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The path integral formalism is the building block of many powerful numerical methods for quantum im-
purity problems. However, existing fermionic path integral based numerical calculations have only been per-
formed in either the imaginary-time or the real-time axis, while the most generic scenario formulated on the
L-shaped Kadanoff-Baym contour is left unexplored. In this work, we extended the recently developed Grass-
mann time-evolving matrix product operator (GTEMPO) method to solve quantum impurity problems directly
on the Kadanoff-Baym contour. The resulting method is numerically exact, with only two sources of numerical
errors, e.g., the time discretization error and the matrix product state bond truncation error, which can both be
well controlled. The accuracy of this method is numerically demonstrated against exact solutions in the non-
interacting case, and against existing calculations on the real- and imaginary-time axes for the single-orbital
Anderson impurity model. Our method is a perfect benchmarking baseline for its alternatives which often em-
ploy less-controlled approximations, and can also be used as a real-time impurity solver in dynamical mean field

theory and its non-equilibrium extension.

I. INTRODUCTION

The quantum impurity problem (QIP), which considers an
impurity of a few energy levels that is coupled to a continuous
noninteracting bath, represents a cornerstone in condensed
matter physics for studying strongly correlated effects [1] and
open quantum effects [2]. It is also the building block in quan-
tum embedding methods such as the dynamical mean field
theory (DMFT) [3, 4] and non-equilibrium DMFT [5].

The observables of interest in solving QIPs are the multi-
time correlations of the impurity. Existing numerical ap-
proaches for QIPs can be primarily divided into two cate-
gories: (1) the wave-function based approach and (2) the path
integral (PI) based approach. In the first category, one dis-
cretizes the bath into a finite number of modes and parameter-
izes the impurity-bath wave function with some ansatz, then
one can compute the multi-time impurity correlations by per-
forming real-time evolution of the wave function ansatz. The
representative methods in the first category include the exact
diagonalization [6—12], numerical renormalization group [13—
21] and matrix product state (MPS) based methods [22-33].
The scalability or accuracy of these methods are basically lim-
ited by the discretization of the continuous bath.

In the second category, the starting point is the PI of
the impurity, where the bath has already been integrated
out analytically via the Feynman-Vernon influence functional
(IF) [34] and one is left only with the impurity degrees of
freedom in the temporal domain. Most outstandingly, the
class of continuous-time Quantum Monte Carlo (CTQMC)
methods directly draw samples from the perturbative expan-
sion of the PI, which could efficiently yield exact results in
the imaginary-time axis [4, 35-40]. QMC calculations in the
real-time axis are not as successful, but have been improved
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significantly in recent years with advanced time-domain ex-
trapolation techniques to tame the dynamical sign problem,
such as the inchworm QMC [41-46]. The hierarchical equa-
tion of motion (HEOM) method which truncates the coupled
operator equations to a certain order [47-49], is mostly ap-
plied on the real-time axis up to date [50, 51] (we note that
for bosonic impurity problems numerical calculations on the
L-shaped contour have been performed [52-54]). Another
recently emerging class of methods in the second category
explores the MPS representation of the multi-time impurity
dynamics, which is completely different from conventional
wave-function based MPS methods. The idea is to either rep-
resent the Feynman-Vernon influence functional (IF) in the
Fock space as a fermionic MPS (which will be referred to
as the tensor network IF method afterwards) [55-57], or di-
rectly represent the integrand of the PI in the coherent state
basis as a Grassmann MPS (GMPS) [58] which is referred
to as the Grassmann time-evolving matrix product operator
(GTEMPO) method (We note that GTEMPO is an exten-
sion of the time-evolving matrix product operator method [59]
for bosonic impurity problems to the fermionic case). Since
GTEMPO directly works in the coherent state basis (which
is the defining basis of the fermionic PI), the existing ana-
lytical expressions of the Feynman-Vernon IF can be readily
used (this is in contrast with the tensor network IF method
where one needs to translate the these expressions into the
Fock space which could be nontrivial, especially on the L-
shaped contour). Up to date these two strategies have been
applied for both the real-time [55-58, 60, 61] and imaginary-
time calculations [62, 63].

In this work we extend the GTEMPO method to directly
solve QIPs on the Kadanoff-Baym contour, which is referred
to as the mixed-time GTEMPO method afterwards to distin-
guish it with previous GTEMPO methods on the real- and
imaginary-time axes. We note that in existing PI-based ap-
proaches, the retarded Green’s function is either calculated by
analytic continuation from the Matsubara Green’s function on


mailto:guochu604b@gmail.com

the imaginary-time axis [64, 65], or by performing real-time
evolution from a separable impurity-bath initial state till (ap-
proximately) infinite time and calculating Green’s functions
afterwards [60, 66]. The first approach is known to be numer-
ically ill-posed [25, 65], while the second approach relies on
the quality of the equilibrium dynamics which is heuristic in
general. We note that Ref. [66] directly aims at the infinite-
time limit by using infinite MPS techniques, which is in prin-
ciple free of the error from the finite equilibrium dynamics,
however, it uses more hyperparameters than the approach in
this work and only contains information on the real-time axis.
By performing the mixed-time GTEMPO calculation directly
on the Kadanoff-Baym contour, we can avoid all these un-
controlled approximations. The only two sources of errors
in this approach, as similar to the real-time and imaginary-
time GTEMPO methods, are the time discretization error and
the MPS bond truncation error, which can both be well con-
trolled. We demonstrate the accuracy of this method against
exact solutions in the noninteracting case, and against the
real- and imaginary-time GTEMPO calculations in the single-
orbital Anderson impurity model (AIM). Importantly, we ob-
serve that we can obtain accurate results with a bond dimen-
sion which is not larger than that required in the imaginary-
time calculations. The mixed-time GTEMPO method can be
a perfect benchmarking baseline for accessing the accuracy of
alternative numerical approaches with less-controlled approx-
imations, and can also be used as a real-time impurity solver
in DMFT and non-equilibrium DMFT.

II. METHOD DESCRIPTION
A. The model

For notational briefness, we will present our method based
on the single-orbital Anderson impurity model which de-
scribes the interaction between a single localized electron and
a noninteracting bath of itinerant electrons. The total Hamil-
tonian can be written as

I;[ = -Himp + ﬁinta (D

where H; imp 18 the impurity Hamiltonian:

1
Hip = (ea = 5U) > aba, +Udlaralay, ()

with €4 the on-site energy of the impurity and U the Coulomb
interaction. Hj, contains the free bath Hamiltonian and the
coupling between the impurity and the bath:

Hiy = entl yono+ Y (Vidhéro +He),  (3)
k,o k,o

where ¢, is the band energy and V, is the coupling strength.
The effects of Hj,. on the impurity dynamics is com-
pletely characterized by the bath spectrum density J(e) =

> Vi2o(e — ).

For quantum impurity problems, the multi-time correla-
tion functions of the impurity, evaluated with respect to the
impurity-bath equilibrium state, are often the central quanti-
ties of interest. Generally, these correlations describe the re-
sponse of the impurity plus bath in equilibrium as a whole
to an external perturbation performed on the impurity. The
single-particle retarded Green’s function, in particular, is a
two-time impurity correlation function, which is also the cen-
tral observable to calculate in DMFT and non-equilibrium
DMFT.

B. The path integral formalism
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FIG. 1. The L-shaped Kadanoff-Baym contour C = C* UC~ UC®,
where the arrows indicate the contour ordering.

In the PI formalism, the multi-time impurity correlations
can be naturally evaluated on a L-shaped contour, which can
be seen as follows. Starting from the impurity-bath equilib-

rium state e~ with inverse temperature 3, the impurity-bath
state at time ¢y is

[)(tf) — e*iﬁtfefﬁgeiﬁtf. (4)
The impurity partition function at time ¢ is defined as

def ,,_ R
Zimp(tr) = Zbalth Trp(ty)

= Zgalth Tr [e‘ﬂgeimfe_imf}, 5)

where Zy.¢h 1S the free bath partition function, and we have
used the cyclic property of the trace in the second line. If
we read the term inside the square bracket in the second line
of Eq.(5) from right to left, we can think of the evolution as
along such a contour: it starts from time 0 to ¢; by a forward
evolution e % then it returns back to time 0 by a backward
evolution e'/7t7, and finally it goes to —i by an imaginary
time evolution e~?H . The whole contour, denoted as C in this
work, is usually referred as Kadanoff-Baym contour [5, 67]. C
consists of three branches: the forward branch C* : 0 — ¢ fs
the backward branch C~ : t; — 0, and the imaginary branch
C° : 0 — —ip, as shown in Fig. 1.
The PI for Eq.(5) can be formally written as

Zimnp = / Dla,alk (@, [[Z, (s a0], (6



where a, = {a,(t)}, a, = {a,(t)} are Grassmann trajecto-
ries on the Kadanoff-Baym contour, and @ = {a4,a,},a =
{a+, a,} for briefness. The measure is

= H da, (t) das(t) e

—0o (t)ad(t). (7)

K is only determined by H, imp»> Which can be formally written
as

K [a,a] = o1 e dtHimp (1) (8)

Here Himp is obtained from ﬁimp by making the substitu-
tions a(t) — a(t), af(t) — a(t), dt should be understood as
branch-dependent, that is, dt = 6t on C*, and dt = —id7 on
C°, where 0t and 7 are the time step size on the real-time and
imaginary-time axes respectively. Z, is determined by Hin
(more concretely, J(¢)), which can be formally written as

Zs [a07 a] =e Jedt [¢ dt/ag(t)A(t,t/)aa(t/). ©))

A(t,t') is the hybridization function which encodes all the
bath effects and can be calculated by

At t') = i/de J(e)De(t,t"). (10)

with D, (¢, ¢
defined as

) the free bath contour-ordered Green’s function

def . A
D.(t,t) = =i (Tee-(t)eL(t))paen - (11)
Here T¢ is the contour-ordering operator that arranges oper-
ators on the contour in the order indicated by the arrows in
Fig. 1, and (- --), .., means the expectation value with respect
to the free bath.

C. The mixed-time GTEMPO method

The continuous expressions in Eq.(8) and Eq.(9) are more
of notational convenience. In actual calculation, the contin-
uous integral along C should be understood in the discrete
sense where C is first broken into small finite pieces, and then
one sums over the contributions from all the possible discrete
paths formed by these pieces. In the following, we introduce
in detail the discretization scheme we have used in our nu-
merical implementation, which is in the same spirit as our im-
plementations of the real-time [58] and imaginary-time [63]
GTEMPO methods.

We denote N = t/6t, M = (/7 as the total numbers
of discrete time steps on the real- and imaginary-time axes
respectively. We first discretize the continuous Grassmann

trajectories into discrete ones as aF = {ag N1 i)
+ ae

a; = {an,N+17 ) a,l}’ aa - {ao,M-',-lv ) a,l} and
° _ fa° ° ¢ ¢ -

ag = {ag pr1:° ag 1}, where a; ; and @, ; are a pair of

conjugate Grassmann variables (GVs) at time step j on CS.
We will also use a {am,al]} and a {aé,j,aij}

to denote the set of GVs for both spins at the same time
step j. In addition, we introduce a pair of GVs a, and
a. to account for the boundary condition [63], which corre-
sponds to the final trace in Eq.(5). As a result, there will be
L = 8(N+1)+4(M+1)+4 GVsin total for the single-orbital
AIM, which will also be the size of all the GMPSs involved
in the mixed-time GTEMPO calculations. In our numerical
implementation, those GVs are ordered as

_ — o —0 o —0 o —o o —o
R R e B R N R

a{ﬁ{ﬂlﬁil“{ﬁ%ﬁlatﬁll T 4104 N

- == + =+ + =+
A N+1% N+10 N1 N+19) N+18) N1 (12)
where we have arranged the + branches in nearly positions,
different from the original time order in Fig. 1.

Based on the above notations, the discretized expression for
IC can be written as

]C[a'aa} < a|aJW+1> <aM+1| 1mp‘a?\4>"' <a2‘ 1mp‘ai>

X<a1’al>< 1mp|a’2> < N
X <a&+1|aﬁ+1> <a’N+1’ 1mp|aN>

X <a‘ nnp‘al > <a1 ’a> ) (13)

where @ = {a,a,}, @ = {ar,a, } (the first and last term on

the rhs take care of the boundary condition), and the discrete
—iHimp

i;ﬂp ’aN+1>

propagator Ufmp = e 4t (noticing that dt is branch-
dependent). For single-orbital AIM, the propagators can be

exactly evaluated as:

(€10, 1€)

with ¢¢ = e~idt(ea=U/2) 58 63]. With the ordering of GVsin
Eq.(12), K can be exactly built as a GMPS with bond dimen-
sion 16. For more sophisticated impurity models, one could
also easily adapt the algorithm proposed in Ref. [63] to obtain
a numerically exact expression for K.

The IF can be discretized using the quasi-adiabatic propa-
gator path integral (QuaPI) method [68, 69], which results in
a discrete expression in the form

— 095 T, Eeb (99 (e MY — )6 €61 €4 (14)

T, ~ e e Xk a A5 aly (15)

There are 9 hybridization matrices in total, and their expres-
sions can be found in Appendix. A.

In this work, we build each Z,, as a GMPS using the partial-
IF algorithm as described in Refs. [58, 61]. Concretely, we
first rewrite Eq.(15) as

7, ~ [ 257 défH<eZw DRES ok), (16)

C,d ¢.J

then each partial IF Z$ can be exactly written as a GMPS
with bond dimension 2 only [61]. As a result, we can build
T, as a GMPS by multiplying M + 2(N 4 1) GMPSs, dur-
ing which MPS bond truncation is performed to keep the bond
dimension of the resulting GMPS to be within a given thresh-
old x [56, 60]. The cost of this construction roughly scales as
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FIG. 2. Schematic illustration of the construction of (a) I and (b) each partial influence functional as Grassmann MPSs for the non-interacting
Toulouse model with M = N = 2, such that only a single spin needs to be considered and the spin indices are omitted. The purple, green, blue
solid circles with numbers represent Grassmann variables at different time steps on the imaginary, backward and forward branches respectively.
The pair of red solid circles at the left boundary without numbers represent the additional pair of GVs introduced to take care of the boundary
condition in the impurity path integral. In panel (b) we have shown the concrete patterns of all the M + 2(N + 1) = 8 partial IFs, which are
multiplied together to obtain Z as a GMPS. (c) Calculating the Matsubara Green’s function Gs 1, the greater Green’s function G; ; and the
lesser Green’s function G;l based on the augmented density tensor A, corresponding to Eq.(18), Eq.(19) and Eq.(20) respectively.

O[(M + 2N)?x?] as a general feature of the partial-IF algo-
rithm [61].

The procedures to build X and each partial IF as GMPSs are
schematically shown in Fig. 2(a,b) respectively, specialized
for the noninteracting case such that we only need to consider
a single spin for briefness. For the single-orbital AIM the con-
struction of /C will contain 4-body terms, while the partial IFs
for the two spins have exactly the same patterns as in Fig. 2(b),
but acting on different spins separately.

D. Calculating Green’s functions

Once K and Z, are both built as GMPSs, their product
gives the GMPS representation of the augmented density ten-

sor (ADT):

Ala,a] = K[a,a] [ [ Z,(a., a.], (17)

which is the integrand in Eq.(6). The ADT contains the in-
formation of the impurity dynamics on the whole Kadanoff-
Baym contour, based on which any multi-time impurity cor-
relation functions can be calculated straightforwardly. For
example, the Matsubara Green’s function G, between two
imaginary-time steps j, k (j > k) can be calculated as

def .. . | Dla, a]ag ;a3 ,.Ala, a
—Gjn = lao al ) = A ;
imp

(18)



the greater Green’s function Gj> & and lesser Green’s function
G, can be calculated as

Dla,ala a’, Ala,a
G;k def <ng&Lk> f [ Zcrj ok [ ]; (19)
imp
Dla,ala_ ,al ;Ala,a
~iG5, & <a;kam>:f [ ]g_vk Aol (20)
imp

With G>k and G<k , the retarded Green’s function G, can
also be easﬂy obtalned from its definition

Giw ¥ G2 - G5, @1

It should be noted here that in practice A is not built directly,
but computed on the fly using a zipup algorithm for efficiency
[58, 63].

III. NUMERICAL RESULTS

In the following we demonstrate the performance of the
mixed-time GTEMPO method in the noninteracting case and
in the single-orbital AIM. In our numerical simulations for
this work we will focus on a semi-circular bath spectrum den-
Sity

D

J(e) = 5

1—(¢/D)?, (22)
with D =2 and I"' = 0.1, and we will take I" as the unit.

We first validate the mixed-time GTEMPO method on the
equilibrium Green’s functions in the noninteracting Toulouse
model [1, 70], where we focus on the half filling case with
eq = 0. In Fig. 3(al, bl, cl, d1), we benchmark the imag-
inary and real parts of G~ (t) (G<(t) has the same real part
as and the opposite imaginary part to G~ (t) for half filling,
thus it is not shown), the imaginary part of G(t) (the real part
vanishes for half filling and is not shown), and G(7), calcu-
lated by mixed-time GTEMPO using different bond dimen-
sions xy = 40, 80,120 (the dashed lines), against the exact
diagonalization (ED) results (the gray solid lines). For ED we
have discretized the bath into 2000 equal-distant frequencies
(0e/T = 0.005) and we have verified that the ED results have
well converged against bath discretization (which is the only
error in ED). In Fig. 3(a2, b2, c2, d2), we show the average er-
rors between the mixed-time GTEMPO results and ED results
as a function of x, where the average error is defined as

= 2
s =/ 120 23)
for two vectors & and ¢ of length L. We can see that with
X = 80 both G~ (¢) and G(7) calculated by mixed-time
GTEMPO already converges quite well with ED, with the av-
erage error within 1%. From Fig. 3(cl, c2), we can see that
the retarded Green’s function, calculated from Eq.(21), con-
verges much faster than G~ (¢), which means that the errors

in G~ (t) and G<(t) perfectly cancel each other even with a

very small bond dimension x = 20 (this cancellation is much
better than in the real-time GTEMPO calculations shown by
the yellow solid line with triangle), this is likely due to a co-
incidence that the noninteracting retarded Green’s function is
independent of the initial state [1]. The dependence of the
average error in the Matsubara Green’s function on X is com-
parable to the imaginary-time GTEMPO calculations. Cru-
cially, even though in the mixed-time GTEMPO calculations
we deal with more GVs compared to the real- and imaginary-
time GTEMPO calculations, we observe that the bond dimen-
sion required to obtain converged and accurate results seem
to be not larger than the latter ones, thus the mixed-time
GTEMPO calculation will not be a lot more expensive than
the imaginary-time calculation (it has been observed that the
imaginary-time GTEMPO calculations usually require larger
bond dimensions than the real-time GTEMPO calculations to
achieve similar accuracy [60]), as the computational cost of
the partial-IF algorithm roughly scales quadratically with the
number of GVs, and cubically with x [61].

Next we proceed to study the single-orbital AIM, and we
still focus on the half-filling case with U/T" = —2¢,4/T = 5.
In this case there does not exist exact solutions. Neverthe-
less, for the Matsubara Green’s function we can benchmark
the accuracy against imaginary-time GTEMPO calculations,
and for real-time Green’s functions we can benchmark the
accuracy against the infinite-time GTEMPO (referred to as
iGTEMPO) calculations in Ref. [66] which directly aims at
the steady state. Similar to Fig. 3, we show the imaginary
and real parts of G~ (t), the imaginary part of G(¢), and
G(7) in Fig. 4(al, bl, cl, dl) respectively. The gray solid
lines in Fig. 4(al,bl,cl) are the infinite-time GTEMPO re-
sults calculated with x = 80 and 't = 0.005, which are
also used as the baseline to calculate the average errors in
Fig. 4(a2,b2,c2). The gray solid line in Fig. 4(d1) shows the
imaginary-time GTEMPO results calculated with x = 500
and I'é7 = 0.01, which is also used as the baseline to calcu-
late the average errors in Fig. 4(d2). Again we can see that
G~ (t) calculated by mixed-time GTEMPO using x = 80 al-
ready agrees well with the iGTEMPO calculations, with aver-
age error within 1%. Meanwhile, the average error in G~ (t)
keeps decreasing with x, and only approximately converges
at x = 200. For G(7), the results calculated by mixed-time
GTEMPO agree very well with the imaginary-time GTEMPO
calculations at x = 80 (the average error is 0.1%, which is
about one order of magnitude smaller than the noninteract-
ing case), which agrees with the previous observation that the
imaginary-time GTEMPO calculations become more accurate
for larger U [63]. From Fig. 3(c1, c2), we can see that the be-
havior of the retarded Green’s function in the interacting case
is similar to G~ (¢), in contrast with the noninteracting case.

IV. DISCUSSIONS

In summary, we have proposed a mixed-time GTEMPO
method that works on the L-shaped Kadanoff-Baym con-
tour. The method complements the previous iGTEMPO and
imaginary-time GTEMPO methods, which allows to directly
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and I'é7 = 0.01.



consider correlated impurity-bath initial state. It contains
only three hyperparameters, the real-time step size dt and
imaginary-time step size 67, plus the MPS bond dimension Y,
which can all be well-controlled. In our numerical examples,
we benchmark this method against exact solutions in the non-
interacting case, and against the iGTEMPO and imaginary-
time GTEMPO calculations in the single-orbital Anderson
impurity model. Crucially, we observe that the bond di-
mension required in the mixed-time GTEMPO calculations
is not larger than that required in the imaginary-time calcu-
lations, even though the size of the GMPS and the number
of GMPS multiplications become larger, therefore the com-
putational overhead of the mixed-time GTEMPO method will
not be significant compared to the imaginary-time GTEMPO
method. Compared to the iGTEMPO method, the mixed-
time GTEMPO method will be less efficient, but it contains
less hyperparameters than the latter. To our knowledge this is
the first work which directly performs numerical calculations
on Kadanoff-Baym contour for the Anderson impurity model.
Since the errors in this method can be well-controlled, it is
a perfect benchmarking baseline for more efficient alterna-
tives but with less well-controlled approximations. It can also

J

be used as an impurity solver in DMFT and non-equilibrium
DMEFT, where one can obtain the real- and imaginary-time
Green’s functions simultaneously.

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foun-
dation of China under Grant No. 12104328. C. G. is supported
by the Open Research Fund from State Key Laboratory of
High Performance Computing of China (Grant No. 202201-
00).

Appendix A: Quasi-adiabatic propagator path integral on the
Kadanoff-Baym contour

Here we list the explicit expressions of the 9 hybridization
matrices used in our numerical simulations. We use n(e) =
(€7 +1)~! to denoted the Fermi-Dirac distribution function.

2 dsLj)[l —n(e)]e U=k (1 — cosedt), J>k;
€
Aty ={ o dg%n(g)efieu*k)ét(l — cosedt), i<k (A1)
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