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Abstract: We present our investigations of SU(N) adjoint QCD in two dimensions with one

Majorana fermion on the lattice. We determine the relevant parameter range for the simulations

with Wilson fermions and present results for Polyakov loop, chiral condensate, and string tension. In

the theory with massive fermions, all observables we checked show qualitative agreement between

numerical lattice data and theory, while the massless limit is more subtle since chiral and non-

invertible symmetry of the continuum theory are explicitly broken by lattice regularization. In

thermal compactification, we observe N perturbative vacua for the holonomy potential at high-T

with instanton events connecting them, and a unique vacuum at low-T . At finite-N , this is a cross-

over and it turns to a phase transition at large-N thermodynamic limit. In circle compactification

with periodic boundary conditions, we observe a unique center-symmetric minimum at any radius.

In continuum, the instantons in the thermal case carry zero modes (for even N) and indeed, in

the lattice simulations, we observe that chiral condensate is dominated by instanton centers, where

zero modes are localized. We present lattice results on the issue of confinement vs. screening in the

theory and comment on the roles of chiral symmetry and non-invertible symmetry.
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1 Introduction

Perhaps, the two most dramatic differences between the two-dimensional and four-dimensional QCD

with one massless adjoint Majorana fermion [QCD(adj)] are the following. Classically, the static test

charges in the two-dimensional model interact via a (confining) linear Coulomb interaction leading

to a potential V (r) ∼ r while quantum mechanically, it is expected that V (r) ∼ (1−exp(−Mr))/M ,

and the theory is in deconfined Higgs phase [1]. In contradistinction, the test charges in the four-

dimensional model interact via Coulomb interaction V (r) ∼ 1/r while quantum mechanically, it

is expected that V (r) ∼ σr, and the theory is in a confining phase [2]. In other words, the four-

dimensional theory, which is not confining classically, becomes confining quantum mechanically and

two-dimensional theory, which is confining classically, becomes non-confining quantummechanically.

The other strange aspect of massless 2d SU(N) QCD(adj) relative to the corresponding four-

dimensional theory is its ground state degeneracy and relatedly its global symmetry. The standard

global symmetry in these two cases is rather similar, but the two-dimensional theory also possesses

a non-obvious global symmetry, called non-invertible symmetry [3]. The respective symmetries for

nf = 1 flavor theories are

G =


[
Z[1]
N ⋊ (Z2)C

]
× (Z2)F × (Z2)χ ×Gnon−inv 2d massless QCD(adj)[

Z[1]
N ⋊ (Z2)C

]
× (Z2)F × (Z2N )χ 4d massless QCD(adj)

, (1.1)
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while the respective number of vacua are given by

N (vacua) =

{
2N−1 2d massless QCD(adj)

N 4d massless QCD(adj)
. (1.2)

While the slight change in the discrete chiral symmetry is due to nature of Majorana fermion in 2d

vs. 4d, the exotic vacuum degeneracy is dictated by representations of the non-invertible symmetry.1

These two facts should make it clear that the goal of studying QCD(adj) in two dimensions is

not necessarily to have a simpler toy model for the dynamics of a strongly coupled four-dimensional

theory. Rather, one sensible goal is to gain a deeper and broader understanding of quantum gauge

theories and their possible behaviors.

In two-dimensional pure Yang-Mills theory, there are effectively no dynamical gauge degrees

of freedom, and both classical and quantum theory exhibit linear confinement, as it can be shown

by analytical methods [4]. The theories become non-trivial as soon as bosonic or fermionic matter

fields are added. The situation with SU(N) QCD(adj), or Yang-Mills with one Majorana fermion

is rather special as described above. As explained, the exactly massless theory with standard

fermion term tr[ψ̄γµDµψ] is non-confining, a surprising behaviour as pointed out in [1]. For a

more general perspective, we have to consider additional deformations by other operators. Once a

chiral symmetry breaking mass term is turned on, the theory becomes confining. However, about

twenty-five years after this first analysis, it has been understood that two-dimensional QCD(adj)

(QCD2(adj)) admits certain classically marginal four-fermion deformations [5], just as the Gross-

Neveu model [6], which can become relevant in the quantum theory [7]. The result of [5] is based on

mixed anomalies between the standard symmetries of the system, as well as the notion of adiabatic

continuity and semi-classical limit in exact agreement with anomalies. These deformations make

the massless theory confining for all representations (except for N -ality N/2 for even N), proving

that the mass term is not the only deformation inducing confinement in this theory.

Motivated by the combination of the results of [1] and [5], Ref. [3] made a further significant

progress. It showed that the massless QCD2(adj) with just standard fermion terms tr[ψ̄γµDµψ] has

an extra global symmetry, called non-invertible symmetry, Gnon−inv. The practical utility of this

symmetry is that it forbids the four-fermion deformations which are allowed by standard global

symmetries.

The four-fermion operators are meant to be for the non-invertible symmetry what the mass

operator is for chiral symmetry. These operators are charged under the respective symmetry, but

we are free to study the behaviour of the theory by turning them on. Indeed, Ref. [3] studied the

response of the theory by turning on four-fermion deformations and reached to the same conclusion

as [5], that all representations except for N -ality 0, N/2 exhibit confinement. This result actually

tells us that [1] and [5] are not conflicting with each other. Some other work on QCD2(adj) can be

found in [3, 5, 7–17].

We now understand that an analogous, but relatively simpler story holds in charge-q version

[18–22] of Schwinger model [23]. It is usually asserted that Schwinger model with massless fermions

always exhibits screening, while its massive deformation confines. These statements have a precise

meaning in the charge-q version which possess a Z[1]
q 1-form symmetry. However, a four-fermion

deformation of the Schwinger model, which respects a Z4 subgroup of Z2q chiral symmetry, which

is large enough to prohibit a mass term for q = even, is shown to be confining if the four-fermion

deformation is relevant [24], mimicking the story in QCD2(adj).

The present work is an initial study to explore some of the interesting dynamics of QCD2(adj)

by using lattice gauge theory, a manifestly non-perturbative framework. For the evaluation of finite

1Furthermore, to add more to the strangeness of 2d theory, these 2N−1 vacua are split to N universes, sectors

which are separated by non-dynamical domain-walls, charged under 1-form symmetry. Each universe supports about

2N−1/N vacua separated by standard dynamical domain walls. We review this structure in Sec. 2.2.
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temperature chiral condensate and Polyakov loop properties, we use Wilson fermions. To evaluate

the zero temperature chiral condensate, we use overlap fermions by reweighting. Lattice formulation

proved to be very useful for the investigation of QCD and Yang-Mills theories in R4 by simulating

the theories on large discretized torus T 4. In two dimensions these well-established methods also

provide important cross-checks and insights. The lattice studies of two-dimensional gauge theories

have so far mainly considered the Schwinger and ’t Hooft models [25, 26]. Some very preliminary

studies exist also for the case of adjoint QCD in two dimensions [27]. Recently, an interesting

alternative approach using a lattice Hamiltonian formulation has been applied in the case of SU(2)

[15]. Some related supersymmetric gauge theories have been already investigated on the lattice in

some numerical studies [28, 29]. In addition, two-dimensional gauge theories have been an ideal

playground to test numerical methods, algorithms, and approaches.

The main results of our numerical simulations, which always approach the theory from a finite

mass regime, are the following. In thermal case, absolute value of the Polyakov loop makes a

cross-over from small | trP | towards | 1N trP | ∼ 1 at some Tc ∼ g. At high-T , we find N vacua

and tunnelings (instanton events) connecting them. Due to tunnelings, ⟨trP ⟩ = 0 in both phases

and strictly speaking, there is no phase transition at finite-N . In circle compactification with

periodic boundary conditions, we observe a unique vacuum for Polyakov loop, i.e. small | trP | even
at small circle with global minimum of the effective potential around trP = 0. We determine a

chiral condensate at low and high temperature. The high-temperature condensate is dominated by

the instanton events interpolating between the N vacua. Concerning confinement vs. screening,

at finite values of m, we observe a finite string tension. In the chiral limit, the tension tends to

zero consistent with screening. Note, however, that our simulations may not be precise enough to

capture the effects of four-fermion induced confinement.

The paper is organized as follows: In Sec. 2, we first overview briefly what is known about

the continuum theory on R2 and R × S1, both in thermal and circle compactification suitable

for adiabatic continuity. We apply quite standard techniques for the simulations of the theory

and therefore only a short discussions of the methods is presented in Sec. A. Since the theory is

distinguished from four dimensional counterparts, we provide a longer discussion of the relevant

parameter range and tuning in Sec. A.2. In Sec. 3, we present data for the observables of the

theory, showing the zero temperature and finite temperature fermion condensates, Polyakov loop,

its modulus and susceptibility as observables. In order to provide a careful study of the confinement

properties, we present different methods to estimate the string tension in Sec. 3.4. Finally we discuss

some preliminary results on the lightest boson and fermion masses.

2 Overview of continuum theory on R2

We are considering SU(N) Yang-Mills theory in two dimensions coupled to an adjoint Majorana

fermion (QCD2(adj)). The Lagrangian of this theory is2

S =

∫
d2x

1

2g2
tr[FµνFµν ] + tr[ψ̄ (γµDµ)ψ] , (2.1)

with gauge field strength F aµν and a Majorana fermion ψ in the adjoint representation. Instead of

the gauge coupling g, we can also use the ’t Hooft coupling λ = g2N . Dµ is the covariant derivative.

Massless QCD2(adj) possesses ordinary 0-form, 1-form, and non-invertible symmetries, which

makes their interplay quite interesting. As explained, the complete symmetry group is in this case

G =
[
Z[1]
N ⋊ (Z2)C

]
× (Z2)F × (Z2)χ ×Gnon−inv . (2.2)

2The conventions for the Euclidean γ matrices γ0 = σ1; γ1 = −σ2, which means γ∗ = γ3 = iγ0γ1 = σ3. The

charge conjugation matrix is C = γ1. 0 direction corresponds to x (length L̃ = Lx), 1 direction corresponds to t

(length L = Lt = 1/T ). t is the direction of thermal/periodic compactification.
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V(r)

r

m < g, c2 = 0
m = 0, c2 ≠ 0
m = 0, c2 = 0

m ≫ g

m = ∞, YM

Confinement

Screening

Figure 1: Cartoon of potential between test charges in a generic representation in SU(N)

QCD(adj) N ≥ 3. The theory is in the screening phase if (Z2)χ × Gnon−inv breaking perturba-

tions are turned off, m = 0, c2 = 0. Turning on either perturbations leads to confinement except

for the N -ality N/2 in the case of c2O2 deformation. The relatively new realization is that exactly

massless theory becomes confining with the c2 deformation as shown by using mixed anomalies and

explicit soft breaking of non-invertible symmetry. At infinite mass limit, the tensions are repre-

sentation dependent rather than N -ality. The change in slope for m ≫ g is a transition from a

representation dependent tension to N -ality dependent tension.

The theory admits a relevant mass deformation and two marginally relevant four-fermion deforma-

tions:3

mOχ = m tr[ψ̄ψ] breaks (Z2)χ ×Gnon−inv

c1O1 + c2O2 = c1 tr[ψ̄γµψψ̄γµψ] + c2 tr[ψ̄ψ] tr[ψ̄ψ], breaks Gnon−inv . (2.3)

Since the canonical dimension of fermions in two dimensions is [ψ] = 1/2, it is natural to consider

these four-fermion deformations as proposed in [5]. These operators are classically marginal, i.e.

their coefficients are dimensionless. These four-fermion operators respect all standard (invertible)

symmetries, but O2 violates the non-invertible symmetry. One can show that the coupling constants

are asymptotically free for a certain choice of the couplings, [7], just like in the Gross-Neveu model

[6], hence the operator is marginally relevant and alters the IR dynamics.

It has been shown in Ref. [3] that non-invertible symmetry Gnon−inv forbids the dangerous one

of these four fermion operators, O2, just like chiral symmetry (Z2)χ forbids the mass operator.

Therefore, in a microscopic regularization which respects Gnon−inv, these operators are not be

generated and one can set their coefficients consistently to zero. However, if regularization does

not respect Gnon−inv, these operators are generically generated, and their effects can alter the IR

dynamics.

2.1 Confinement vs. screening

The feature that makes QCD2(adj) a rather interesting theory is the fact that the explicit breaking

of either of the (Z2)χ and/or Gnon−inv symmetries changes the dynamics drastically. Note that

an (Z2)χ breaking perturbation also necessarily breaks Gnon−inv. However, the inverse is not true.

The four-fermion deformation considered above breaks Gnon−inv, but respects (Z2)χ. The resulting

outcomes on R2 are the following:

3The mapping to chiral basis is as follows: Oχ = tr[ψ+ψ−], O1 = tr(ψ+ψ+ψ−ψ−), O2 = tr(ψ+ψ−) tr(ψ+ψ−).
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• Classically, the theory with (Z2)χ×Gnon−inv symmetry (m = 0, c2 = 0) has a linear Coulomb

potential among test charges, but quantum mechanically, it is deconfined. The quantum

theory has an exponentially large number of vacua, 2N−1, half bosonic and half fermionic.

• A mass deformation of the theory, m ̸= 0, explicitly breaking both (Z2)χ×Gnon−inv, leads to

confinement, with a string tension σ ∼ mg at long distances. The vacuum is expected to be

unique.

• A four-fermion deformation which explicitly breaks Gnon−inv but respects (Z2)χ is also ex-

pected to lead to confinement, similar to four-fermion deformation of the massless Schwinger

model [24]. The number of vacua is 2 for N ̸= 4n+ 1 (n = 1, 2, . . .), and otherwise there is a

unique vacuum.

• If we explicitly break the non-invertible symmetry Gnon−inv, and keep the ordinary global

symmetries (2.2) intact, then the massless theory confines all representations except for N -

ality 0, N/2, i.e.

σk ̸= 0 for k ̸= 0, N/2, and symmetry breaking ZN → ZN/2 . (2.4)

In the m → ∞ limit, QCD2(adj) reduces to pure Yang-Mills theory without fermions. This is

an almost topological theory without any physical degrees of freedom. This theory can be solved

exactly. The string tensions can be computed exactly [4]. In the case of SU(2) gauge theory, the

string tension in representation j = 1/2, 1, . . . is

σj(β) = − log

(
I2j+1(β)

I1(β)

)
−−−−→
β→∞

1

β
j(j + 1) ≡ 1

β
C2(j) , (2.5)

where In(x) are modified Bessel functions. See Section 14 of Ref. [30] for details. The fact that string

tensions are not classified under the Z2 center of SU(2), but rather in terms of quadratic Casimir

of the spin-j representations is explained in terms of another non-invertible symmetry. This non-

invertible symmetry is a 1-form symmetry G
[1]
non−inv, which is distinct from the previously discussed

0-form non-invertible symmetry Gnon−inv in QCD2(adj) [31, 32]. G
[1]
non−inv explains why we have

infinitely many types of string tensions rather than just N -types from symmetry perspective. Of

course, dynamically, this is obvious as the pure Yang-Mills theory does not have charged gluons

to screen the adjoint probe charges. The 1-form non-invertible symmetry G
[1]
non−inv in pure Yang-

Mills is explicitly broken by the introduction of the matter field in adjoint representation down to

Z[1]
N 1-form symmetry. It is an interesting problem how the confining R dependent strings of pure

Yang-Mills theory become confining k = |R| N -ality dependent strings in massive QCD(adj).

We can summarize our knowledge about string tension for general SU(N) theory as follows.

Let R denote a representation of SU(N) and k = |R| the N -ality of the representation. Then, the

string tensions take the form:

σR = 0 m = 0 Z[1]
N broken

σR = mλ1/2 sin

(
πk

N

)
, m≪ λ1/2 Z[1]

N unbroken

σR = λCR m→ ∞ G
[1]
non−inv unbroken, (2.6)

where CR is quadratic Casimir for representation R. These theoretical expectations are sketched

in Fig. 1. Our simulations may be viewed as probing the properties of the mass-deformed theory,

including an extrapolation towards the chiral (i.e. massless) limit.
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2.2 Vacuum degeneracy, universes vs. ordinary vacua

We add a few remarks on the vacuum degeneracy of the massless theory. As stated above, the theory

has 2N−1 fold vacuum degeneracy. However, some peculiarities of these vacua require understanding

the distinction between super-selection sectors and a stronger notion, called the “universes”.

For ordinary discrete symmetry breaking in two Euclidean dimensions, domain walls are finite

tension configurations connecting the vacua. Consider a 1+1 field theory with a Z2 symmetry, and

a potential V (ϕ) = 1
2 (ϕ

2 − v2)2. In the broken regime, there are two degenerate vacua on R2, and

there exists a field configuration (called a kink) at the interface of the two vacua. A kink can be

viewed as a particle in the spectrum of the theory. Now, consider the charge-2 (q = 2) Schwinger

model. This model has a (Z2)χ×Z[1]
2 chiral and 1-form symmetry, with a mixed anomaly in between.

Let Oχ(x) ≡ ψ̄RψL(x) denote the chiral fermion bilinear. The mixed anomaly implies that

Oχ(x)W (C) = e2πi Link(C,x)/2W (C)Oχ(x) , (2.7)

i.e. Oχ(x) acts as the local topological operator generating the 1-form symmetry, and it measures

the charge associated with the Wilson line. Here, Link(C, x) is the linking number of x and C.

Now, assume Oχ(x)|0⟩ = +|0⟩ in one of the vacua. Acting on the |0⟩ with a space-like infinite

Wilson line W and using (2.7), one can show that the state W |0⟩ ≡ |W ⟩ obeys Oχ(x)|W ⟩ =

Oχ(x)W |0⟩ = −WOχ|0⟩ = −|W ⟩. This is other chirally broken state. Therefore, W (C) is the

boundary between the two chirally broken vacua. This makes the difference compared to ordinary

Z2 breaking (not involving anomalies) manifest. In the former, the kink is a particle in the spectrum

of the theory, a finite tension dynamical domain wall. However, in the second model, the “kink”

has a charge, +1 under the Z[1]
2 1-form symmetry. It is non-dynamical and can only be introduced

to the theory as an external probe. In other words, the domain wall in the second theory has

infinite tension. In particular, in the first model, if the space is compactified on a circle, Rt × S1
L,

space-independent saddles ϕ(t) represent tunneling and the true ground state is the symmetric

superposition, 1√
2
(| − a⟩ + |a⟩) separated from anti-symmetric combination by e−ML, where M is

domain-wall mass. In the second model, no tunneling exists between the broken vacua even if the

theory is compactified. The superselection sectors separated by these stronger criteria are called

universes.

QCD2(adj) has a Z[1]
N 1-form symmetry, for which the generators are local topological operators

Us(x).
4 The implication of Gnon−inv, on the other hand, is that there exist O(22N ) topological line

operators α(C). These two types of operators satisfy

Us(x)α(C) = e2πi/Nα(C)Us(x) . (2.8)

If we act on the vacuum |0⟩ with a topological line, then the state α|0⟩ has a different charge

under the 1-form symmetry relative to the original vacuum, i.e. the domain wall connecting the

two vacua is charged under Z[1]
N . However, in the QCD2(adj), there are no fundamentally charged

matter fields. Hence, we have to view the vacua with different 1-form symmetry charge as distinct

universes.

Physically, these universes can be thought of as the theories on the sector generated from the

vacuum by different N -ality probes, for example charges ±1 at ∓∞, respectively. The algebra

(2.8) implies that there are N different types of universes distinguished by their charges under the

1-form symmetry. Since there are 2N−1 vacua in the theory, each universe must support multiple

degenerate vacua. The number of vacua in each universe dim[UN,k] is roughly 2N−1/N . For example,

4Definition of Us(x): delete the point x from the spacetime, and perform the path integral over gauge fields with

holonomy holC(x) = e2πin/N1, n = 0, 1, . . . , N − 1 for small clockwise circles circulating x. The insertion of the

operator Us(x) is equivalent to performing the path integral with non-trivial ’t Hooft magnetic flux sector n ∈ ZN .

– 6 –



for N = 3, 4, 5, 6, 9, the number of vacua in each universe is given by:

N = 3 dim[U3,k] = 2, 1, 1 for k = 0, 1, 2

N = 4 dim[U4,k] = 2, 2, 2, 2 for k = 0, 1, 2, 3

N = 5 dim[U5,k] = 4, 3, 3, 3, 3 for k = 0, 1, 2, 3, 4,

N = 6 dim[U6,k] = 6, 5, 5, 6, 5, 5 for k = 0, 1, 2, 3, 4, 5

N = 9 dim[U9,k] = 30, 28, 28, 29, 28, 28, 29, 28, 28 for k = 0, . . . , 8 (2.9)

Does lattice formulation possess a microscopic non-invertible symmetry? In our work,

we mostly use a lattice formulation with Wilson fermions, neither chiral symmetry, nor Gnon−inv

are respected. In particular, the Wilson term, raψ̄D2ψ, in loops generates an O(a0) additive mass

renormalization for fermions, which introduces the Oχ operator. It also generates, via tree-level

gluon-exchange diagram, a four-fermion operator with a dimensionless effective coupling c2 ∼ r2a2g2

[7], the O2 operator. O1 will also be generated because it is not protected by any symmetry.

Therefore, the lattice QCD2(adj) in 2d, is in general a multi-scale problem. In particular, the scale

associated with coupling g2, and the strong scale Λc2 associated with c2 as implied by asymptotic

freedom should be particularly important. Within the range of our simulations, we do not see the

effects of the induced four-fermion terms, very likely because of the volumes we work with, i.e., as

if we have accidental non-invertible symmetry in the IR. Perhaps, due to the logarithmic running

of c2, Λ
−1
c2 is bigger than the box size, and we do not probe its effects yet. It may be useful to tune

the coefficient of these operators as desired from the beginning (for example, to strong coupling)

to see the effect of these operators on the dynamics of the theory. We leave this as an interesting

open problem.

2.3 On R× S1, with periodic and anti-periodic boundary conditions

In order to understand some aspects of center-symmetry in QCD2(adj) on R × S1, we compactify

the theory on a circle and study its gauge holonomy potential. In the simulations, we consider

both anti-periodic and periodic boundary conditions for fermions, where the former is thermal

compactification corresponding to partition function and the latter is circle compactification which

corresponds to a (−1)F graded partition function:

Z(L) = tr[e−LH ], thermal comp.

Z̃(L) = tr[e−LH(−1)F ] circle comp. (2.10)

In the thermal case, L corresponds to an inverse temperature 1/T . For periodic compactification,

L is not related to temperature. Let us denote the Polyakov loop going around the circle by P . Up

to gauge conjugations, it can be written as:

P = diag
(
eiθ1 , eiθ2 , . . . , eiθN

)
,

N∑
i=1

θi = 0 (2.11)

The holonomy potential can be reliably computed at weak coupling, i.e, at sufficiently small circle

g2L2 ≪ 1. Since the theory does not have bosonic propagating degrees of freedom, the holonomy

potential is completely dictated by adjoint fermions.

For periodic (+) and anti-periodic (−) boundary conditions, at one-loop order, the holonomy

potential is

Veff,±(P ) =
m

Lπ

∞∑
n=1

(±1)n
K1(nmL)

n
| tr(Pn)|2

−−−→
m→0

1

πL2

∞∑
n=1

(±1)n

n2
| tr(Pn)|2 (2.12)
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m = 0

mL ∼ 1

mL ≫ 1

V (↵, m) for SU(2)

2π0
Figure 2: Holonomy potential for SU(2) gauge theory as a function of fermion mass. With

increasing mL, the potential flattens. At m = ∞, pure Yang-Mills theory in 2d, holonomy potential

is zero.

where K1(x) is modified Bessel function. In the thermal case, the mass-square for Polyakov loop

is negative, and at the one-loop order, the Z0
N center-symmetry is spontaneously broken. For the

thermal case, we show the mass dependence of the potential in Fig. 2. In particular, since only the

matter fields contribute to the potential in two dimensions, the potential flattens with increasing

mass of the adjoint fermion, m. Ultimately, at m = ∞, pure Yang-Mills theory, V (P ) → 0. In that

limit, eigenvalues of the Wilson lines are uniformly distributed.

In thermal case, for generic values of m, the potential has N degenerate minima, given by

Pk = ei
2πk
N 1, θ1 = θ2 = . . . = θN =

2πk

N
(2.13)

We can label these perturbative vacua by |k⟩, k = 1, . . . , N . For m > 0, due to tunnelings between

the perturbative minima, Z0
N must restore non-perturbatively, as described below. At finite-N and

finite m, Z0
N is broken perturbatively, and restored non-perturbatively due to instanton events.

Indeed, in the simulations, we will exhibits both these degenerate minima as well as the tunneling

events between them.

Remark: Since large-N is a thermodynamic limit, the Z0
N center can break, and indeed, it

does so because tunneling rates tends to zero as e−N → 0. Remarkably, in the present theory,

similar to charge-q Schwinger model, the massless limit is extremely interesting. Perhaps, up until

a few years ago, we would think that the scenario for the m > 0 case should also hold for for m = 0,

at least for odd-N , where there are no fermionic zero modes for Dirac operator [5], and vacuum

degeneracy would be lifted because of the instantons. However, the mixed anomaly (between 1-form

symmetry and non-invertible symmetry) (2.8) in QCD2(adj) and (2.7) (between 1-form symmetry

and chiral symmetry) in Schwinger model imply that the transition amplitude between degenerate

vacua must be zero. In QCD2(adj), this is particularly strange considering that (2.12) is just a

bosonic potential with N minima, and there are not robust fermion zero modes for N odd.5 But

it turns out this is possible. The fact that the transition amplitude can be zero due to destructive

interference related to bosonic zero modes has been shown in an explicit example [33]. But the

precise way in how the tunneling amplitude must vanish in the context of QCD2(adj) has not yet

been shown.

5An intuitive way to see the non-lifting of degeneracy is as follows. The (2.8) can be satisfied by the N ×N clock

C and shift S matrices, CS = ωSC, which act as generators of ZN × ZN . Since ZN × ZN are exact symmetries, the

generators must commute with Hamiltonian, [C,H] = [S,H] = 0. But the only thing that commutes with both is

identity operator, H = E1N , with exact N -fold degeneracy. Hence, degeneracy cannot be lifted despite the existence

of instantons.
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0
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Figure 3: Mimima of the holonomy potential a) For fermions endowed with anti-periodic boundary

conditions, there are N-minima. b) For fermions endowed with periodic boundary conditions, there

is unique minimum.

For the periodic boundary conditions, the mass square for Polyakov loop is always positive,

and the minimum of the holonomy potential is unique. It is located at the non-trivial holonomy

configuration:

P∗ = e−ia
π
N diag

(
1, ei

2π
N , ei

4π
N , . . . , ei

2(N−1)π
N

)
a = 0, 1 odd, even N . (2.14)

Therefore, the Z0
N is unbroken perturbatively at one-loop order for m > 0. For m = 0, despite

the fact that (2.14) is the minimum of the potential, we should expect subtleties related to mixed

anomaly. In the simulations, both (2.13) and (2.14) comes out rather nicely, see Fig. 5.

Analytically, one loses control over the one-loop potential when gL ≳ O(1). It is expected

that the eigenvalues of the Polyakov loop will be uniformly distributed in that regime with large

fluctuations. In simulations, we show this by evaluating the expectation value for the modulus of

Polyakov loop, and as well as its susceptibility. In the thermal R× S1 set-up, there is a cross-over

rather than phase transition at finite-N , but this becomes a genuine phase transition in the N = ∞
limit.

2.4 Instantons in the thermal case

As stated above, in the thermal case, there are N -degenerate minima at perturbative level. To

describe the tunnelings between them, we consider the 1D quantum mechanical action for the

Polyakov loop. To understand the nature of these tunneling events, we can momentarily ignore the

fermions, which are gapped due to anti-periodic boundary conditions. The 1D quantum mechanical

action is given by

S1D =

∫
dt

 1

2g2β

N∑
i=1

θ̇2i +
1

πL

∞∑
n=1

(−1)nK1(nLm)

n2

∑
i,j

cosn(θi − θj)

 . (2.15)

The perturbative minima of this action is given in (2.13), and we would like to determine the

tunneling events. The minimal action configuration interpolating between |k⟩ and |k + 1⟩ can be

found by using an abelian ansatz for the Polyakov loop

Pab.an. = diag
(
eiθ1 , eiθ2 , . . . , eiθN

)
= diag

(
eiα, eiα, . . . , e−i(N−1)α

)
(2.16)
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In this parametrization, the action takes the form:

S1D =

∫
dt

[
N2(N − 1)

2(g2N)L
α̇2 +

1

πL

∞∑
n=1

(−1)n

n2
K1(nLm)2(N − 1) cosNαn

]

−−−→
m→0

N2(N − 1)

2λL

∫
dt

[
α̇2 + ω2 min

k∈Z

(
α+

2πk

N

)2
]
. (2.17)

where ω2 = λ
π . The potential is harmonic and has cusps at α = ± π

N etc. Since the instanton

equation is extremely simple, just motion in the periodic extension of the inverted simple harmonic

oscillator,

α̇ = ±ωα for |α| ≤ π

N
, (2.18)

the full solution can be found by appropriate patching of the solutions exp[±ωt]. 6 The configura-

tions interpolating between α = 0 (P = 1) and α = 2π
N (P = 1ei

2π
N ) are given by

α(t) =
2π

N
Θ(t)− π

N
Sign(t) exp[−ω|t|] =


π

N
exp[ωt] t < 0,

2π

N
− π

N
exp[−ωt] t > 0,

(2.19)

where Θ(t) is step function and Sign(t) is sign function. We set the position moduli of the instanton

to zero, t0 = 0. This is a smooth continuous function extrapolating between the two adjacent

minima. Its derivative is also continuous with a cusp at t = 0, α̇(t) = π
N ω exp[−ω|t|]. The action

of the instanton can be obtained by integrating twice the kinetic term over Euclidean time:

SI =
N2(N − 1)

2λL

∫
dt 2 α̇2 = (N − 1)

π3/2

Lλ1/2
. (2.20)

Therefore, the transition amplitude between adjacent vacua (assuming small non-zero mass for

fermions) is approximately given by 7

⟨k + 1|e−TH |k⟩ ∼ e
−(N−1) π3/2

Lλ1/2 (2.21)

Two remarks are in order. The instanton action does not scale as 1
λ = 1

g2N , rather it is 1
λ1/2 . This

is due to the fact that this instanton is induced by the balancing of the classical kinetic term with

one-loop potential. i.e. it is some sort of quantum instanton. The second point is the action of the

instanton scales as e−N/L, hence these tunneling events become forbidden in the large-N limit.

Non-perturbatively, for finite-N and finite m, the degeneracy between the |k⟩, k = 1, . . . , N

states is lifted because of the tunnelings. In the Born-Oppenheimer approximation, the lowest lying

N states are

|Ψq⟩ =
1√
N

N∑
k=1

ei
2pikq

N |k⟩ (2.22)

6We do express the solutions in the m = 0 theory to have a sense of the instantons, and their zero mode structure.

At m > 0, the cusps in the potential and the cusp in α̇(t) smoothen. Moreover, the fermi zero modes will be lifted

by soaking them up with the mass operator.
7We calculated the instanton action for the holonomy potential at m = 0. This action remains the same as long

as mL≪ 1 at leading order. When mL≫ 1, the potential flattens as in Fig. 2, and instantons disappear (or “melt”).

The strict m = 0 limit is more subtle for two reasons. One is that there is a mod 2 index theorem, which indicates

nL = nR = 1 (mod 2) zero mode for N=even and nL = nR = 0 (mod 2) for N=odd. The action of the instanton is

still the same, but even if there is no fermi zero modes (as in N=odd), the tunneling must be forbidden because of

mixed anomaly between Gnon−inv and Z[1]
N according to (2.8).
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1
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Figure 4: In thermal case, the tunneling between perturbative minima of the holonomy potential

is associated with one positive and one negative chirality fermion zero mode for even N . For odd

N , these modes are not robust. In the weak coupling semi-classical domain, the chiral condensate

receives its contribution from the fermi zero modes localized on instanton. This is also seen in

simulations, see Fig.11.

where |Ψ0⟩ is the ground state. Now, the expectation value of Polyakov loop in the ground state

|Ψ0⟩ vanishes because of the averaging between these N states; while with the periodic boundary

conditions, the bosonic potential has a unique center-symmetric minimum,

⟨Ψ0| trP |Ψ0⟩ =
1

N

∑
q,k

⟨q| trP |k⟩ = 1

N

N∑
k=1

ei
2πk
N = 0 . (2.23)

In other words, Polyakov loop expectation value vanishes because of tunnelings in the high-temperature

regime.

In the low temperature, as well as small-L limit of periodic boundary conditions, the reason for

its vanishing is that eigenvalues of Polyakov loop are uniformly distributed (as opposed to being

clumpled), 1
N trP∗ = 0.

These two patterns of unbroken center symmetry are physically quite different. In fact, in the

large-N limit, which is a way to achieve a thermodynamic limit in the context of quantum me-

chanics, the center-symmetry breaks even non-perturbatively because the suppressing of tunneling

as e−N → 0. For the periodic boundary conditions, since center-symmetry is unbroken, large-N

volume independence must hold similar to 4d QCD(adj) [34]. This implies that the dynamics of

QCD2(adj) at N → ∞ on R2 can be captured by quantum mechanics at small S1 × R. While

for anti-periodic case, volume independence does not hold, and this theory in the large N limit is

expected to have a genuine phase transition at some scale dictated by the strong scale of the theory

Tc ∼ λ1/2.

2.5 Chiral symmetry on R× S1

Even N , anti-periodic boundary conditions: On R×S1 with anti-periodic (thermal) boundary

conditions, perturbatively, we have N degenerate minima, with instanton configurations interpo-

lating in between. In this case, there is a mod 2 index theorem for Dirac operator associated with

Majorana fermions, which states that number of left/right handed zero modes modulo 2 is a topo-

logical invariant. For N =even, there exists only one robust pair of zero modes of opposite chirality,

a ψ+ and a ψ−, and this can indeed generate a chiral condensate via instanton effects [5]. In the

past, it was thought that that the instantons are accompanied with N − 1 positive chirality and

N−1 negative chirality fermion zero modes [1, 8]. As argued therein, except for N = 2, this number

is way too large to induce a fermion bilinear condensate in the semi-classical regime. However, as

noted above, the mod 2 index theorem resolves this issue for even N [5] (see also [35].).
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Below, we will describe what happens in detail for N = 2 and comment for general even N .

Then, we will discuss odd N case. For even N , in particular N = 2, the mixed anomaly between

the chiral symmetry and center-symmetry survives,

Us(x)Uχ(C) = (−1)Uχ(C)Us(x) for even N . (2.24)

We can view large-Wilson loops as the generator of the discrete chiral symmetry, and chiral bilinear

ψ+ψ− as the generator of the 1-form center-symmetry. Therefore, in the compactified theory, we

can express the algebra in terms of Polyakov loops and chiral operator as:

trψ+ψ− P = (−1)P trψ+ψ− for even N . (2.25)

For N = 2, the non-invertible symmetry does not play a role, and the story is quite similar to

charge-q Schwinger model with q = 2 [18–22].

We can describe the states in the two dual bases. One is the eigenbasis |ℓ⟩ of the Polyakov loop

and the other is the eigenbasis |̃m⟩ of the chiral operator. The action of the Polyakov loop and

chiral operator in these bases are (still focusing on SU(2) in the following):

1
2 trP |ℓ⟩ = (−1)ℓ|ℓ⟩, trψ+ψ−|ℓ⟩ = |ℓ+ 1⟩, ℓ = 0, 1 (2.26)

trψ+ψ− |̃m⟩ = (−1)m |̃m⟩, 1
2 trP |̃m⟩ = ˜|m+ 1⟩, m = 0, 1 . (2.27)

As a consequence of the algebra (2.25), the P and ψ+ψ− operators cannot be simultaneously

diagonalized. A simple transformation relates the two bases:

|̃0⟩ = 1√
2
(|0⟩+ |1⟩), |̃1⟩ = 1√

2
(|0⟩ − |1⟩). (2.28)

In the m = 0 case, the tunneling amplitude between the eigenstates of the Polyakov loop |0⟩, |1⟩
is zero because instantons carry robust fermion zero modes. Reciprocally, the tunneling amplitudes

between the eigenstate of the chiral operator |̃0⟩ and |̃1⟩ is zero because these states are separated

by a (non-dynamical) Wilson line and belong to distinct universes. On the R2 limit, the would

be domain-wall in this theory carries charge-1 under the Z2 center-symmetry. But this is not a

dynamical degree of freedom in the theory, rather an external probe. This is the reason that |̃0⟩
and |̃1⟩ are called universes. As a result, we have

⟨1|e−TH |0⟩ = 0, ⟨1|e−THUs|0⟩ ≠ 0, (2.29)

⟨̃1|e−TH |̃0⟩ = 0, ⟨̃1|e−THUχ |̃0⟩ ≠ 0 . (2.30)

Although instanton in the basis |ℓ⟩ does not lead to tunneling, it causes chiral condensate. As

a result, we can express chiral condensate as:

⟨trψ+ψ−⟩ =


C1

1
L2λ1/2 e

−(N−1) π3/2

Lλ1/2 Lλ1/2 ≲ 1

C2λ
1/2 Lλ1/2 ≫ 1 .

(2.31)

The chiral condensate is non-zero at any temperature, but it is exponentially small in the weak

coupling semi-classical regime. The lattice results we obtain are nicely consistent with this structure,

much smaller at high-temperature than the low-temperature. This is explained in Sec. 3.2, see

Fig. 10b.

At high-temperature, our lattice results indicate that the chiral condensate receives dominant

contribution from the instanton cores in the semi-classical regime, in accordance with semi-classical
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analysis and anomaly structure shown in Fig. 4. See Fig. 11 for instanton profile on the lattice and

its contribution to chiral condensate (further details in Sec. 3.2).

For even N > 2, we note a few differences without going into details. First of all, the mode

2 index theorem tells us that n+ = n− = 0 (mod 2) for instantons between |ℓ⟩ → |ℓ + 2ℓ′⟩
(ℓ′ = 1, 2, . . .), evenly separated tunneling events. This implies that there is no obtruction for the

transitions between |ℓ⟩ → |ℓ+2ℓ′⟩ from the fermi zero modes. However, the mixed anomaly between

the non-invertible symmetry and center-symmetry (2.8) enforces that the tunneling between |ℓ⟩ →
|ℓ + 2ℓ′⟩ must also vanish. Hence, the ground state must retains an N -fold degeneracy. If one

explicitly breaks the Gnon−inv but not ordinary symmetries, then the ground state will be exactly

2-fold degenerate for even N , with the value of the condensate as in (2.31).

Odd N , anti-periodic boundary conditions: For N odd, the mod 2 index theorem indicates

that there are no robust fermion zero modes for instantons interpolating between the perturbative

vacua |ℓ⟩, ℓ = 0, 1, . . . , N−1. The would-be zero modes of the instanton will be lifted by fluctuations.

Therefore, one may expect that the chiral condensate must vanish in the thermally compactified

theory. We will show that this is indeed the case. However, in the lattice simulations, we observe

a finite condensate. Yet, this is not a contradiction as we explained below, because of subtleties

related to cluster decomposition.

We first note one of the remarkable features of the theory. Clearly, the semi-classical potential

(2.12) has N minima. But because of the absence of fermi zero modes associated with the instantons

interpolating between these vacua, one may reasonably think that vacuum degeneracy ought to be

lifted. However, the fact that the mixed anomaly between non-invertible symmetry and 1-form

symmetry (2.8) persists in thermal compactification, these degeneracies between vacua cannot be

lifted. Therefore, quantum mechanically, N fold degeneracy must survive. This is indeed quite

strange, but true. The mechanism through which this may happen is not shown in this work, we

expect it to be analogous to the example of the CPN−1 model with winding theta, where degeneracy

in a similar situation is not lifted due to subtle effects related to instanton moduli space [33].

Let us work with a specific case, N = 3. In this case, on R2, there are 2N−1 = 4 vacua. These

4 vacua are distributed to three universes with charge q = 0, 1, 2 sectors as 2, 1, 1. Below, we start

with the states as given in Eq. (6.28) of Ref. [3]. These states are in the QCD2(adj) in which

(−1)F : ψ → −ψ is gauged. This means one works with a generalized partition function in which

one sums over spin structures. Ref. [3] refers to the model with gauged (−1)F as bosonic model

and the one it is ungauged as fermionic model. We work with the latter. By undoing (−1)F

gauging, we can move to standard QCD(adj) in which (−1)F is a global symmetry. This amounts

to identifications v1 ≡ v2, v3 ≡ v4 in their Eq. (6.28). The states on R2 and the expectation value

of some operators are therefore given by:

U0 U0 U1 U2

⟨va|O|va⟩ v1 v3 v5 v6
OA 1 1 e2πi/3 e4πi/3

O2 -2 -2 1 1

Oχ −
√
3

√
3 0 0

Here, OA is the one-form symmetry operator, whose value tells us in which universe we are. O2 is

4-fermi operator, and Oχ is the chiral operator. Clearly, in U0, chiral symmetry is broken.

The degeneracy between the vacuum states of distinct universes cannot be lifted because of

anomaly (2.8), but multiple degenerate vacua in a given universe can become non-degenerate with

thermal compactification. Let us show how this happens. The degeneracy between the two de-

generate vacua in U0 gets lifted once the theory is compactified on a thermal circle on R × S1.

Following the notation of [3], let us denote the two chirally broken vacua by |v1⟩ and |v3⟩. Since
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these are related by spontaneous breaking of an ordinary symmetry with no mixed anomaly with

other symmetries, the domain-wall between these two states will be a regular dynamical object. In

particular, if we compactify this theory, these two states are able to mix with each other. Therefore,

in the theory on S1
L̃
×S1

L (compactified on space times Euclidean time), the space-independent con-

figuration interpolating between the two chirally broken vacua is an instanton from the quantum

mechanical perspective, with an extensive action proportional to L̃. Therefore, in the thermally

compactified theory, true ground state and first excited states in U0 are:

|±⟩ = 1√
2
(|v1⟩ ± |v3⟩) (2.32)

The energy splitting between |−⟩ and |+⟩ is proportional to e−L̃g due to tunneling between these

two vacua. In both of these |±⟩ states, the expectation value of the chiral condensate vanishes,

⟨+|ψ+ψ−|+⟩ = 1
2 (⟨v1|ψ+ψ−|v1⟩+ ⟨v3|ψ+ψ−|v3⟩) = 1

2 (
√
3−

√
3) = 0 , (2.33)

because of the tunnelings. However, note that the tunneling amplitude is vanishing exponentially

with volume of the space e−L̃g, consistent with the fact that at L̃ → ∞ limit, these two vacua

becomes two superselection sectors in U0.

In our simulations, we observe a chiral condensate for SU(3) at all temperatures. It is extremely

plausible that, at least in the large L̃ limit, our simulation does not tunnel between the two chirally

broken vacua as this rate is suppressed by e−L̃g, and also because we have a bare mass preferring

one vacuum over the other (which is probably even a stronger effect as we take L̃→ ∞ limit before

we take the chiral limit. Furthermore, it is not the states |±⟩ that satisfy cluster decomposition on

R2 limit, rather it is the states |v1⟩, |v3⟩. Therefore, even though formally, the chiral condensate

must vanish because of tunnelings as in (2.33), if we turn on a bare mass (which we do), we are

essentially forcing the theory to one of the states, say, |v1⟩ which satisfies cluster decomposition and

for which the condensate is non-zero. With the above considerations, we end up with three vacua,

one in each universe in the large-L̃, large-L regime by the compactification of the theory.

In large-L̃, but small-L, we found three perturbative vacua (2.13) as well, by performing an

analysis for the gauge holonomy potential, labelled by the phases of the trace of Polyakov loop.

These two sets of vacua are naturally discrete Fourier transform of one another, as a consequence

of mixed anomaly, (2.8).

|ℓ⟩ = 1√
3

(
|+⟩+ ei

2π
3 ℓ|v5⟩+ ei

4π
3 ℓ|v6⟩

)
(2.34)

At large-L, we can understand the absence of tunneling by the fact that the domain-walls of the

theory on R2 are non-dynamical and carry non-trivial charge under Z[1]
3 one-form symmetry. Since

there are no such charged objects in the theory, we cannot realize these tunneling events dynamically.

On the dual eigenbasis |ℓ⟩ of the Polyakov loop, the tunnelings must again vanish. However, since

the mod 2 index theorem tells us that there are no fermionic zero modes, we expect this to occur

because of integration over the instanton moduli space. Certainly, a more in-depth study is needed

concerning these general issues for general N .

3 Observables on the lattice

The relevant observables to understand the bevaviour of the theory as a function of compactification

radius or inverse temperature on R× S1 are the Polyakov loop PL, its modulus, susceptibilities, as

well as the chiral condensate ψ̄ψ. The volume averaged Polyakov loop is defined as

PL =
1

NNx

∑
x

Tr

{
Nt∏
t=1

U1(x, t)

}
, (3.1)
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where U1 are the lattice links in t direction (defining the temperature T/a = 1/Nt). However, as

stated in the theory discussion, the expectation value of the Polyakov loop vanishes both at high-T

(due to tunneling), as well as low-T due to uniform eigenvalue distribution. Therefore, it is also

useful to inspect the modulus of the Polyakov loop, as well as its susceptibility which are clearer

indicators of the temperature dependence. We also find it useful to examine the scatter plots of

trace of Polyakov loops above and below the cross-over temperatures, as well as profiles of the

Polyakov loops as a function of the Monte-Carlo time.

The chiral condensate represented here corresponds always to the volume averaged value,

− < ψ̄ψ >=<
1

NsNt
TrD−1

L > (3.2)

with the lattice Dirac operator DL. With Wilson fermions the condensate is subject to additive and

multiplicative renormalization. However, since the renormalization is temperature independent, the

temperature dependence can still be directly observed even from the Wilson-Dirac operator. To

determine the zero temperature value of the condensate, we use overlap fermions by reweighting,

see Sec. 3.3. These fermions have much better chiral properties.

At finite temperature, the chiral condensate is expected to be non-zero at any temperature, at

least for even-N . This is also true for odd-N for a state which would satisfy cluster decomposition

at R2 limit, but not for symmetric state. See the discussion in the previous section. As shown

in (2.31), the chiral condensate is of order of the strong scale of the theory at low temperatures.

At high temperatures, it is expected to be exponentially suppressed, and dominated by instanton

effects [5, 8].

Susceptibilities are also useful indicators of scales at which the characteristic of an observable

changes, and how it changes. For observable O, it can be defined as:

χO = Ṽ (⟨O2⟩ − ⟨O⟩2) , (3.3)

where Ṽ is Nx for the Polyakov loop or NsNt for the chiral condensate. Note that the Polyakov

loop susceptibility χPL
refers, unless stated otherwise, to the susceptibility of the modulus of the

Polyakov loop.

Some operators in this theory, which are important for later discussions of bound states and

parameter tuning are

Pψ = ψ̄γ∗ψ , Sψ = ψ̄ψ . (3.4)

As explained Sec. A.2, we can introduce an effective mass mπ based in the operator Pψ removing

the additive mass renormalization of Wilson fermions.

We investigate the string tensions by evaluating the potential between a pair of test quarks as a

function of fermion mass. We apply several methods to obtain more reliable estimates as explained

in Sec. 3.4. Finally, we also consider the lightest bound states of the theory. First preliminary

results are discussed in Sec. 3.5.

3.1 Polyakov loop related observables

In Fig. 5(a), we show the scatterplot of the Polyakov loop of the generated ensemble for SU(6) gauge

theory both for anti-periodic and periodic boundary conditions at small S1 × R (corresponding to

high-temperature in thermal compactification.) Indeed, the plot shows that real and imaginary

part of the Polyakov loop are concentrated in the neighborhood of six distinct phases, along rays

in directions given by ei
2πk
6 (k = 0, 1, . . . 5). These are the perturbatively broken vacua found in

(2.13). The simulation scans all possibilities of these phases, which correspond to the scanning of

all minima of the potential via tunneling events in the analytic formulation. Note that in this case,
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Figure 5: SU(6) QCD2(adj) on a 4 × 16 lattice at κ = 0.265, β = 160 (amπ = 0.2491(15)). The

distribution of real and imaginary part of the volume averaged Polyakov loop for each configuration

is represented in a scatter plot. Polyakov loop for two different fermion boundary conditions at

small-circle (high-T ) are shown: thermal bc (antiperiodic for fermions) and periodic bc (periodic

for all fields). Also note that at large-circle, the scatter plot for both boundary conditions tends

towards pattern (b). At small-circle, again the same tendency occurs with increasing the mass of

the fermion, as the potential flattens as in Fig. 2.
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Figure 6: The average modulus and susceptibility of the volume averaged polyakov loop as a

function on an Nt ×Ns lattice with thermal boundary conditions for SU(N) QCD2(adj).

despite the fact that center symmetry is broken perturbatively, it is unbroken non-perturbatively

due to instanton events (2.19). For subtleties related to m = 0 limit, see the remark in Sec. 2.3.

When the fermions are endowed with periodic boundary condition, in the scatterplot Fig. 5(b),

we see a distribution around PL = 0. This implies that ZN center-symmetry must remain unbroken

at small S1 × R, consistent with the theoretical result (2.14) at least for fermion mass m > 0. We

also note that in the finite-temperature formulation, the scatter plot of the Polyakov loop at low

temperatures is essentially identical to Fig. 5b. This provides already an illustrative picture of the

transition, but a characterization of its nature requires more detailed analysis of the scaling.

As explained around (2.23), the expectation value of the Polyakov loop is zero even at high

temperature, because of the tunneling between the perturbative vacua trP = ei
2πk
N . At low tem-

peratures, we expect that the eigenvalues are uniformly distributed, and there, it is the reason for
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Figure 7: The scaling of the results presented in Fig. 6 with N .
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Figure 8: The mass dependence of the transition of the Polyakov line in SU(2) QCD2(adj)with

Ns = 32 and β = 35. In (b) the Polyakov susceptibility for a subset of the masses is shown.

the vanishing of the Polyakov loop. At high temperatures, eigenvalues clump, but then, they can

tunnel collectively among vacua. In order to see this effect, it is more useful to inspect modulus of

the Polyakov loop. The value of modulus of the Polyakov loop shows a dramatic change from small

to large values with the temperature as shown in Fig. 6. A transition point can be identified by the

peak of the susceptibility, see Fig. 6b). This behaviour is consistent for different N at fixed temper-

atures in units of the ’t Hooft coupling T√
λ
= 1

Nt

√
β

2N2 . The modulus of the Polyakov loop is small

at low-T and it is approaching to one at high-T , with an inflection point around T ∼ 0.2, 0.3
√
λ,

where susceptibility reaches to its maximum.

Although the plot of susceptibility has a peak, and the one of the modulus of the Polyakov loop

has an inflection point, there is no genuine phase transition here for finite-N in the large Nx limit.

The decreasing susceptibility at the highest temperatures and the narrowing of the distribution

around the center broken vacua observed at a fixed volume does not indicate a transition in this

case. The tunneling probability (2.21) and hence the density of tunneling events scales with e−N/L

and is hence reduced at large T but independent of Nx. The effect is rather due to the fact

that the average distance of tunneling events increases with the temperature. When it becomes

comparable to Nx, the lattice size is not large enough to accommodate enough tunneling events
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Figure 9: Histogram of the Polyakov loop in SU(2) QCD2(adj)at β = 35 and Nt = 4 for different

Ns.

between the vacua. Going to the thermodynamic limit by increasing Nx, the number of tunnelling

events eventually increases, however, linearly since the density is constant. The volume dependence

is hence opposite to the usual expectation at a phase transition where tunneling is exponentially

suppressed with the volume. In the present case, the tunneling increases at larger volumes and

contribution of a deconfined signal in volume averaged observables reduces as shown in Fig. 9. The

peak of susceptibility and inflection point can rather be seen as finite-N remnants of the large-N

phase transition.

In this theory, a thermodynamic limit can be achieved at large-N , which introduces infinitely

many degrees of freedom. Since the tunneling at high-T gets suppressed by exp[−(N − 1)π
3/2T
λ1/2 ]

according to (2.21), the ZN center-symmetry breaks spontaneously, as opposed to the finite-N

case where tunneling restors it non-perturbatively, and hence, (2.13) are realized as vacua non-

perturbatively. Therefore, one obtains a genuine phase transition at large-N limit.

limN→∞⟨PL⟩ =
{
0 T < Tc
e2πik/N T > Tc

(3.5)

Consequently, as shown in Fig. 7, the expected scaling of a phase transition is observed in this limit.

In Fig. 8, we show the mass dependence of the modulus of the Polyakov line over a temperature

range. The modulus increases consistently at lower fermion masses. We can understand this from

theoretical considerations. In the holonomy potential, increasing the fermion mass, suppresses the

potential exponentially. In (2.12), the coefficient of the | trPn|2 is Bessel function of the first kind,

K1(nLm), and for large values of m, it vanishes exponentially, i.e.,

K1(mLn) →
√

π

2mLn
e−nLm, hence lim

m→∞
V (P ) = 0 . (3.6)

Since the potential is flattened at larger masses, the potential, even at high-T , can no longer pin the

holonomy P at the roots of unity P = ei
2πk
N 1. This is sensible because the theory reduces to pure

Yang-Mills in the limit, which is almost topological. Hence, even at high-T regime, the eigenvalues

start to become uniformly distributed, and trP tends towards zero. This is indeed nicely observed

in Fig. 8. Similarly, with increasing mass, the gradually flattened effective potential is reflected

by a larger maximum susceptibility and the increased density of tunneling events shifts the peak

towards higher temperatures.
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Figure 10: Temperature dependence of bare Wilson fermion condensate. (a) SU(2) QCD2(adj)on

an Nt × 32 lattice, κ = 0.255, β = 35. The fermion condensate distribution of the ensembles at

different temperatures. (b) The temperature dependence of the average fermion condensate for

different masses and N at fixed λ.
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Figure 11: Correlation between Polyakov loop and condensate in QCD2(adj) (4×64 lattice, β = 35,

κ = 0.260). (a) The Monte-Carlo history of the Polyakov loop on each configurations is compared

to the condensate. (b) The distribution of the Polyakov loop before averaging over L0 for sample

configurations. Gradient flow with Wilson action and flow time τ = 2 has been applied in (b).

3.2 Instantons and chiral condensate at high-temperature

In Fig. 10a, the Monte-Carlo histories of the chiral condensate are shown as a function of tem-

perature. At lower temperature (high-Nt), the value of the condensate is higher, and it starts to

fall-off at higher temperature (low-Nt). The temperature dependence of the condensate is shown in

Fig. 10b. Although we cannot calculate the chiral condensate analytically in QCD2(adj), in strong

coupling regime, it is worthwhile to point out that Fig. 10b matches very closely to our analytical

guess (2.31). It is interesting to note that (2.31) carries main features of the chiral condensate in the

Schwinger model as a function of temperature, where in the latter case, it is analytically calculable

at any T [21, 36]. In our simulation, note that due to the mentioned large contribution of a small

number of configurations, the error is largely underestimated for higher temperatures and smaller

fermion masses.

Fig 11 is the counterpart of the instanton analysis at high-T in continuum, shown in Fig. 4. At
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high-T , there are certain configurations which contribute significantly larger values to condensate.

As the semiclassical analysis in [5, 8] suggests, the larger values of the condensate are related to

configurations where the Polyakov loop, taken as a function of the spacial coordinate x without

volume averaging, tunnels between the two adjacent minima of the gauge holonomy potential, see

Fig. 4. In continuum, a mod 2 index theorem for the Dirac operator of massless Majorana fermions

states that for N even, there is a robust positive chirality and negative chirality fermion zero mode

associated with these tunneling events [5]. The density (or number) of these configurations is pro-

portional to instanton fugacity e−SI ∼ e−(N−1)π3/2T/λ1/2

and reduces with increasing temperature.

These observations are shown in Fig. 11 which matches nicely with the semi-classical expectations,

shown in Fig. 4. We evaluated the temperature dependence of the condensate for N = 2, 3, 6, and

do not observe a qualitative difference between N -odd and N -even.

Fig. 12 shows the correlation between the chiral condensate and the Polyakov loop. In par-

ticular, the chiral condensate is much larger at low-T , where the Polyakov loop is disordered and

has large-fluctuations but its volume average is small. The condensate is much smaller at high-T ,

where the Polyakov loop is pinned at the minima of the holonomy potential and the condensate

receives a dominant contribution from a dilute gas of instantons. These instanton contributions are

indicated by the scattered points with small volume average Polyakov loop and large condensate.

3.3 Zero temperature fermion condensate

The fermion condensate with Wilson fermion is subject to additive and multiplicative renormal-

ization. The additive renormalization, which makes the interpretation of the zero temperature

condensate difficult, is absent with overlap fermions. In our current study, we have not generated

ensembles with an overlap operator, but instead we have used reweighting techniques to get the zero

temperature condensate. The method based on the complete eigenvalue spectrum of the overlap

operator has already been applied in two dimensions for the ’t Hooft and Schwinger model. Details

are explained in [26]. In this reference the reweighting has been done from pure Yang-Mills theory

to the ensemble with overlap fermions. In our case, we have applied the same techniques for a

reweighting from Wilson to overlap operator. For that purpose, we have calculated the eigenvalues

of the hermitian Dirac-Wilson operator and the overlap operator to obtain the ratio of the Wilson

and overlap operator determinants as well as the fermion condensate with the overlap operator.

A meaningful value for the fermion condensate in the chiral (zero mass) limit can only be

obtained if the infinite volume limit is taken before the chiral limit. Indeed, the condensate turns to

zero if we take the limit of zero fermion mass at a fixed volume. A suitable method is to extrapolate
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Figure 13: Zero temperature fermion condensate in QCD2(adj). The condensate is obtained from

a reweighting of Wilson to overlap fermions. The mass mov corresponds here to the mass in the

overlap operator and κ to the value of the mass parameter in underlying Wilson ensemble. A fit up

to quadratic order has been used for the chiral extrapolation. (a): At fixed λ, different N , κ, and

volumes lead to consistent results. (b): Different β lead to approximately compatible values in the

chiral limit.

the condensate to zero fermion mass from a region, in which the results for different volumes are

consistent with each other.

The results are presented in Fig. 13. They indicate a finite value of the condensate in the chiral

infinite volume limit. The results are independent of the mass parameter (κ) for the underlying

Wilson ensemble, but we observe smaller errors at larger κ. With an appropriate scaling, the

results of different N are consistent with each other at a fixed ’t Hooft coupling. The chiral

limit seems to be quite independent of β given the uncertainties of the extrapolation. However,

the scaling with the mass parameter m is quite different for the different β and a multiplicative

renormalization of the mass parameter appears to be required. It is interesting to note that the fit

result in the chiral limit (− < ψ̄ψ > /(
√
λ(N2 − 1)) = 0.1657(33)) is close to the Schwinger model

(− < ψ̄ψ > /g = 0.15993 . . .) up to a rescaling of
√
N(N2 − 1). Note that there is about a factor

of two difference with respect the results obtained with a lattice Hamiltonean approach [15].

3.4 String tension

One of our main goals is the investigation of confinement vs. screening scenario from the static

quark-antiquark potential and the string tension in the limit of small fermion mass. With this

data, we also wish the determine the behavior of the theory in the chiral limit, as m → 0. In

this section we first focus on the case of SU(2) gauge group and add some remarks about the N

dependence in the end.

The static quark-antiquark potential V is obtained from the scaling of the average Wilson loop

(W (R̂s, R̂t)) with its temporal extend Rt and spacial extend Rs (in lattice units R̂t = Rt/a and

R̂s = Rs/a). It can be defined by

aV (aR̂s) = − lim
R̂t→∞

log(W (R̂s, R̂t))/R̂t . (3.7)

In two dimensional pure Yang-Mills theory, V (Rs) scales linearly with Rs. The simplest ansatz

for the scalar potential in two dimensions is therefore V (Rs) = A + σRs. The constant term

(A) indicates a possible contribution with perimeter law. In the chiral limit of QCD2(adj), the
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Figure 14: Creutz ratios at two different masses at β = 35. The smaller κ (larger mass) is

simulated on a 24× 24 lattice and the larger κ on a 64× 64 lattice.

theoretical expectation for SU(2) is screening behaviour [1]: V (Rs) = c1(1 − exp(−c2Rs)). For

SU(N), as explained in Sec. 2.1, if non-invertible symmetry is present, we expect a screening

behaviour for all representations [3]. If Gnon−inv is explicitly broken, we expect a confining potential

for all representations, except for N -ality k = 0, N/2 [5]. However, if the effects of Gnon−inv breaking

by the regularization are not relevant at the scales accessible in the simulation, we again expect

screening behavior in the massless fermion case. We argue that this is the case for our simulations

with Wilson fermions. If we break (Z2)χ explicitly by turning on a mass deformation, we always

expect a confining behaviour. Consequences of these theoretical expectations are illustrated in

Fig. 1.

We consider several ways to obtain V or its derivatives in this work. One simple approach is

to use Creutz ratios. These correspond to discretised derivatives of log(W (Rs, Rt)) with respect to

Rs and Rt,

χ(R̂s, R̂t) = − log

(
W (R̂s, R̂t)W (R̂s + 1, R̂t + 1)

W (R̂s + 1, R̂t)W (R̂s, R̂t + 1)

)
. (3.8)

If area law holds, χ should approach a plateau at large Rs and Rt. The plateau value corresponds

to the string tension.

We have tested this approach for several different parameters. At heavy fermion masses, χ is

almost independent of Rs and Rt, but in the low mass regime the string tension seem to decrease

towards zero at large distances, see Fig. 14. This may be either an indication of a very small string

tension decreasing with σk ∼ mλ or potentially a screening behaviour.

Alternatively one can estimate the potential V (Rs) in two different ways from the Wilson loop.

It can be approximated from

V̂ (R̂s, R̂t) = log

(
W (R̂s, R̂t)

W (R̂s, R̂t + 1)

)
, (3.9)

either by taking only the largest R̂t values into account (large Rt method) or by a fit of the R̂t
dependence in order to extrapolate to large R̂t. The typical way to extrapolate the R̂t dependence

is using the form V̂ (R̂s, R̂t) = aV (aR̂s) + exp(−dR̂t) in a fit to get aV (aR̂s) and d. We have

implemented both methods, where, in case of the large Rt method, we have averaged the values

at the three largest R̂t values of the measurement. The measurement takes into account only Rs
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Figure 15: Checks for systematic uncertainties of the static quark-antiquark potential at β = 35,

κ = 0.260 on a 36×36 lattice comparing different methods and volumes. The differences of the data

represent the uncertainties related the estimation of the large Rt limit and finite volume effects.
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Figure 16: Mass dependence of static quark-antiquark potential at β = 35 on a 36×36 lattice. This

fits of V (R) at the smallest masses are according to c1(1− exp(−c2R)) and the analytic prediction

for the pure Yang-Mills case has been added. Results are obtained with the large Rt method.

and Rt values up to half of the lattice size. In some cases we have restricted the data to smaller

maximal Rs and Rt values if the signal over noise gets too small.

A further alternative is to estimate V (R) from the correlator of two Polyakov lines at large Nt,

aV (aR̂s) = − log(⟨P (0)†P (R̂s)⟩)/Nt . (3.10)

We have applied all of the different methods in order to have consistent cross checks of the values

and estimate systematic uncertainties. In addition we have also checked the volume dependence.

As can be seen in Fig. 15, all of these tests lead to consistent results with some uncertainties at large

Rs and relevant finite size corrections only at the smallest volumes and lightest fermion masses.

Unless there are large uncertainties at larger Rt, we prefer to focus on the large Rt method since

it avoids further assumptions about the Rt dependence. However, it might tend to overestimate

V (Rs) at large Rs.

The results for V (Rs) confirm our findings obtained from the Creutz ratios. At large masses

a linear raising potential with a string tension slightly smaller than in pure Yang-Mills theory

is observed. Decreasing the fermion mass, the slope in the potential drops significantly. For a
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Figure 17: Mass dependence of static quark-antiquark potential like in Fig. 16. (a) V (Rs) at large√
λRs > 2 is fitted to the linear dependence V (Rs) = A+σRs. (b) The fit results are extrapolated

to the chiral limit using a quadratic polynomial. Similar results are obtained for the gauge group

SU(3), see Fig. 22.
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Figure 18: Combined plot of V (R) showing universal behaviour in units of the coupling g. The

mass has been fixed to approximately the same value. Different lattice sizes have been combined in

this plot: (a) β = 200, 50: 64× 64; β = 15, 30: 36× 36; β = 35: 24× 24. (b) β = 200, 50: 64× 64;

β = 15, 30, 35: 36× 36. In (b) a fit to c1(1− exp(−c2Rs)) has been added.

systematic determination of the long distance behaviour, compare Fig. 16 and Fig. 17. In the

former, the potential is fitted to a screening potential of the form c1(1− exp(−c2Rs)), while in the

latter, it is fitted to a linear potential at large Rs to obtain the string tension. Theoretically, our

expectation for small masses is the one shown in Fig. 17, while at exactly massless point (assuming

Gnon−inv), we expect a screening potential. Indeed, the string tension tends to zero in the chiral

limit Fig. 17(b). Note, however, that the linear fit region might move towards larger values of Rs
in the chiral limit and the method becomes less reliable. At very small masses, we are not able to

distinguish a small string tension from a screening potential.

The remaining step is the extrapolation of the results towards the continuum limit. This can

be done by varying β keeping mπ/g fixed. This basically leads to consistent results and not much

scaling towards the continuum limit is observed, see Fig. 18.

Towards larger N , the string tension increases at fixed λ and κ, see Fig. 19. The short distance
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a fit to c1(1− exp(−c2Rs)) at N = 3 and 2 has been added.

β κ mπ/
√
λ m2

gg
π
λ am2

S
π
λ

35 0.25 0.6651(28) 5.52(61) 9.14(41)

35 0.255 0.4859(50) 3.64(58) 7.52(87)

35 0.2576 0.3727(65) 3.4(1.1) 7.10(97)

15 0.255 0.6387(50) 4.45(16) 9.08(45)

15 0.2625 0.4739(31) 3.20(24) 8.69(46)

Table 1: Bound states masses of the gluino-glue operator (mgg) and the scalar meson (mS).

V (Rs) shows in general a larger slope than for N = 2. However, at the larger distance behaviour

at small masses, our simulations cannot distinguish screening from a confining potential with a

parametrically small tension.

Recall from theoretical discussion that the theory with exact Gnon−inv symmetry is in the

deconfined screening phase, and the theory becomes confining if Gnon−inv is explicitly broken by

either mass operator Oχ or by the O2 operator. The former also breaks the chiral symmetry, but

the latter does not. Our current simulation is not at a stage to distinguish these two types of

confinement. This stands as an important numerical problem.

3.5 Lightest fermion and boson states

A bosonic state can be formulated in terms of the mesonic scalar operator Sψ of (3.4). On the

lattice, this has to be measured from connected and disconnected fermion contributions similar to

the mesons in four-dimensional N = 1 supersymmetric Yang-Mills theory. Consequently the same

methods can be applied here, see [37] for further details. In this first investigation, we have just

applied a simple stochastic estimation of the disconnected contributions without further smearing

or improvements of the operators.

In four-dimensional N = 1 supersymmetric Yang-Mills theory, the fermionic constituent of

the supersymmetry bound state multiplet is described by a bound state of fermions and gluons

(gluino-glue) in the following way

Ogg =
∑
µ,ν

[γµ, γν ] Tr [Fµνλ] . (3.11)

A consistent projection operator onto a state for a correlator in time direction would require the

indices µ and ν to run only over spacial indices. This is not possible in two dimensions but

– 25 –



nevertheless the operator has been used in previous studies [29]. In this first study of the theory,

we have applied this plain operator as well using a clover definition of the field strength Fµν on the

lattice. It is clear that link smearing can not be used to improve the operator and the first three

smallest distances of the correlator have to be excluded.

All masses are extracted, as usual, from the exponential decay of the correlators at large

distances. The window of the fit is restricted by the small signal to noise ratio at large dis-

tances. Our first very rough estimates are shown in Tab. 1. Note that masses for the lightest

fermionic and bosonic states have been computed using Discretized Lightcone Quantization and

Lattice Hamiltonean approach [13, 15]. The results are around M2 π
λ = 5.7 for the lightest fermion

and M2 π
λ = 10.8 for the lightest boson. Our data are close to these values, but the systematic

uncertainties are currently quite large.

4 Conclusions and future directions

This work aims to initiate a systematic lattice study of QCD2(adj), with the hopes of properly

understanding this peculiar theory by both theoretical and numerical means. In our lattice for-

mulation, we have used Wilson fermions, which require additive and multiplicative renormalization

of the fermion mass. Hence the lattice formulation does not respect the discrete chiral symmetry

(which prevents the mass term from being generated), as well as Gnon−inv (which prevents the

4-fermion operator O2 and mass term from from being generated). To obtain chiral condensate

in the massless limit, we used overlap fermions by reweighting. Our preliminary results indicate

many agreements between theoretical understanding and numerical simulations. But we have not

yet explored the realm of more difficult questions concerning the continuum massless theory with

Gnon−inv symmetry. Below, we summarize our comparision of simulations with theory, and point

some problems for future.

With thermal compactification (apbc for fermions), we have numerically investigated the Polyakov

loop P , its modulus |P | and susceptibility. At very high-temperatures, we find N possible values,

indicating a perturbative breaking of center symmetry. However, for massive fermions, center-

symmetry is restored non-perturbatively for finite N . Indeed, in the Polyakov loop scatter plot,

we see that the simulation goes through all N minima of holonomy potential, see Fig. 5 for sim-

ulations, and Fig. 3 for theory. The modulus of Polyakov loop goes from small values at low

temperature to approximately one at high-temperature. Furthermore, the susceptibility makes a

peak around T ∼ (0.3 − 0.5)
√
λ, see Fig. 6. However, it should be emphasized that this is not

a phase transition, since ⟨P ⟩ = 0 on both sides. At the large-N limit, we provide evidence that

this cross-over becomes a sharp phase transition, see Fig. 7. It should also be pointed out that

in a formulation which would respect Gnon−inv, the N -fold perturbative vacuum degeneracy must

survive non-perturbatively because of mixed anomaly (2.8) even at finite-N .

We have investigated chiral condensate numerically for SU(2), see Fig.10a. It is consistent with

theoretical expectations, and in particular, with the instanton result at high-temperature. A rather

beautiful result here is Fig. 11, Monte Carlo history of the correlation between the Polyakov loop

and condensate, indicating an instanton event in simulation and the fact that chiral condensate

receives its dominant contribution from the instanton core. The theoretical counterpart is Fig.4,

showing an instanton profile and a fermionic zero modes localized on the instanton core. Fig.12 is

also evidence in this direction. We interpret these findings as implications of mixed anomaly between

chiral symmetry and center-symmetry of massless theory once it is perturbed by a small mass term.

Usually, it is difficult to estimate the chiral condensate with Wilson fermions due to the additive

renormalization. In two dimensions it is, however, possible to reweight the Wilson ensembles to

the overlap operator. In this way, we have been able to determine the chiral condensate in the zero

mass limit as shown in Fig. 13.

– 26 –



We discussed in detail the current theoretical understanding of confinement vs. screening

behavior of QCD(adj). The main theoretical result is shown in (2.6) and is plotted in Fig. 1.

This understanding is based mainly on three works, [1, 3, 5]. Clearly, this is a hard problem, and

depending on whether Gnon−inv is explicitly broken or not, the answer changes. Even the exactly

massless QCD(adj) confines if 4-fermi operators are added. Our simulations show that the theory in

the massless limit tends towards screening behavior. As the fermion mass gets smaller, the tension

is reduced in a way proportional to fermion masses, see Fig. 17 and 16. We do not see an indication

of 4-fermion induced confinement at the volumes we perform the simulations. Although the Wilson

fermions do not respect non-invertible symmetry, the coefficient of the induced 4-fermi operator O2

given in (2.3) must be rather small, proportional to c2 ∼ r2a2g2 [7]. However, c2 runs according to

asymptotic freedom, and ultimately, it will become strong.

There are further steps needed for a more complete analysis of the theory on the lattice. Obvi-

ously, the investigations of bound state masses require further improvements using other operators,

like the baryonic ones discussed in [38], and better projections to the ground state using smearing.

We also plan to extend the data at larger N , which is a thermodynamic limit, which may allow

the study of genuine phase transitions, rather than cross-overs. Improvements of the lattice action

might be helpful to get a complete picture, in particular using the overlap operator like applied in

[39] in four dimensional adjoint QCD. The precise renormalization group scaling and the relevance

of four fermion operators requires also further investigations in order to provide a more precise

comparison to the results of [3, 5, 7].

Another direction we touched very little, but is important is the simulation of the theory with

periodic boundary conditions. In this case, both theory Fig. 3(b) and numerical simulations Fig.

5(b) indicate that a center-symmetric holonomy configuration (2.14) is effective at small-L. Thus,

perturbative weak coupling analysis (assuming m = 0) indicates that there are N − 1 types of

massless fermions (living in the Cartan subalgebra) at three level, unlike thermal compactification,

where fermions are gapped-out perturbatively by acquiring a thermal mass. Furthermore, peri-

odically compactified (continuum) theory has at least four types of mixed anomalies between the

following symmetry pairs (Z[1]
N , (Z2)χ), ((Z2)F , (Z2)χ), ((Z2)C , (Z2)χ), and (Z[1]

N , Gnon−inv) surviv-

ing compactification. Thus, the vacuum structure of the compactified theory is partially explored

in [5] and deserves further studies both theoretically (especially concerning the realization of non-

invertible symmetry) and numerically. In our preliminary numerical work, we have already seen

indications that this may be rather challenging due to zero modes or near-zero modes.

One more direction is performing simulations for different universes. This may have multi-

ples utilities. One is, assuming that Gnon−inv emerges at low-energies, then each universe must

support exponentially large number of vacua, ≈ 2N−1/N . It may be interesting to investigate

chiral condensates and domain-wall (kink) properties among these vacua, (2.9). The other is re-

lated to an order parameter for confinement. To see this, recall that standard partition function

Z(L) = tr[e−LH ] sums over different universes without distinguishing them. The insertion of 1-form

center symmetry generator Us
k(x) into the trace turns it into a weighted sum over the universes,

Zk(L) = tr[e−LH(Us)
k] =

∑N−1
p=0 ei

2πkp
N Z̃p, where Z̃p is the partition function for universe p, and

Us
k(x) measures the charge associated with it (manifested in phase factor in the sum). Here, k ∈ ZN

is also equivalent to the insertion of k units of ’t Hooft flux, hence Zk is partition function in ’t

Hooft flux sector k. Therefore, the partition function for universe-p is given by

Z̃p =

N−1∑
p=0

ei
2πkp
N Zk (4.1)

(4.1) can also be interpreted as gauging the Z[1]
N 1-form symmetry, which reduces the theory to

SU(N)/ZN theory. Then, the theory can be probed by test charges (at infinity) in the projective
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representation of the SU(N)/ZN , which corresponds to the discrete theta angle θp =
2πp
N [40], and

Z̃p may also be viewed as partition function of (SU(N)/ZN )p theory. In two dimensions, the ratio

Z̃p/Z̃0 is nothing but the ratio of partition functions in the presence of test-charges ±p at ±∞ vs.

in its absence. Hence, it is naturally an order parameter for confinement. If the ratio scales as

exp(−σA) where A is the area of the Euclidean spacetime, then the theory is confined, otherwise

it is deconfined. Hence, it may be useful to study lattice formulations directly projected into these

universes.
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A Theory on the lattice

The theory is formulated on a lattice of sizes Lx = L0 = aNx = aN0 and Lt = L1 = aNt = aN1

with lattice spacing a. In case of non-zero temperature studies, Lt is considered as proportional

to the inverse temperature, whereas Lx should be large. If not further specified, the boundary

conditions are periodic in all directions, except for the fermion fields, which have antiperiodic

boundary conditions in the t-direction. In some cases, we have also investigated periodic fermion

boundary conditions. The gauge theory is SU(N). We mainly focus on fermions in the adjoint

representation, but our program can handle also fundamental fermions.

A.1 Lattice action and algorithms

The gauge action is represented by a simple plaquette action. We are considering the Wilson

fermion action in our main current simulations. In two dimensions, other more involved fermion

formulations like fixed point and overlap fermions have been considered. As shown in [26] for the

’t Hooft model even a reweighting with the fermion determinant might be feasible8. However, in

these first simulations, the essential properties of the theory can be investigated already with a

simpler fermion action. The Wilson-Dirac operator contains a mass parameter m0 or, equivalently,

the hopping parameter κ = 1
2(m0a+2) . Due to the breaking of chiral symmetry with this fermion

action, the mass m0 gets additive and multiplicative renormalization. The methods to handle the

renormalization are well known in four dimensions and we explain some details in Sec. A.2.

The simulations are based on the RHMC algorithm. We have used the program package of our

studies of 4D supersymmetric Yang-Mills theory, which has been generalized to enable Monte-Carlo

simulations in different dimensions. We have also developed a new independent python package

based on tensorflow, capable of simulating these theories [41].

We have tested and verified the code first in the case pure SU(2) Yang-Mills theory in two

dimensions. We have also cross checked our results with existing data for two dimensional QCD in

fundamental and adjoint representation [42–44].

8One difference to the ’t Hooft model is, however, that the fermion determinant does not play a role in the large

N limit. This is different to the adjoint representation. Hence the scaling of the reweighting factors towards large N

is different.
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Figure 20: Mass extrapolations in SU(2) QCD2(adj). Different volumes and gauge couplings are

combined in this plot, excluding Lmπ < 3. (a) The data at β = 35 is fitted according to a quadratic

polynomial (fitting mc, c1, c2) and with unknown exponent (fitting mc, b1, γ). The first fit result

is mc/
√
λ = −0.19328(77), the second fit mc/

√
λ = −0.2084(14), γ = 1.311(13). (b) The data

at β = 35 and β = 15 are fitted to a quadratic polynomial. The dashed line corresponds to an

additional fit according to b1(x−mc)
4/3. The value of mc obtained in quadratic fit has been used

to shift the data.

A.2 Parameter tuning

The first important step is an identification of the relevant parameter space by choosing the mass

parameter (κ = 1
2(am0+2) ) and the gauge coupling (β = 2N

ag2 ). In addition the volume dependence

has to be considered.

The bare gauge coupling g in two dimensions has the units of mass. All other dimensionful

quantities can be expressed in units of the bare gauge coupling. An important dimensionful quantity

to quantify the relevant scale of the theory is the string tension. For a first estimate, it can be

considered in the pure Yang-Mills limit. The scale of the string tension suggests large values of the

gauge coupling if one assumes that the lattice size or lattice spacing in units of the string tension

should be similar to common values in four dimensional lattice simulations.

A further hint for the choice of the gauge coupling is the continuum extrapolation. The string

tension in units of the gauge coupling can only be extrapolated to a continuum limit value if one

excludes large values of g. This is related to the Gross-Witten transition [45]. This transition

separates a strong coupling and weak coupling phase at a value λ = 2 of the ’t Hooft coupling

λ = g2N . This constraint of the gauge coupling are naturally applied in studies of the ’t Hooft

model [26], but they should also be applied here. It implies a lower limit of the gauge coupling

β > N2. In order to have an feasible continuum extrapolation, even much larger values of β

should be considered. In our SU(2) simulations, we have chosen β = 15, 30, 35, 50, 200 and as a

test considered also β = 3, 6, 10. Towards larger SU(N), we have tried to stay at constant ’t Hooft

couplings.

Concerning the values of the mass parameter, there are some difference with respect to the ’t

Hooft model due to the way the large N limit is taken. Since in the ’t Hooft model first the N → ∞
and then the massless limit has to be considered, the mass in units of the gauge coupling has to be

kept at a larger value. In our case, we are interested in the small mass limit even at a fixed N .

In the formulation withWilson fermions, there is an additive and multiplicative remormalization

of the fermion mass. Hence the tuning of the bare mass parameter (m0 or κ) has to be done. This

is usually based on signals for chiral symmetry, which is not a continuous symmetry in this model.
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SU(2) SU(3) SU(4) SU(6)

β 35 78.75 140 315

amπ at κ = 0.255 0.23239(34) 0.23395(22) 0.23451(99) 0.23457(29)

amπ at κ = 0.2576 0.18030(55) 0.18155(28) 0.18309(25) 0.18285(43)

Table 2: Comparison of mπ values for different N keeping λ constant.

The situation is quite similar to QCD with one fermion flavour in four dimensions and similar

techniques can be applied here. The a − π mass (mπ) can be an indication of the chiral limit

(corresponding to parameters mc, κc) and the mass tuning. It is derived from the correlator of P

in (3.4) by taking only connected fermion diagrams into account. It is not related to a physical

state, but it can be considered in a theory with a larger number of adjoint fermions. Our approach

follows the techniques of partially quenched chiral perturbation theory used in the four dimensional

counterpart. The approximate dependence in four dimensions is provided by partially quenched

chiral perturbation theory m2
π ∝ m. This means mc, the value of m0 at which m2

π = 0, can be

linearly extrapolated.

In strong coupling large N limit, the dependence mπ(m0) is known analytically in four di-

mensions [46]. The same analysis of weak and strong coupling limits provide a possible parameter

range for our two dimensional model: 0.25 ≤ κc ≤ 0.35. There might, however, be considerable

differences to the four dimensional case. Expanding the strong coupling dependence in powers of

m0, the second order coefficient has the opposite sign compared to four dimensions, which indicates

different corrections to the lowest order chiral extrapolation curve. Investigations of the ’t Hooft

model have even found a different functional dependence of mπ on m. It has been observed that

m2
π ∝ m for U(N), but mπ ∝ m2/3 for SU(N) [26, 47], which is also the expected dependence for

the Schwinger model. We have tested different extrapolations with our simulation results as shown

in Fig. 20. A fit of the exponent in Fig. 20a yields a value closer to the dependence m2
π ∝ m4/3,

but a fit with linear dependence and quadratic corrections works equally well. At the current pre-

cision, it is therefore not possible to distinguish the two proposals for the mass dependence and

the difference is almost negligible in the considered parameter range, see Fig. 20b. In addition we

have also checked for possible finite volume effects. Considerable effects for mπ are observed below

Lmπ < 3.

We have considered also larger N keeping the ’t Hooft coupling λ fixed. As an example, we

have taken β = 35 at SU(2) as a reference and obtained the results summarized in Tab. 2. This

implies that no separate mass tuning is required for different N since the results at fixed λ are

consistent.

B Further results

We provide here some additional data to support our findings in the main part of the paper.

In order to show how the pure gauge limit is obtained from the mass dependence, we have added

Fig. 21 as an extension of Fig. 8. The peak of the susceptibility moves towards higher temperatures

as the mass increases if all other parameters are kept fix. It is expected to scale roughly like a fixed

critical mL if the mass is sufficiently heavy, see Eq. (3.6). At temperatures below the peak, the

susceptibility decreases with increasing masses, finally approaching the pure gauge limit. This limit

can be analytically calculated using (3.3) and eq.14.30 in [30], if the susceptibility of the Polyakov

loop is considered instead of the susceptibility of its modulus as in the rest of the paper. The

analytic prediction is consistent with our simulation data at κ = 0, and is shown in Fig. 21.
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This time showing the susceptibility of the Polyakov loop (not of its modulus). The pure gauge line

shows the analytic result. One lower and one heavy mass is added for comparison.
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Figure 22: Mass dependence of static quark-antiquark potential like in Fig. 17, this time for the

gauge group SU(3). (a) V (Rs) at large
√
λRs > 3.2 is fitted to the linear dependence V (Rs) =

A+ σRs. (b) The fit results are extrapolated to the chiral limit using a quadratic polynomial.

The second additional investigation is whether the transition from a confining static potential

with significant finite string tension towards screening or near zero string tension in massless limit

can be observed for N ≥ 3. Therefore we repeated the investigation of Fig. 17 for the gauge group

SU(3). In pure gauge theory limit as well as at short distances in QCD2(adj), the slope of the static

potential is larger than for SU(2). Therefore a fit of the large distance behaviour has to be done at

a larger
√
λRs. The result is, however, quite consistent with the SU(2) string tension: at zero mass

limit, the string tension extrapolates to small values consistent with zero.
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