(�, c)(2�, b)]
(ω12,K) = [a8e8σ−1d

8c8][b8c8σ−1d
8e8]←→ [(�, a)(�, e)(2�, d)(�, c)]

[(�, b)(�, c)(2�, d)(�, e)]
(ω13,K) = [σ−1d

8c8b8σ−1a
8][σ−1g

8σ−1a
8b8c8]←→ [(2�, d)(�, c)(�, b)(2�, a)]

[(2�, g)(2�, a)(�, b)(�, c)]
(ω14,K) = [b8σ−1a

8σ−1g
8f8][σ−1e

8σ−1g
8σ−1a

8b8]←→ [(�, b)(2�, a)(2�, g)(2�, g)(�, f)]
[(2�, e)(2�, g)(2�, a)(�, b)]

(ω15,K) = [σ1σ−1a
8σ1σ−1g

8f8e8][σ−1d
8f8σ1σ−1g

8σ1σ−1a
8]←→ [(6�, a)(6�, g)(�, f)(�, e)]

[(2�, d)(�, f)(6�, g)(6�, a)]
(ω16,K) = [σ1σ−1g

8f8e8σ−1d
8][c8e8b8e8]←→ [(6�, g)(�, f)(�, e)(2�, d)]

[(�, c)(�, e)(�, b)(�, e)]

(ω17,K) = [f8e8σ−1d
8c8][σ−1d

8e8f8σ1σ−1g
8]←→ [(�, f)(�, e)(2�, d)(2�, c)]

[(2�, d)(�, e)(�, f)(6�, g)]
(ω18,K) = f8b8σ−1d

8f8 ←→ (�, f)(�, b)(2�, d)(�, f)
(50)

The following data (51) and (52) give the dimension of the Brauer
configuration algebra (and its center) induced by Canon’s Bach 1 a2
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known as the crab canon (see Figure 8).

S
(2̆ “ ,a) = ω1,

S( ˘ “ ,b) = ω1,

S
(2̆ “ ,c) = ω3,

S
(2̆ “ ,d) = ω1 < ω7 < ω8,

S( ˘ “ ,e) = ω7,

S
(2̆ “ ,f) = ω1 < ω8,

S
(2̆ “ ,f) = ω1,

S( ˘ “ ,g) = ω2,

S > = ω2,

S( ˇ “ ,b) = ω2 < ω6,

S
(2̌ “ ,d) = ω4,

S( ˇ “ ,e) = ω5,

S
(2̌ “ ,e) = ω5,

S( ˇ “ ,f) = ω5 < ω6,

S( ˇ “ ,g) = ω6,

S(�,a) = ω10 < ω11 < ω14 < ω14 < ω16,

S(�,b) = ω9 < ω9 < ω9 < ω10 < ω11 < ω12 < ω12 < ω13 < ω13 < ω15 < ω17,

S(�,c) = ω9 < ω10 < ω10 < ω11 < ω11 < ω12 < ω12 < ω15 < ω16,

S(�,e) = ω9 < ω11 < ω11 < ω14 < ω15 < ω15 < ω15 < ω16 < ω16,

S(�,f) = ω9 < ω13 < ω14 < ω14 < ω15 < ω16 < ω16 < ω17 < ω17,

S(�,g) = ω10 < ω11 < ω14 < ω14 < ω15,

S
(2�,a) = ω12 < ω12 < ω13 < ω13,

S
(2�,d) = ω9 < ω9 < ω10 < ω11 < ω11 < ω12 < ω14 < ω15 < ω16 < ω16 < ω17,

S
(2�,e) = ω13,

S
(2�,g) = ω12 < ω13 < ω13.

(51)
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MA2
0 = {(2̆ “, a), ( ˘ “, b), (2̆ “, c), (2̆ “, d), ( ˘ “, d), ( ˘ “, e), ( ˘ “, f), ( ˘ “, g), > , ( ˇ “, b),

(2̌ “, d), ( ˇ “, e), (2̌ “, e), ( ˇ “, f), ( ˇ “, g), (�, a), (�, b), (�, c), (�, e), (�, f),
(�, g), (2�, a),2�, d), (2�, e), (2�, g)},

MA2
1 = {ω1, . . . , ω13},
K = (J, d < e < f < · · · < c < d, 4th line), labels polygons in MA2,

ω1 < ω2 < · · · < ω13 for successor sequences,
dimk ΛMA2 = 582,

|{α ∈MA2
0 | val(α) = 1}| = 12,

|{α ∈MA2
0 | val(α) = 2}| = 3,

|{α ∈MA2
0 | val(α) = 3}| = 2,

|{α ∈MA2
0 | val(α) = 4}| = 1,

|{α ∈MA2
0 | val(α) = 5}| = 2,

|{α ∈MA2
0 | val(α) = 9}| = 2,

|{α ∈MA2
0 | val(α) = 11}| = 3,

#Loops(QMA2) = 32,

dimk Z(ΛMA2) = 46.

(52)

Figure 8: Brauer message of the Brauer configuration (52) gives Bach’s canon
1 â2 [52].

(( ˘ “, f), ε2),((2̆ “, d), ε0), (( ˘ “, b), ε−2), ((2̆ “, a), ε−3), ((6̆ “, g), ε3), > , (( ˇ “, b), ε−2),

((4̆ “, c), ε−1),((6̌ “, c), ε−1), ((6̆ “, d), ε0), ((2̌ “, d), ε0), (( ˇ “, e), ε1), ((2̌ “, e), ε1), (( ˇ “, f), ε2),
((6̌ “, g), ε3),(( ˘ “, e), ε1), ((�, b), ε−2), ((�, c), ε−1), ((�, f), ε−5), ((2�, d), ε0), ((�, e), ε1),

((6�, a), ε−3),((6�, g), ε−4), ((2�, a), ε−3), ((2�, g), ε−4), ((2�, e), ε−7).

(53)
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Figure 9: Letters, W, A, J,S , and B as they arise by connecting consecutive
points defined by Bach’s canon 1 â 2 (see Algorithm 1).

Canon’s Bach a4 Quaerendo Invenietis is given by the M-reduced
Brauer message of the Brauer configuration MQI = (MQI

0 ,MQI
1 , µ,O)

defined by words (54) which were obtained after appropriate segmen-
tations of the Brauer message (58).
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ω1 = [e8f8][σ−1g
8a8b8σ−1c

8]←→ [(�, e)(�, f)][(2�, g)(�, a)(�, b)(2�, c)]
ω2 = σ1d

16c160 c160 (b16 ←→ (4̌ “, d) > > (( ˇ “, b)
ω3 = [b8)σ1a

8f8σ1σ−1g
8](σ−1σ1a

32 ←→ [(�, b))(4�, a)(�, f)(6�, g)](6̆ “, a)
ω4 = [a8)σ1σ−1g

8e8f8](σ−1g
32 ←→ [(�, a))(4�, g)(�, e)(�, f)](2̆ “, g)

ω5 = [(σ−1g
8)f8σ1e

8f8)][(σ−1f
8e8σ1d

8e8)]←→ [((2�, g))(�, f)(4�, e)(�, f))]
[((2�, f)(�, e)(�, d)(4�, g)(�, e))]

ω6 = [(σ1d
8σ1σ−1c

8b8σ−1c
8)][(b8σ1d

8f8a8]←→ [((4�, d)(6�, c)(�, b)(2�, c))]
[((�, b)(4�, d)(�, f)(�, a))]

ω7 = [(σ−1g
8b8σ1d

8e8)][f8σ−1c
8b8a8]←→ [((2�, g)(�, b)(4�, d)(�, e))]

[(�, f)(2�, c)(�, b)(�, a)]
ω8 = [σ−1g

4f4e4σ1d
4][e4e4σ1d

4σ−1c
4][b4a4σ−1g

4f4]e16 ←→ [(2̌ “) , g)( ˇ “) , f)( ˇ “) , e)(4̌ “) , d)]
[( ˇ “) , e)( ˇ “) , e)(4̌ “) , d)(2̌ “) , c)][( ˇ “) , b)( ˇ “) , a)(2̌ “) , g)( ˇ “) , f)]( ˇ “, e)

ω9 = d80[f
8σ−1g

8a8][b8d8σ1σ−1c
8e8]←→ > [(�, f)(2�, g)(�, a)]

[(�, b)(�, d)(6�, c)(�, e)]
ω10 = [d8σ1σ−1c

4b4]σ1a
16d80[σ−1c

8b8d8]←→ [(�, d)(6�, c)( ˇ “) , b)](4̌ “, a) ?
[(2�, c)(�, b)(�, d)]

ω11 = [σ−1c
8b4a4]σ1σ−1g

16d80[b
8σ1a

8σ1σ−1c
8]←→ [(2�, c)( ˇ “) , b)( ˇ “) , a)](6̌ “, g) ?

[(�, b)(4�, a)(6�, c)]
ω12 = [b8σ1σ−1a

8σ1σ−1g
8b8][a8σ1σ−1g

8](a16 ←→ [(�, b)(6�, a)(6�, g)(�, b)]
[(�, a)(6�, g)](( ˇ “, a)

ω13 = [a8)e8σ1d
8e8][f8b8](b16 ←→ [(�, a))(�, e)(4�, d)(�, e)][(�, f))(�, b)](( ˇ “, b)

(54)
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ω14 = b16)[a8σ−1g
8]a16[σ−1g

8f8]←→ ( ˇ “, b))[(�, a)(2�, g)]( ˇ “, a)[(2�, g)(�, f)]
ω15 = [σ−1g

4a4σ−1g
4f4](e16[e8)f8σ−1g

8a8]←→ [(2̌ “) , g)( ˇ “) , a)(2̌ “) , g)( ˇ “) , f)](( ˇ “, e)
[(�, e))(�, f)(2�, g)(�, a)]

ω16 = [b8σ−1c
8b8a8][σ−1g

8f8e8σ−1g
8]←→ [(�, b)(2�, c)(�, b)(�, a)]

[(2�, g))(�, f)(�, e)(2�, g)]
ω17 = (f32[f8)e8σ1d

8f8]←→ (( ˘ “, f)[(�, f))(�, e)(4�, d)(�, f)]
ω18 = (e32[e8)d8σ1σ−1c

8e8]←→ (( ˘ “, e)[(�, e))(�, d)(6�, c)(�, e)]
ω19 = d16d80d

8a16d80σ−1c
8 ←→ ( ˇ “, d) ? (�, d)( ˇ “, a) ? (2�, c)

ω20 = b16d80e
8σ1d

8d80b
8 ←→ ( ˇ “, b) ? (�, e)(4�, d) ? (�, b)

ω21 = e16c16a16b16 ←→ ( ˇ “, e)( ˇ “, c)( ˇ “, a)( ˇ “, b)
ω22 = [e8e4f4]φ8b

16[a4σ−1g
4]←→ [(�, e)( ˇ “) , e)( ˇ “) , f)]( ˇ “

·
, b)[( ˇ “) , a)(2̌ “) , g)]

ω23 = [f8σ1d
8e8f8]b16c160 ←→ [(�, f)(4�, d)(�, e)(�, f)]( ˇ “, b) >

ω24 = d80[σ1σ−1c
8σ1σ−1d

8e8]f32 ←→ ? [(6�, c)(6�, d)(�, e)]( ˘ “, f)
ω25 = d80[b

8σ1σ−1c
8σ1d

8]e32 ←→ ? [(�, b)(6�, c)(4�, d)]( ˘ “, e)
ω26 = c160 b16σ−1c

16f16 ←→ > ( ˇ “, b)(2̌ “, c)( ˇ “, f)
ω27 = [f4σ−1g

4]a16σ−1g
8[a8f8]σ1d

16 ←→ [( ˇ “) , f)(2̌ “) , g)]( ˇ “, a)(2�, g)
[(�, a)(�, f)](4̌ “, d)

ω28 = e16d80σ−1g
8σ−1c

8d80σ1d
8 ←→ ( ˇ “, e) ? (2�, g)(2�, c) ? (4�, d)

(55)
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S(�,e) = ω1 < ω4 < ω5 < ω5 < ω7 < ω9 < ω13 < ω13 < ω15 < ω16 < ω17 <

ω18 < ω18 < ω20 < ω22 < ω23 < ω24, val((�, e)) = 17.

S(�,f) = ω1 < ω3 < ω4 < ω5 < ω5 < ω6 < ω7 < ω9 < ω13 < ω14 < ω15

ω16 < ω17 < ω17, val((�, f)) = 14.

S
(2�,g) = ω1 < ω5 < ω7 < ω9 < ω13 < ω14 < ω14 < ω15 < ω16 < ω16 <

ω22 < ω27 < ω28, val((�, e)) = 13.

S(�,a) = ω1 < ω4 < ω6 < ω7 < ω9 < ω12 < ω12 < ω13 < ω14 < ω15 < ω16 <

ω22 < ω27, val((�, a)) = 13.

S(�,b) = ω1 < ω3 < ω6 < ω6 < ω7 < ω7 < ω9 < ω10 < ω11 < ω12 < ω12

< ω13 < ω16 < ω16 < ω20 < ω25, val((�, b)) = 16.

S
(2�,c) = ω1 < ω5 < ω6 < ω7 < ω11 < ω16 < ω19, val((2�, c)) = 8.

S
(4̌ “ ,d) = ω2 < ω20 < ω27, val((4̌ “, d)) = 3.

S > = ω2 < ω2 < ω23 < ω26, val( > ) = 4.

S( ˇ “ ,b) = ω2 < ω13 < ω14 < ω20 < ω21 < ω23 < ω26, val(( ˇ “, b)) = 7.

S
(4�,a) = ω3, val((4̌ “, d)) = 1.

S
(6�,g) = ω3 < ω4 < ω12 < ω12, val((6�, g)) = 4.

S( ˘ “ ,a) = ω3, val(( ˘ “, a)) = 1.

S
(2̆ “ ,g) = ω4, val((2̆ “, g)) = 1.

S
(4�,e) = ω5, val((4�, e)) = 1.

S
(2�,f) = ω5, val((2�, f)) = 1.

S
(4�,d) = ω5 < ω6 < ω6 < ω7 < ω13 < ω17 < ω23 < ω25 < ω28, val((4�, d)) = 9.

(56)
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S(�,c) = ω6 < ω9 < ω11 < ω18 < ω24 < ω25, val((�, c)) = 6.

S
(2̌ “) ,g) = ω8 < ω8 < ω15 < ω15 < ω22 < ω27, val((2̌ “) , g)) = 6.

S
( ˇ “) ,f) = ω8 < ω8 < ω15 < ω22 < ω27, val((2̌ “) , g)) = 5.

S
( ˇ “) ,e) = ω8 < ω8 < ω8 < ω22, val((2̌ “) , g)) = 4.

S
(4̌ “) ,d) = ω8 < ω8, val((4̌ “) , d)) = 2.

S
(2̌ “) ,c) = ω8, val((2̌ “) , d)) = 1.

S
( ˇ “) ,b) = ω8 < ω10 < ω11, val(( ˇ “) , b)) = 3.

S
( ˇ “) ,a) = ω8 < ω11 < ω15 < ω22, val(( ˇ “) , a)) = 4.

S( ˇ “ ,e) = ω8 < ω15 < ω21 < ω28, val(( ˇ “, b)) = 4.

S ? = ω9 < ω10 < ω11 < ω19 < ω19 < ω20 < ω20 < ω24 < ω25 <

ω28 < ω28, val( ? ) = 11.

S(�,d) = ω9 < ω10 < ω10 < ω18 < ω19 < ω24, val((2�, c)) = 6.

S
( ˇ “) ,c) = ω10, val(( ˇ “) , c)) = 1.

S
(4̌ “ ,a) = ω10, val((4̌ “, a)) = 1.

S( ˇ “ ,g) = ω11, val(( ˇ “, g)) = 1.

S
(4�,a) = ω11, val((4�, a)) = 1.

S( ˇ “ ,a) = ω12 < ω14 < ω19 < ω21 < ω27, val(( ˇ “, a)) = 5.

S( ˘ “ ,f) = ω17 < ω24, val(( ˘ “, f)) = 2.

S( ˘ “ ,e) = ω18 < ω25, val(( ˘ “, e)) = 2.

S( ˇ “ ,d) = ω19, val(( ˇ “, d)) = 1.

S
(2̌ “ ,c) = ω21 < ω28, val((2̌ “, c)) = 2.

S( ˇ “
·
,b) = ω22, val(( ˇ “

·
, b)) = 1.

S( ˇ “ ,f) = ω26, val(( ˇ “, f)) = 1.

(57)

The following Brauer message (58) gives rise to Bach’s canon Quaerendo
Invenietis.
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[e8f8][σ−1g
8a8b8σ−1c

8]σ1d
16c160 c160 (b16[b8)σ1a

8f8σ1σ−1g
8](σ−1σ1a

32

[a8)σ1σ−1g
8e8f8](σ−1g

32[(σ−1g
8)f8σ1e

8f8)][(σ−1f
8e8σ1d

8e8)][(σ1d
8σ1σ−1c

8b8σ−1c
8)]

[(b8σ1d
8f8a8][(σ−1g

8b8σ1d
8e8)][f8σ−1c

8b8a8][σ−1g
4f4e4σ1d

4][e4e4σ1d
4σ−1c

4]

[b4a4σ−1g
4f4]e16d80[f

8σ−1g
8a8][b8d8σ1σ−1c

8e8][d8σ1σ−1c
4b4]σ1a

16d80[σ−1c
8b8d8]

[σ−1c
8b4a4]σ1σ−1g

16d80[b
8σ1a

8σ1σ−1c
8[b8σ1σ−1a

8σ1σ−1g
8b8][a8σ1σ−1g

8](a16

[a8)e8σ1d
8e8][f8b8](b16b16)[a8σ−1g

8]a16[σ−1g
8f8][σ−1g

4a4σ−1g
4f4](e16[e8)f8

σ−1g
8a8][b8σ−1c

8b8a8][σ−1g
8f8e8σ−1g

8](f32[f8)e8σ1d
8f8](e32[e8)d8σ1σ−1c

8e8]

d16d80d
8a16d80σ−1c

8b16d80e
8σ1d

8d80b
8e16c16a16b16[e8e4f4]φ8b

16[a4σ−1g
4]

[f8σ1d
8e8f8]b16c160 d80[σ1σ−1c

8σ1σ−1d
8e8]f32d80[b

8σ1σ−1c
8σ1d

8]e32c160 b16σ−1c
16f16

[f4σ−1g
4]a16σ−1g

8[a8f8]σ1d
16e16d80σ−1g

8σ−1c
8d80σ1d

8.

(58)

Note that,

MQI
0 = MQI,4

0 ∪MQI,8
0 ∪MQI,16

0 ∪MQI,32
0 ∪MQI,R

0 ,

MQI,4
0 = {( ˇ “) , a), ( ˇ “) , c), ( ˇ “) , d), ( ˇ “) , f), ( ˇ “) , g), (4̌ “) , b), (2̌ “) , e)},

MQI,8
0 = {(�, a), (�, b), (�, c), (�, d), (�, e), (�, f), (�, g), (2�, a), (4�, b),

(4�, c), (2�, d), (2�, e), (4�, f), (2�, f)},
MQI,16

0 = {( ˇ “, a), ( ˇ “, b), ( ˇ “, c), ( ˇ “, d), ( ˇ “, e), ( ˇ “, f), ( ˇ “, g),
(2̌ “, a), (4̌ “, b), (4̌ “, f), ( ˇ “

·
, g)},

MQI,32
0 = {( ˘ “, c), ( ˘ “, d), ( ˘ “, e), ( ˘ “, f)},

MQI,R
0 = { ? , > },
MQI

1 = {ω1, . . . , ω28} (see, identities (54)),

K = (H, e < f < · · · < d < e, 1st line), labels polygons in MQI ,

(59)
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{α ∈MQI
0 | val(α) = 1} = 13

|{α ∈MA2
0 | val(α) = 2}| = 4,

|{α ∈MA2
0 | val(α) = 3}| = 2,

|{α ∈MA2
0 | val(α) = 4}| = 5,

|{α ∈MA2
0 | val(α) = 5}| = 2,

|{α ∈MA2
0 | val(α) = 6}| = 3,

|{α ∈MA2
0 | val(α) = 7}| = 1,

|{α ∈MA2
0 | val(α) = 8}| = 1,

|{α ∈MA2
0 | val(α) = 9}| = 1,

|{α ∈MA2
0 | val(α) = 11}| = 1,

|{α ∈MA2
0 | val(α) = 13}| = 2,

|{α ∈MA2
0 | val(α) = 14}| = 1,

|{α ∈MA2
0 | val(α) = 16}| = 1,

|{α ∈MA2
0 | val(α) = 17}| = 1,

#Loops QMQI = 38,

dimk ΛMQI = 1565,

dimk Z(ΛMQI ) = 67.

(60)

Figure 10: Brauer message (58) gives rise to Bach’s canon â4 Quaerendo
Invenietis.

The following points defined by canon â4 Quaerendo Invenietis are
represented in Figure 11. If such points are connected then it is possible
to drawn the letters J, S, and B and the letters A and W (see Figure
3.4). The scheme allows built numbers 1,2,3, and 8 in Figure 12.
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((�, e), ε0),((�, f), ε1), ((2�, g), ε2), ((�, a), ε3), ((�, b), ε4), ((2�, c), ε5), ((4̌ “, d), ε−1), >
((4̌ “, b), ε4),((4�, a), ε3), ((6�, g), ε2), (( ˘ “, a), ε3), ((2̆ “, g), ε2), ((4�, e), ε0), ((2�, f), ε1),

((4�, d), ε−1),((2̌ “) , g), ε2), (( ˇ “) , f), ε1), (( ˇ “) , e), ε0), ((4̌ “) , d), ε−1), ((2̌ “) , c), ε5), (( ˇ “) , b), ε4),
(( ˇ “) , a), ε3),(( ˇ “, e), ε0), ? , ((�, d), ε6), ((6�, c), ε5), (6̌ “) , c), ε5), ((4̌ “, a), ε3), ((6̌ “, g), ε2),
(( ˇ “, a), ε3),(( ˘ “, f), ε1), (( ˘ “, e), ε0), (( ˇ “, d), ε−1), ((2̌ “, c), ε−2), (( ˇ “, b), ε−3), (( ˇ “

·
, b), ε11),

(( ˇ “, f), ε1).
(61)

Figure 11: Letters J, S, B, A and W also arise from points defined by canon
â4 Quaerendo Invenietis (see Algorithm 1).
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Figure 12: Numbers, 1,3,2, and 8 can be built up via canon â4 Quaerendo
Invenietis.

4 Concluding Remarks and Future Work
Brauer configuration algebras are a theoretical framework to inves-
tigate block cyphers. In particular, Western musical writing can be
analyzed via Brauer configuration algebras. Such analysis allows for
determining relationships between notes and measures in a musical
piece by assuming that these are ciphertexts of classical cryptosys-
tems whose plaintexts are defined by appropriated Brauer configura-
tions. Due to these procedures, a Brauer analysis can be applied to
some of the canons proposed by Bach in his Musical Offering. Musical
notes in these canons have a structure or form based on some of the
commonly used Bach’s symbols.

Future Work

This work applies Brauer’s analysis to some of Bach’s canons. An-
alyzing the remaining Bach canons in his Musical Offering is another
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task to be developed in the future. Proving, in particular, that the
structure or form of such canons is also based on Bach’s symbols.
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