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Figure 1. We propose GEARS, a method to synthesize sequence of hand poses during interaction with an object. GEARS takes hand and
object trajectory as input. It generates realistic hand poses that are well-adapted to object surface, irrespective of object category and size.
We show sample results on different datasets. Hands colored in blue are inputs while hands colored in cyan are our predictions.

Abstract

Generating realistic hand motion sequences in interac-
tion with objects has gained increasing attention with the
growing interest in digital humans. Prior work has illus-
trated the effectiveness of employing occupancy-based or
distance-based virtual sensors to extract hand-object inter-
action features. Nonetheless, these methods show limited
generalizability across object categories, shapes and sizes.
We hypothesize that this is due to two reasons: 1) the limited
expressiveness of employed virtual sensors, and 2) scarcity
of available training data. To tackle this challenge, we in-
troduce a novel joint-centered sensor designed to reason
about local object geometry near potential interaction re-
gions. The sensor queries for object surface points in the
neighbourhood of each hand joint. As an important step to-
wards mitigating the learning complexity, we transform the
points from global frame to hand template frame and use a
shared module to process sensor features of each individ-
ual joint. This is followed by a spatio-temporal transformer

network aimed at capturing correlation among the joints in
different dimensions. Moreover, we devise simple heuristic
rules to augment the limited training sequences with vast
static hand grasping samples. This leads to a broader spec-
trum of grasping types observed during training, in turn en-
hancing our model’s generalization capability. We evalu-
ate on two public datasets, GRAB and InterCap, where our
method shows superiority over baselines both quantitatively
and perceptually.

1. Introduction

We humans mostly rely on hands to interact with different
objects in the surrounding environment. Learning the high-
dimensional space of plausible hand-object interactions is
an important and challenging task that needs to be solved
in many applications. These include modeling digital hu-
mans in Augmented and Virtual Reality, or reasoning about
potential grasps in robotics.
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Figure 2. An overview of our method. The input consists of the hand trajectory, object trajectory and object template mesh. For each
time frame, the object mesh is cropped with a cube-shaped virtual sensor positioned and oriented based on the wrist. The cropped object
points together with the hand trajectory are fed to the Joint Initialization Network to predict coarse joints locations. We then place more
fine-grained geometry sensors at each joint to extract joint-local object features. The features are subsequently processed by the Joint
Displacement Network to refine the initialized joints. Finally, we fit MANO hand model [28] to the joints to get the hand mesh sequence.

Real world objects can largely differ in size, topology
and geometry. Learning a model which can adapt to ob-
ject surface is a particularly demanding task, especially
when existing dynamic hand-object interaction data is very
scarce. One crucial factor determining generalization capa-
bility lies in how the object is encoded relative to the hand.
Previous work [33, 41] proposed to use occupancy-based
or distance-based virtual sensors to represent local surface
geometry. However, these features have two limitations.
First, they are inherently constrained by their expressive-
ness. Occupancy-based sensor attaches an occupancy grid
to the hand. Occupancy grids with a low resolution can
only detect coarse object geometry. On the other hand, in-
creasing the grid resolution would result in an exponential
increase in feature size. Distance-based sensor measures the
distance from a fixed set of basis points rigidly attached to
the hand to the closest points on the object surface. It gives
more fine-grained features and it is also less computation-
ally expensive. However, a discrete collection of hand-to-
object distance cannot faithfully describe local object ge-
ometry properties such as normal directions and curvature.
Moreover, features computed by both of the aforementioned
sensors are global with respect to the hand, which means
it is difficult to model the intricate correlation between the
movement of each finger. As the result, these methods ex-
hibit limited generalization capabilities to unseen objects of
different sizes.

The ability of humans to perform dexterous object ma-
nipulations is attributed to the dense tactile sensory recep-
tors in the skin. Thus, we hypothesize that the ability to

reason about local geometry is key to generalization to ar-
bitrary surfaces. Inspired by this, we propose a novel hand-
object interaction sensor which is local to every hand joint.
Specifically, we establish a canonical frame at each joint,
and use a shared module to process local object points
within a small radius of the joint. This way, the module
learns joint-agnostic local features, which are highly gener-
alizable from limited training data. We further fuse together
features at each joint by self-attention operations, enabling
the model to learn the compositional relationship between
different joints in forming the hand pose.

Due to the limited availability of dynamic human-object
interaction data, we present a simple yet effective method
for generating dynamic hand sequences from static grasps.
Static hand grasping data is easily accessible and exhibits a
diverse range of object geometry and grasping type. With
our data augmentation procedure, we can turn them into ar-
tifical grasping sequences. We show that adding them to our
training dataset can further improve the results.

Our contributions are as follows:
• We propose a learning-based method to synthesize di-

verse hand motion sequences interacting with objects.
Though trained only on small hand-held objects, we show
that our model naturally generalizes to objects of larger
sizes (see Figure. 1).

• We introduce a novel hand-object interaction sensor,
which detects local object surface geometry relative to
hand joints. This is proven essential to our model’s gen-
eralization capabilities.

• With a simple yet effective data augmentation trick, we
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are able to utilizing the vast amount of existing static hand
grasp data to train our model.

• Our code and pre-trained model will be released to en-
hance further research in this direction.

2. Related Work
Static Grasp Synthesis. Synthesizing stable hand grasps
given target objects has been extensively studied in com-
puter graphics [19] and robotics [29, 30]. Conventional
analytical approaches assume a simplified contact model
and solve a constrained optimization problem to satisfy the
force-closure condition [1, 8, 27, 47]. In contrast, data-
driven approaches generate grasp hypotheses from human
demonstrations or annotated 3D data, and rank them ac-
cording to certain quality metrics [2, 21]. Modern robotic
grasping simulators usually combine the merits of both [20,
24]. Recently, there has been an increasing interest in train-
ing neural network-based models for hand grasp genera-
tion [3, 7, 12, 14, 18, 23, 31, 50]. For example, [16, 17]
modeled the hand-object proximity as an implicit function.

Dynamic Grasp Synthesis. In comparison with static
grasp synthesis, generating dynamic manipulation of ob-
jects is more challenging since it additionally requires dy-
namic hand and object interaction to be modeled. This task
is usually approached by optimizing hand poses to satisfy a
range of contact force constraints [22, 26, 40, 45]. With the
advent of deep reinforcement learning, a number of work
explored training hand grasping control policies in physics
simulation [6, 38, 42]. Hand motions generated by these
works are physically plausible but lack natural variations.
Zheng et al. [46] modeled hand poses in a canonicalized
object-centric space, achieving category-level generaliza-
tion for both rigid and articulated objects. More similar to
our work are ManipNet [41] and GRIP [33], which utilized
occupancy-based and distance-based sensors to extract lo-
cal object features near the hand and then directly regressed
hand poses from the features. We argue that these features
are limited by resolution and they are global with respect
to the hand, hence hindering generalization capability. In
contrast, we adopt a novel joint-centered point-based sensor
which captures local object geometry in finer details while
enabling modeling the correlation among hand joints.

Full-body Human-object Interaction Synthesis. Gen-
erating realistic human motion sequences in 3D scenes has
received considerable attention in recent years [11, 15, 25,
35, 36, 43, 44]. However, these work usually models coarse
body motion only and ignore fine-grained finger articula-
tions. Another line of work focused on generating full-body
motion for grasping [9]. A typical solution to this prob-
lem is first generating the final static grasping pose and then
using a motion infilling network to generate the interme-
diate poses [32, 37]. [34] and [48] leveraged the existing
body pose prior and hand-only grasping prior to circumvent

the limited diversity in available full-body grasping data.
Braun et al. [4] adopted a physics-based approach, train-
ing separate low-level policies for the body and fingers, and
then integrating them with a high-level policy which oper-
ates in latent space.

Grasp Refinement. As consumer-level hand tracking
devices including RGB/depth cameras, data gloves and
IMUs become more accessible, it is relatively easy to ac-
quire hands that are approximately correct but may con-
tain noise and artifacts. Refining hand poses in accordance
with hand-object interaction emerges as a practical research
problem [31]. [39] and [10] proposed to identify the poten-
tial contact area on the object surface and subsequently ad-
just the hand to align with the predicted contact points. Lim-
ited by their contact representations, they can only handle
static hand grasp. Zhou et al. [49] improved upon them and
extended the binary contact map representation to a spatio-
temporal correspondence map, enabling the refinement of a
hand motion sequence. We deviate from these work in our
assumptions, as we only require hand and object trajectories
as input.

3. Method

Given the trajectories of a hand and an object in interaction,
we aim to generate hand poses that align with the object mo-
tion. The object shape is assumed to be known. We tackle
this problem in three steps. First, we estimate a coarse ini-
tial hand pose for each frame individually. We place vir-
tual sensors on the initialized hand joints, detecting nearby
object surface points and extracting hand-object interaction
features based on these points. Local to each joint, the fea-
tures are fed to a spatio-temporal attention network, which
learns the correlation among hand joints and generates dis-
placements to the initialized hand joints. Lastly, we solve
an optimization problem and fit a parametric hand model to
the predicted joints. See Figure. 2 for an overview of our
method.

Specifically, our input consists of the hand trajectory{
wt,Rt

H

}T
t=1

, the object trajectory
{
ot,Rt

O

}T
t=1

and the
object template mesh MO = {V O,FO}, with wt,ot ∈
R3 denoting hand and object translations and Rt

H ,Rt
O ∈

SO3 denoting hand and object global orientations respec-
tively. We use the MANO model [28] as our hand repre-
sentation, which is parameterized by shape β and pose θ.
Hence the hand trajectory is composed of the wrist joint
coordinates and the global orientation of the target MANO
hand at each frame.

3.1. Joint Initialization Network

Given the object position and orientation at frame t, we first
obtain the object mesh at that frame by V t

O = Rt
OV O+ot.

In order to predict an initial hand pose, only the part of the
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Figure 3. Visualization of our joint-local geometry sensor. (Left)
Given the joints positions and the object mesh, we sample points
on the object surface within a specified radius centered at each
joint. The object points are represented in a joint-local frame.
(Right) We transform the sampled object points from global frame
to the canonical frame defined by the MANO template hand.

object which is close to the wrist matters. Hence we crop the
object by a cube-shaped virtual sensor St rigidly attached
to the wrist. The resulting partial object mesh is denoted by
M t

O
′
=
{
V t

O
′
,F t

O
′
}

, where V t
O
′
= {vi ∈ V t

O : vi /∈

St} and F t
O
′ ⊆ F t

O.
Let P t ∈ RN×3 denote the point cloud sampled on

M t
O
′
. We subsequently express the point cloud relative to

the wrist:

P̃
t
= Rt

H
T (

P t −wt
)
. (1)

We additionally sample the hand trajectory centered on
the current frame. We sample k frames both in the past
and in the future, and express them relative to the wrist
in a similar fashion as 1. The inputs to the hand pose
initialization module are

[
w̃t−k:t+k, R̃

t−k:t+k

H , P̃
t
]
, where

w̃t−k:t+k and R̃
t−k:t+k

H are canonicalized sampled wrist
positions and orientations respectively. In particular, we
first use PointNet to extract a global feature vector from
the partial point cloud P . This feature vector is then con-
catenated with the trajectory and fed to a three-layer fully-
connected network. The output of the network is denoted
by jtinit, which represents the initialized coordinates relative
to the wrist. The training loss for this module is defined by

Linit =
∥∥j init − jgt

∥∥2
2
, (2)

where jgt denotes groundtruth joint coordinates.

3.2. Local Geometry Sensor

Although coarse and inaccurate, the initialized joints offer
an indication of where the hand could potentially interact

with the object. To refine the initial joint positions, we need
to sense local geometry properties of the object near the in-
teraction regions.

We introduce a novel joint-centered point-based local ge-
ometry sensor to overcome these limitations. Specifically,
given the predicted joints {ji}Ji=1, we can utilize inverse
kinematics to analytically derive the joint rotations which
satisfy:

jk − jpa(k) = Rk,pa(k)

(
j̄k − j̄pa(k)

)
, (3)

where Rk,pa(k) is the relative angle between the k-th joint
and its parent, and {j̄k} are joints in the rest pose. In this
manner, we can define the template frame of the k-th joint
by

Tk =
∏

i∈A(k)

Ri,pa(i) ji
1 0

, (4)

where A(k) denotes the list of ancestors of joint k and Tk
is the transformation which brings joint k from the template
frame to the global frame.

By sampling object surface points within a given radius
r of the k-th joint along with their normal vectors, we get
F k = {P k,Nk}, where P k = {vi ∈ V : ∥vi − jk∥

2
2 <

r}. We then transform the sampled points to the template
frame, by

F̄ k = {P̄ k, N̄k} (5)

= {T −1
k (P k − jk), T −1

k Nk}. (6)

Since we now have the sampled object points in a joint-
centered canonical frame, we apply a learnable module ffeat
to process the transformed points. Note that this module is
shared between joints, which greatly reduces the learning
complexity. We hence arrive at a hand-object interaction
feature fk = ffeat(F̄ k) for each joint k. We implement ffeat
with a three-layer PointNet architecture.

3.3. Joint Displacement Network

With the local object features aggregated at each joint, we
propose to use a transformer architecture to predict dis-
placement vectors to the initialized joints. Achieving a vi-
sually plausible and smooth hand sequence requires mod-
eling spatio-temporal inter-joint dependencies. Hence we
apply the self-attention operation in both spatial and tem-
poral dimensions. Concretely, we first project the initial-
ized joint coordinates to per-joint embedding vectors with a
fully-connected network gembed:

ek = gembed(T −1
k jk), (7)
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where k is the joint index. We concatenate the joint-local
sensor features with the joint embeddings and obtain X =
concat(f , e), which is the input feature tensor for our trans-
former. Note that X contains features for all the joints in
all time frames. We divide X along its spatial and tempo-
ral dimension, and apply a self-attention function to them
separately.

Spatial self-attention. The spatial self-attention module
divides X into batches of frames, and each batch contains
joint features in a single frame, denoted by XS . This mod-
ule takes the hands in different frames as static identities,
and focuses on learning the correlations between different
fingers. Following conventional self-attention operations,
we linearly project XS to queries QS , keys KS and values
V S . The output feature is hence obtained by

X̃S = sa(QS ,KS ,V S) (8)

= softmax

(
QSK

T
S√

l

)
V S , (9)

where l is the length of key, query and value vectors. See
Fig. 4 (Left) for an illustration.

Temporal self-attention. On the other hand, the tempo-
ral self-attention module divides X into batches of joints,
and each batch contains features of a specific joint across
the whole sequence, denoted by XT . This module mod-
els the trajectory of each individual joint, ensuring that all
joints move in a temporally smooth and consistent manner.
We similarly project XT to queries KT , keys QT and val-
ues V T respectively. The module output is

X̃T = sa(QT ,KT ,V T ). (10)

See Fig. 4 (Right) for an illustration.
The Joint Displacement Network consists of interleaving

spatial and temporal self-attention modules. The output of
the last module is fed to a linear layer to produce the joint
displacement vectors d̄ in template frame. As the last step,
we utilize the pose transformation derived from IK previ-
ously to transform d̄ back to global frame:

dk =

 ∏
i∈A(k)

Ri,pa(i)

 d̄k. (11)

The training loss for this module is defined by

Ldisp =
∥∥jdisp + d− jgt

∥∥2
2
. (12)

3.4. Hand Fitting

With the predicted sequence of hand joints j, we need to
recover the hand meshes. This is done by minimizing

L(β,θ) = ∥J (H (β,θ))− j∥22 + Lreg(β,θ), (13)

where J is the function which takes hand vertices as in-
put and outputs joint coordinates. The second term of (13)
regularizes the shape and pose parameters of MANO,

Lreg(β,θ) = w1 ∥β∥2 + w2

T∑
t=1

∥∥θt
∥∥2

+ w3

T−1∑
t=1

∥∥θt+1 − θt
∥∥2 + w4

T−1∑
t=2

J∑
i=1

∥∥∥j̈ti∥∥∥, (14)

where we enforce temporal smoothness by regularizing
both the first and the second time derivatives of the joints.

3.5. Data Synthesis

Accurately capturing hand motion sequences, especially in
presence of interacting objects, is a particularly challeng-
ing task. Sophisticated solutions usually involve expensive
marker-based MoCap systems. As a result, there are only
few dynamic hand-object interaction datasets available for
use. Nevertheless, capturing the hand in a static pose while
grasping an object is relatively straightforward. We can
have a much larger training set if we are able to utilizing
the widely available static hand grasping datasets. In the
following, we introduce a simple yet efficient way to syn-
thesize hand sequences from static poses.

Given mesh of a static hand grasping an object, we first
fit MANO model to the hand to get the target joint rota-
tions P T , global orientation RT and translation dT , where
T is the desired sequence length. We then generate a source
hand as the first frame of the sequence, where the pose is
generated by adding a small random Gaussian noise to the
mean MANO pose. Similarly, we perturb RT with Gaus-
sian noise to get the global orientation of the initial hand.
Next, we compute the average distance moved by the hand
per frame from GRAB. The initial translation is determined
by moving along the negative normal direction of the target
hand palm by this distance.

To obtain hand meshes in intermediate time steps, we
apply linear interpolation to hand translation and spherical
linear interpolation to joint rotations:

dt = (1− t)d0 + tdT (15)

P t = SLERP(P 0,P T , t) (16)

Rt = SLERP(R0,RT , t). (17)

Generating sequences in this way could result in hand-
object intersections. Rather than relying on path planning
algorithms to prevent collisions, we simply compute the
highest intersection volume of a sequence and eliminate se-
quences with intersection volume surpassing a predefined
threshold. See Figure. 5 for a sample sequence.
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Figure 4. An illustration of spatial and temporal attention net-
works. We first process the features of each joint by PointNet. For
spatial attention, every joint attends to every other joint of the same
hand. While for temporal attention, a joint in one frame attends to
the same joint in every other frame.

Figure 5. A sample training sequence synthesized by our heuristic
rule. At the rightmost side of the time axis is a static grasping pose
from ObMan [12]. We synthesize intermediate poses by interpo-
lating joint angles from the mean MANO pose.

3.6. Implementation Details

For Joint Initialization Network, the side length of the cube
sensor is 18cm. We sample 2000 points on the partial object
mesh as input to PointNet. We uniformly sample 10 frames
in the past and in the future within a 1 second time window
to compute the trajectory feature. When querying for joint-
local object points, we use the sphere sensor with a radius
of 2.5cm. A maximum of 300 points are sampled in the
neighbourhood of each joint.

4. Experiments
4.1. Datasets

GRAB. We train GEARS on GRAB [31], a large-scale Mo-
Cap dataset for whole-body grasping. GRAB contains in-

teraction sequences with 51 objects. Following the official
protocol, we select 10 objects for validation and testing, and
train with the rest. Due to symmetry of the two hands, we
flip left hands to increase the amount of training data. We
further augment the training set by transferring grasps to
objects of varying sizes, following [49].
InterCap. InterCap [13] is a dataset of whole-body human-
scene interaction captured by multiview RGB-D cameras.
It features frame-wise pseudo-groundtruth annotations for
body, hand and 6D object poses, which are reconstructed
by jointly reasoning about human and object contact areas.
As we solely focus on hand-object interaction, we consider
a subset of objects where the hand is in interaction.
ObMan. ObMan [12] is a static hand grasping dataset. It
consists of object models taken from Shapenet [5] and syn-
thetic hand grasps generated by the robotic grasping soft-
ware GraspIt [24]. Since it only has static hand poses, we
cannot directly train on it. Instead, we apply the data syn-
thesis technique and generate 200 sequences for training
and testing. Each sequence has a fixed length of 60 frames.

4.2. Metrics

Mean Per-Joint Position Error (MPJPE). We report
the average Euclidean distance between predicted and
groundtruth 3D hand joints.
Penetration Depth (PD). Penetration depth is the mini-
mum distance required for moving a mesh to make it no
longer in intersection with another mesh. We approximate
it by finding the maximum vertex-to-object distance for all
the penetrating hand vertices.
Intersection Volume (IV). We measure hand-object inter-
penetration by voxelizing hand and object meshes and re-
porting the volume of voxels occupied by both. However,
interpreting this metric in isolation could be misleading,
since it does not account for non-effective grasping artifacts.
Contact IoU (C-IoU). This metric evaluates the
Intersection-over-Union between the groundtruth bi-
nary hand-object contact map and the contact map of
predicted hands. The contact map is defined on the object
surface. It takes a value of 1 if a hand vertex is within
±2mm of an object vertex and 0 otherwise.

4.3. Baselines

TOCH [49] is an object-centric model designed for refining
noisy hand-object interaction sequences. We tailor it to our
task by feeding it with the groundtruth hand trajectory and
replacing the noisy hands in the training set with flat hands.
ManipNet [41] relies on both occupancy-based and
distance-based sensors to generate dexterous hand motions.
Since the original work assumed a different hand model, we
adapt it to MANO to compare on a fair ground.
GRIP [33] takes body arm trajectory as input to generate
hand poses. It employs a standalone module to denoise the
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MPJPE (mm) ↓ PD (mm) ↓ IV (cm3) ↓ C-IoU (%) ↑
TOCH 8.18 5.37 2.72 20.1
ManipNet 9.32 5.66 3.21 18.3
GRIP 7.71 4.80 2.51 19.9
GEARS (ours) 7.24 4.36 2.24 22.7

Table 1. We quantitatively compare GEARS to other baselines on the GRAB dataset. Each model is trained with the same amount data,
including the synthetic sequences generated from ObMan.

PD (mm) ↓ IV (cm3) ↓
ManipNet 8.22 6.15
GRIP 7.92 5.68
GEARS (ours) 7.44 5.21

Table 2. Quantitative comparison on InterCap. We evaluate on a
selected subset of objects where hand interaction is involved.

MPJPE (mm) ↓ C-IoU (%) ↑
r = 0 9.34 14.8
r = 0.02 7.28 22.1
r = 0.03 7.24 21.9
w/o displacement 9.63 13.2
w/o attention 7.85 18.4
w/o synthetic 7.31 20.6
Ours (iterative) 7.37 19.2
Ours (full) 7.24 22.7

Table 3. Ablaion studies evaluated on GRAB. The variable r refers
to the radius of joint-local sensor in millimeters.

arm trajectory and obtain hand trajectory. For fair compari-
son, we directly provide GRIP with input hand trajectories.

4.4. Quantitative and Qualitative Evaluation

To verify that our GEARS generates realistic interaction se-
quences, we first evaluate our method on GRAB and com-
pare with the aforementioned baselines. The results are
reported in Table. 1. GEARS outperforms other baselines
on all four metrics, which clearly demonstrates the advan-
tage of our method. We can observe that although both
ManipNet and GRIP rely on distance-based sensors, GRIP
achieves better performance both in terms of joint accuracy
and inter-penetration score. We hypothesize that it could
attribute to the two-stage approach followed by GRIP. Sim-
ilar to us, GRIP generates a coarse hand first and subse-
quently refined it. Moreover, TOCH incurs a higher MPJPE
but also achieves higher contact IoU than GRIP. This ob-
servation shows that a higher joint error doesn’t necessarily
indicate worse grasping quality. TOCH leverages an object-
centric interaction representation, which naturally encour-
ages hand-object contact. See Figure. 6 (top row) for quali-
tative results on GRAB.

GRAB contains mostly small-to-medium sized house-
hold objects. To assess our model’s generalization ca-
pability to larger objects, we evaluate on the InterCap
dataset. We exclude TOCH from this comparison because
the object-centric contact map used by TOCH is highly sen-
sitive to object size. Since the groundtruth hand pose an-
notations of InterCap are not accurate enough, we only re-
port penetration depth and intersection volume, see Table. 2.
Compared to GRIP and ManipNet, GEARS incurs less pen-
etration with the objects. Note that all three methods report
higher numbers than on GRAB. It can be partially explained
by the fact that the input hand trajectory provided by Inter-
Cap may exhibit a certain degree of noise. See Figure. 6
(bottom rows) for a qualitative comparison on InterCap.

4.5. Ablation Studies

We ablate different components of GEARS and report the
change in performance on GRAB to further justify our pro-
posed method, see Table 3. We first evaluate how sensitive
is the model to different sensor radius. Zero radius means
that sensor features are neglected by the network. We can
observe that as long as the radius is set within a reasonable
range, it doesn’t have a significant impact on performance.

Moreover, we train three baseline models, for which
i) the Joint Displacement Network is removed; ii) spatio-
temporal attention is replaced by fully-connected layers; iii)
additional synthetic training sequences are not used. It’s
clear that the Joint Displacement Network plays the most
important role in our architecture. This agrees with our in-
tuition that local object geometry features are essential to
fine-grained placement of joints.

Lastly, we design an iterative baseline, where at infer-
ence time the output of the Joint Displacement Network
is fed back to itself as input. We expect that one more
round of pose refining would further improve the genera-
tion quality. Surprisingly, the iterative refining approach
doesn’t bring any benefit. We hypothesize that the under-
lying reason could be distributional shift of test data, since
the Joint Displacement Network has only seen the output of
Joint Initialization Network during training.
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GT GEARS GRIP ManipNet

Figure 6. Qualitative results on GRAB (top row) and InterCap (bottom two rows). GEARS makes effective contact with the objects while
avoiding hand-object inter-penetration.

5. Conclusion

We present GEARS, a learning-based method for generat-
ing hand interaction sequences given hand and object trajec-
tories. The main insight which makes GEARS effective is
the novel joint-centered point-based sensor which captures
local geometry properties of the target object. Furthermore,
we design a spatio-temporal self-attention architecture to
process joint-local features and learn the correlation among
hand joints during interaction. GEARS is capable of gener-
alizing across objects of varying sizes and categories. We
show that GEARS outperforms previous methods in terms

of generation quality and generalizability.
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