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One of the main challenges in device-independent quantum key distribution (DIQKD) is achieving
the required Bell violation over long distances, as the channel losses result in low overall detection
efficiencies. Recent works have explored the concept of certifying nonlocal correlations over extended
distances through the use of a local Bell test. Here, an additional quantum device is placed in
close proximity to one party, using short-distance correlations to verify nonlocal behavior at long
distances. However, existing works have either not resolved the question of DIQKD security against
active attackers in this setup, or used methods that do not yield tight bounds on the keyrates. In
this work, we introduce a general formulation of the key rate computation task in this setup that can
be combined with recently developed methods for analyzing standard DIQKD. Using this method,
we show that if the short-distance devices exhibit sufficiently high detection efficiencies, positive key
rates can be achieved in the long-distance branch with lower detection efficiencies as compared to
standard DIQKD setups. This highlights the potential for improved performance of DIQKD over
extended distances in scenarios where short-distance correlations are leveraged to validate quantum
correlations.

I. INTRODUCTION

Quantum Key Distribution (QKD) [1, 2] is the only
technology that, in principle, enables fundamentally un-
breakable encryption. Nevertheless, its practical appli-
cation faces susceptibility to attacks at the implementa-
tion level, which exploit deviations between the theoret-
ical device models and their physical realizations [3–8].
To address this vulnerability, researchers have developed
Device-Independent (DI) QKD [9–12]. With this ap-
proach, security no longer depends on the precise charac-
terization of the quantum devices, but can be guaranteed
solely by analyzing their classical inputs and outputs.
However, its practical implementation hinges on success-
ful execution of a Bell test free of security loopholes,
making it particularly sensitive to noise. Consequently,
state-of-the-art implementations are constrained to rela-
tively short transmission distances and limited key gener-
ation rates [13–15]. This illustrates that while promising,
DIQKD still has to go a long way until it will be of prac-
tical use.

In response to this challenge, a novel approach was
introduced that aims at certifying quantum correlations
over extended distances [16, 17]. In addition to the usual
QKD setting, where two spatially separated parties (Al-
ice and Bob) aim to establish a shared secret key, this in-
novative architecture employs a local Bell test conducted
in close proximity to Alice, with another party we shall
call Ben. The setting is illustrated in Fig. 1. In every
round of the protocol there is a random choice between

∗ yzetan@uwaterloo.ca
† rawolf@phys.ethz.ch

local Bell test

SA

x

a

switch
B̂

ŷ
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FIG. 1. Setting for DIQKD with a local Bell test. Alice
(A) and Bob (B) want to establish a secret key over a long
distance with the help of a local Bell test performed by Alice
and Ben (B̂).

performing the local Bell test with Ben, versus transmit-
ting the quantum state to Bob (visualized with a switch
in the figure). The advantage of this setup is that the
local Bell test can be carried out over minimal distance,
as long as a no-communication condition can still be en-
forced between the devices. Hence, one can minimize all
losses that occur due to long distances and thus achieve
a large Bell violation. As a result, the local Bell test
allows self-testing of the devices close to the source, in-
cluding Alice’s measurements. This information can be
helpful in mitigating potential eavesdropper attacks on
the DIQKD protocol between Alice and Bob. If a spe-
cific Bell violation is observed in the local Bell test, it
severely limits possible attacks on Alice’s devices, since
these are certified by this procedure: for example, if the
parties observe maximal Bell violation in the local Bell
test, they know that Alice’s devices behave perfectly.
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The idea behind this architecture was initially pro-
posed in [16], though the original work employed an
entanglement-swapping procedure rather than the routed
Bell test configuration depicted in Fig. 1. Subse-
quently, it was observed in [17] that the entanglement-
swapping procedure could be effectively substituted with
the routed configuration. In [17], the authors studied the
question of how to certify nonlocality in this setup, us-
ing the standard CHSH setting. They argue that for any
non-zero CHSH violation in the local Bell test (i.e., any
CHSH value greater than 2), some form of nonlocality
in the distant setting can be certified even if no CHSH
violation is observed, as long as the CHSH value is larger
than zero. This result suggests that routed Bell test
setups could have the potential to significantly extend
the range over which nonlocality can be demonstrated, a
crucial foundation for carrying out a successful DIQKD
protocol. However, as pointed out in [18], the form of
nonlocality certified by [17] is somewhat weak; further-
more, the analysis does not account for active attackers
in the long-distance branch, which would be essential in
any QKD security proof.

With the exception of [16], prior investigations of this
setup have not analyzed the security of DIQKD against
an active attacker. In [16], the security analysis employed
an indirect approach that first characterizes Alice’s mea-
surements through the local Bell test, followed by key
rate computation using one-sided DI proof techniques.
Because of the intermediate step of characterizing Al-
ice’s measurements, this method results in somewhat
sub-optimal key rates. Our contribution lies in intro-
ducing a direct formulation of the key rate computation
task in the proposed setup without going via one-sided
DI techniques, allowing us to address it using recently de-
veloped methods [19] for key rate computations in stan-
dard DI setups. With this approach, we obtain a flexi-
ble method to compute much tighter bounds on the key
rates in such DIQKD configurations, avoiding the sub-
optimality of the approach in [16].

Applying our method to some demonstrative scenar-
ios, we can show that if the detection efficiencies are
sufficiently high in the short-distance devices, then it is
possible to obtain positive key rates with lower detection
efficiencies in the long-distance branch as compared to
standard DIQKD setups.

Similar results have been independently derived in a
separate work [20]. We thank the authors of that work
for coordinating a joint release of our results.

II. METHODS

In this work we focus only on computing the asymp-
totic keyrates in the limit of a large number of rounds.
However, the methods we present can be directly ex-
tended to prove finite-size security against arbitrary
attacks (usually referred to as coherent attacks) by
using the generalized entropy accumulation theorem

(GEAT) [21]. We briefly describe this further in Ap-
pendix A, though it is not the focus of this work.

We focus on protocols with the structure described
in [21], as follows. The protocol consists of n rounds
where states are generated and sent to the various parties,
who supply classical inputs to their devices and obtain
classical outputs. For each round, it is randomly cho-
sen (under some distribution) to be either a generation
round or a test round. In the former, the routed register
is always sent to Bob, and Alice and Bob’s outputs are
privately stored for key generation later. In the latter,
the routed register is randomly sent (under some distri-
bution) to either Bob or Ben, and the outputs are later
announced after all n rounds have been completed. The
parties then check whether the outcome frequencies in
these announced values are “sufficiently close” (see [21])
to the expected honest behavior, to decide whether to
abort the protocol. If they do not abort, Alice and Bob
then perform some classical postprocessing steps (error
correction and privacy amplification; see [21, 22]) to pro-
duce their final keys.

Focusing on a single round, the processes involved can
be described as follows. First, a state σQQ̂E is prepared1,
where E is held by Eve, Q is measured in Alice’s device,
and Q̂ is sent to either Ben or Bob. If it is sent to Ben,
his device simply measures Q̂. If it is sent to Bob in-
stead, Eve applies some attack channel Q̂E → Q̃E, then
forwards Q̃ to be measured in Bob’s device. We denote
the POVM elements describing Alice’s measurement on
input x as {Ma|x

Q }a; analogously, POVM elements for
Bob and Ben are denoted as {M̃ b|y

Q̃
}b and {M̂ b̂|ŷ

Q̂
}b̂ re-

spectively. The challenge in analyzing this process lies in
the fact that Q̂ could be sent to either Ben or Bob, and
we need a formulation that reflects the fact that Eve only
extracts side-information from that register in the latter
case.

We resolve this challenge via the following perspective.
First, we note that without loss of generality, Eve’s at-
tack channel can be taken to be an invertible isometry V :

Q̂E → Q̃E.2 Now, the key observation is that by defining
ρQQ̃E

:= (IQ⊗V )σQQ̂E(IQ⊗V †), the outcome probabil-
ities for Ben’s measurements on Q̂ in σQQ̂E can be ex-
actly reproduced using some other measurements on Q̃E
in ρQQ̃E , by simply inverting V beforehand—explicitly,

they have POVM elements N̂
b̂|ŷ
Q̃E

:= V
(
M̂

b̂|ŷ
Q̂

⊗ IE
)
V †.

Furthermore, for generation rounds, performing Alice
and Bob’s measurements on ρQQ̃E clearly produces the

1 For this work we assume all quantum registers have finite (but
unknown, since we are in the DI setting) dimension, to ensure
the technical validity of some results.

2 By taking the Stinespring dilation, then appending additional
dimensions to the input space to ensure the Stinespring isometry
is invertible.
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same final state as if Eve had applied the attack channel
on σQQ̂E before Alice and Bob measures it. (We dis-
cuss some technical subtleties in Appendix B 1.) With
this, we can now analyze the process in terms of ρQQ̃E

instead, with Ben’s device performing the measurements
{N̂ b̂|ŷ

Q̃E
}b̂.

Having established this formulation, we now have all
the pieces required to compute the keyrates. Specifically,
to obtain the keyrate according to the GEAT [21], the
main task to address can now be formulated as solving
the following optimization for some values ϕabxy, ϕ̂ab̂xŷ ∈
R, where the infimum is over the state ρQQ̃E and the

measurement operators M
a|x
Q , M̃

b|y
Q̃

, N̂
b̂|ŷ
Q̃E

, and the con-
straints are indexed by all a, b, b̂, x, y, ŷ values that could
occur in test rounds:

inf H(A|XY E)gen

s.t. Tr
[
ρQQ̃

(
M

a|x
Q ⊗ M̃

b|y
Q̃

)]
= ϕabxy,

Tr
[
ρQQ̃E

(
M

a|x
Q ⊗ N̂

b̂|ŷ
Q̃E

)]
= ϕ̂ab̂xŷ,

(1)

where H(A|XY E)gen denotes the conditional von Neu-
mann entropy [23] of Alice’s outputs against Eve if the
round is a generation round, with XY being the values
of Alice and Bob’s chosen inputs in such a round. For
the asymptotic case, the constraint values ϕabxy, ϕ̂ab̂xŷ

can be interpreted as the values that would be produced
by the honest behaviour — the qualitative idea is that
(focusing on IID attacks for simplicity) in the asymp-
totic limit, the protocol will only accept on strategies
that reproduce the honest Alice-Bob-Ben correlations up
to a vanishingly small tolerance, and hence it suffices to
bound the worst-case value of H(A|XY E)gen over such
strategies only. (See [21] or Appendix A for further dis-
cussion of non-IID finite-size security proofs.)

To solve the optimization (1), we apply methods that
were developed in [19] (these methods also straightfor-
wardly apply to “coarse-grainings” of the constraints that
we describe in (4) later). Specifically, it was shown in that
work that optimizations of that form can be relaxed to a
noncommutative polynomial optimization, which can be
efficiently lower-bounded using a sequence of semidefinite
programs (SDPs) known as the NPA hierarchy [24] (see
Appendix B 2 for details). The method can also accom-
modate a technique known as noisy preprocessing [25–30],
in which a small amount of trusted noise is added to the
raw key to potentially improve the keyrates. Therefore,
the perspective we have introduced allows us to compute
the keyrates for a wide variety of protocols, by imple-
menting this method to tackle the optimization (1).

Given a lower bound h ∈ R on the optimization (1)
for the case where ϕ̂ab̂xŷ are the values produced by the
honest behaviour, the asymptotic keyrate is given by the
“Devetak-Winter formula” [31] (originally derived in the

IID case; see e.g. [21] for a proof in the non-IID case):

h−H(A|XY B)hongen , (2)

where H(A|XY B)hongen is the conditional entropy between
Alice and Bob’s generation-round outputs (after noisy
preprocessing, if applied) in the honest behaviour. Qual-
itatively, the h term quantifies Eve’s original uncertainty
about Alice’s raw outputs, while the H(A|XY B)hongen

term quantifies how much Eve later learns in the error-
correction step. We use this formula in our subsequent
keyrate calculations.

III. RESULTS

We apply our method to a routed Bell setup with in-
puts x ∈ {0, 1}, y ∈ {0, 1, 2, 3}, ŷ ∈ {0, 1}, where for
generation rounds the fixed input pair (x, y) = (0, 3) is
always used, whereas for test rounds all the inputs ex-
cept y = 3 are used. This means that when we evaluate
the optimization (1), we do not include constraints with
y = 3; this reduces the SDP size while still providing
reasonable results (see Appendix B 3). Note that the
register XY in (1) and (2) is then simply a deterministic
value, since the input choices for such rounds are fixed
as (X,Y ) = (0, 3).

The idea behind this choice of setup is that Ben can use
his two inputs to certify short-distance CHSH violation,
whereas for Bob, loosely speaking he can aim to use input
values y ∈ {0, 1} to certify long-distance CHSH violation,
and also use the input y = 2 to certify a “quasi-phase-
error rate”3 (qPER) in terms of Alice’s x = 1 input.
Note that given the discussion in the introduction, if the
short-distance CHSH violation is maximal, then in prin-
ciple Bob should only need to certify the qPER rather
than trying for CHSH violation. However, we find (see
Fig. 3) that once we consider imperfect detectors, it is
significantly better for Bob to have enough input values
to try certifying both his qPER and CHSH value with
respect to Alice—in particular, this ensures the result-
ing keyrates are always at least as good as the “usual”
CHSH-inspired DIQKD setups (as in e.g. [19]).

The noise model we consider is as follows. We sup-
pose that Alice/Ben/Bob have limited detection efficien-
cies ηA, ηB , ηB̂ ∈ [0, 1], respectively. With this, we model
the honest devices as being able to generate any speci-
fied two-qubit state (to be distributed between Alice and
either Bob or Ben) and perform any specified projective
measurement with outcomes {0, 1}; however, for each de-
vice (independently) the outcome is then replaced with
a “no-detection” value ⊥ with probability 1 − ηP where

3 It is not a phase error rate in the standard sense of e.g. [32, 33],
because we define it using Alice’s actual x = 1 measurement,
which could differ from the true conjugate measurement to her
x = 0 generation measurement.
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ηP is that party’s detection efficiency. We stress that
this model is only used to determine the values of ϕabxy

and ϕ̂ab̂xŷ attainable in the honest case—when bound-
ing the optimization (1), the infimum is evaluated over
all possible adversarial states and measurements, with no
dimension restriction. To make the SDP sizes tractable,
for this work we suppose the outcomes are then “coarse-
grained” by mapping the ⊥ outcome to the 0 outcome,
except when Bob uses input y = 3, in which case we fol-
low [34] and preserve the ⊥ value to improve the keyrates
by reducing the H(A|XY B)hongen term in (2). (As noted
at the start of this section, we do not include the y = 3
terms in the constraints, hence the output set for y = 3
does not affect the SDP; see Appendix B 3.) In sum-
mary, we always have a, b, b̂ ∈ {0, 1}, except when y = 3,
in which case b ∈ {0, 1,⊥} instead.

As a starting demonstration, we solve a relaxed version
of the optimization (1) in which the constraints have been
“coarse-grained”; specifically:

inf H(A|XY E)gen

s.t. Tr
[
ρQQ̃ΦqPER

(
M

a|x
Q , M̃

b|y
Q̃

)]
= ϕqPER,

Tr
[
ρQQ̃EΦ̂CHSH

(
M

a|x
Q , N̂

b̂|ŷ
Q̃E

)]
= ϕ̂CHSH,

(3)

where

ΦqPER

(
M

a|x
Q , M̃

b|y
Q̃

)
:=

∑
a,b∈{0,1}

s.t. a ̸=b

M
a|1
Q ⊗ M̃

b|2
Q̃

,

Φ̂CHSH

(
M

a|x
Q , N̂

b̂|ŷ
Q̃E

)
:=

∑
a,b̂,x,ŷ∈{0,1}

s.t. a⊕b̂=xŷ

1

4
M

a|x
Q ⊗ N̂

b̂|ŷ
Q̃E

,
(4)

and the constraint values ϕqPER, ϕ̂CHSH ∈ R are (in the
asymptotic case) the expected values from the honest
behavior. Qualitatively, ϕqPER describes the qPER be-
tween Alice and Bob (via inputs (x, y) = (1, 2)), while
ϕ̂CHSH describes the value of the CHSH game between
Alice and Ben. Note that in this starting example, we are
entirely ignoring Bob’s inputs y ∈ {0, 1}: this will allow
us to verify the intuition that if the local CHSH value
ϕ̂CHSH is large enough, then the distant qPER ϕqPER

should be sufficient to certify nontrivial entropy bounds,
without a distant Bell violation.

In Fig. 2, we plot the results of the optimization (3)
as a function of ϕqPER and ϕ̂CHSH (when no noisy pre-
processing is applied). Note that for this scenario, the
results in [16, 35] yield the following closed-form lower
bound on (3):

− log2

(
1

2
+

β

8

√
8− β2

)
− h2(ϕqPER), (5)

where β := 8ϕ̂CHSH − 4 is the “correlator CHSH value”
and h2 is the binary entropy function. This bound is dis-
played in Fig. 2 as well, from which it can be seen that

FIG. 2. Our bounds on the optimization (3), where the only
constraints are the distant qPER ϕqPER and the local CHSH
value ϕ̂CHSH (see (4)). The dots show our raw data points,
while the orange surface is a fitted function for those data
points (where to err on the side of reliability we have only
plotted it on a restricted domain where its value is at least
10−4). For comparison, the blue surface is the closed-form
bound (5) from [16, 35]. It can be seen that our results are
always an improvement over that bound (with equality in the
regime where it is tight, namely whenever ϕ̂CHSH is maximal);
also, note that we obtain positive values on a significantly
larger region.

our approach yields noticeably better results. Further-
more, we highlight that when ϕ̂CHSH is at its maximal
value ϕ̂max

CHSH := (2 +
√
2)/4 ≈ 0.853 (i.e. β = 2

√
2), the

bound (5) reduces to 1−h2(ϕqPER), as expected from self-
testing. This particular case of the bound is tight [16, 35],
and our approach indeed reproduces this result, as can
be seen from the ϕ̂CHSH = ϕ̂max

CHSH boundary in Fig. 2
(further details in Appendix B 3).

Turning to the question of detection inefficiency, we
performed some heuristic initial exploration by treating
the fitted function between the data points in Fig. 2 as
a valid bound on (3), and finding the minimum detec-
tion efficiencies that would be needed to produce positive
keyrates in (2). (For every tuple of values (ηA, ηB , ηB̂),
we heuristically optimized the honest states and mea-
surements to maximize the keyrate; in limited-detection-
efficiency scenarios, this is known [19, 28–30, 36] to pro-
duce significantly better results than always using the
same honest states and measurements. We do not con-
sider noisy preprocessing for this scenario, since the data
points in Fig. 2 do not incorporate that.) If we suppose
that Alice and Ben have perfect detectors, ηA = ηB̂ = 1,
then the keyrates are very robust as Bob’s detection effi-
ciency decreases (as we might expect, since it reduces to a
one-sided DI scenario), remaining positive for ηB >∼ 0.68
at least. Unfortunately, this finding is not very robust
when ηA, ηB are decreased: for instance, if we set all de-
tection efficiencies equal (ηA = ηB = ηB̂ =: η), then we
were only able to obtain positive keyrates for η >∼ 0.96,
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FIG. 3. In (a), we plot the achievable keyrates for a scenario where all parties have the same detection efficiency, ηA = ηB =
ηB̂ =: η. In (b), we consider a scenario where the short-distance efficiencies have some fixed values ηA = ηB̂ =: ηshort, and plot
the keyrates as a function of the long-distance efficiency ηB for ηB ≤ ηshort, with the red, blue and black curves corresponding
to ηshort = 0.85, 0.90 and 0.99999 respectively. It can be seen that for the ηshort = 0.85 and ηshort = 0.90 cases, keyrates of at
least 10−4 are achievable for ηB >∼ 0.77 and ηB >∼ 0.73 respectively.

which is worse than standard CHSH-based protocols [10].
The source of the issue appears similar to [37]: for η < 1,
the state that maximizes CHSH violation is a nonmax-
imally entangled state [36]; however, in that case it is
difficult for Alice’s x = 0 and x = 1 measurements
to both be highly correlated to some measurements on
Bob’s state, which creates a tension between minimizing
H(A|XY B)hongen in (2) versus minimizing ϕqPER.

However, an advantage of our approach now becomes
apparent: since it can flexibly handle optimizations of
the form (1), we do not have to restrict ourselves to
only the coarse-grained parameters ϕqPER, ϕ̂CHSH in (3)
or the closed-form formula (5), but can instead directly
tackle the original optimization (1) where all the terms
ϕabxy, ϕ̂ab̂xŷ (except the y = 3 terms, as mentioned) are
used as constraints. For this scenario, we again opti-
mize the choice of honest states and measurements for
each detection efficiency value; furthermore, here we also
implement noisy preprocessing [25–30] and optimize the
choice of noisy preprocessing parameter.

Our results are shown in Fig. 3. To begin with, in
Fig. 3a we again consider the case where all detection
efficiencies are the same, and find that this time the
keyrates remain positive down to detection efficiencies of
η = 0.80 at least (similar to [19]). More importantly, the
fact that they remain positive over such a range means
that we can turn to a scenario more relevant to poten-
tial implementations of routed Bell tests. Specifically, we
suppose for instance that Alice and Ben have fixed high
detection efficiencies ηA = ηB̂ =: ηshort (incorporating all
loss mechanisms for the short-distance arms), while Bob
has some lower detection efficiency ηB (incorporating all
loss mechanisms for the long-distance arm). For this sce-
nario, shown in Fig. 3b, we find that for ηshort = 0.99999
(we avoid the extremal value ηshort = 1 due to numer-
ical instabilities), the keyrates remain extremely robust

as ηB decreases. For lower values of ηshort, we see that
keyrates of at least 10−4 can be achieved for ηB >∼ 0.77
when ηshort = 0.85, or ηB >∼ 0.73 when ηshort = 0.90. If
we model Bob’s detection efficiency in such a scenario as
ηB = ηshortηchann where ηchann describes the transmission
efficiency in the long-distance channel, these values cor-
respond to thresholds of ηchann >∼ 0.90 and ηchann >∼ 0.81
respectively. (We also discuss a slightly different setup
in Appendix B 3.)

IV. CONCLUSION

In this work, we introduced a numerical method to
compute reliable entropy bounds for device-independent
protocols employing a local Bell test. Our approach
yields significantly better bounds than previous results
in [16], and has the further advantage of applying to a
wide range of scenarios, as well as incorporating tech-
niques such as noisy preprocessing. The application of
this method to device-independent QKD revealed that
the use of an additional local Bell test enables the
certification of non-zero keyrates over longer distances
(cf. Fig. 3b), provided that the efficiency of the local Bell
test is sufficiently high. This represents an important
step in the quest to enhance the practicality of device-
independent protocols, paving the way for their eventual
transformation into feasible technologies.

The method presented here could also be promising
in studying whether local Bell tests could improve other
protocols reliant on nonlocality as a resource. These in-
clude other (semi-)DIQKD protocols, such as the sym-
metric generalization suggested in [17] where a second
local Bell test is placed close to Bob, or potentially some
blind quantum computing protocols [21, 38–40] if such
protocols rely only on entropic bounds rather than full
self-testing properties. As such, it carries the potential
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to enhance the efficiency and performance of various ap-
plications leveraging Bell tests.
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Appendix A: Outline for finite-size security against coherent attacks

For a detailed exposition of such security proofs, refer to e.g. [21] or the earlier works [41, 42]; here we just provide
a broad outline of the key steps.

In a protocol with a finite number of rounds (denoted as n), we would define the accept condition to be that
the observed frequency distribution in the test rounds lies within some appropriate “δ-neighbourhood” of the honest
expected values, where δ can be chosen such that δ → 0 as n → ∞ (see e.g. [42]). We first note that this is enough
to ensure that the honest devices (assumed IID) will be accepted with high probability, as we would expect.

As for a security proof, let us first gain some intuition assuming that Eve’s attack is IID, following the approach in
e.g. [22, 42]. We divide the space of possible IID attacks into those that (in every individual round) produce values
of Tr

[
ρQQ̃

(
M

a|x
Q ⊗ M̃

b|y
Q̃

)]
and Tr

[
ρQQ̃E

(
M

a|x
Q ⊗ N̂

b̂|ŷ
Q̃E

)]
within some δ′-neighbourhood of the accepted set (where

again δ′ can be chosen such that δ′ → 0 as n → ∞), and those that do not. By standard concentration inequalities,
all attacks in the latter category will cause an abort with high probability, which suffices to satisfy standard security
definitions [41, 42]. Hence the main focus is on attacks in the former category. We observe that the minimal value
of H(A|XY E)gen over all such attacks would be simply an optimization of the form (1), except with the constraints
slightly relaxed to the condition that Tr

[
ρQQ̃

(
M

a|x
Q ⊗ M̃

b|y
Q̃

)]
and Tr

[
ρQQ̃E

(
M

a|x
Q ⊗ N̂

b̂|ŷ
Q̃E

)]
lie within some small

neighbourhood of the honest expected values. Given a lower bound on this optimization, one can essentially compute
the finite-size keyrate by subtracting the error-correction term H(A|XY B)hongen as well as some explicit finite-size
terms (which scale as O(1/

√
n)) given by the quantum asymptotic equipartition property [43] and leftover hashing

lemma [22]. (Some slight adjustments are needed to account for the fraction of rounds that are test rounds; we do not
go further into details here.) With this, we can see that in the asymptotic n → ∞ limit (where δ, δ′ → 0), the keyrate
would converge to the value of the optimization (1) with ϕabxy, ϕ̂ab̂xŷ being exactly the honest expected values, minus
the error-correction term H(A|XY B)hongen .

To prove security against coherent attacks, we would apply the GEAT as described in [21], via the following proof
sketch. First, we define a sequence of channels describing the protocol rounds, where each channel performs the
processes described in the main text (e.g. state preparation, test/generation decision and routing, device measure-
ments) and then produces a classical register C storing all the input and output values from that round. Such a
channel can be shown to satisfy the no-signalling condition of the GEAT between the registers AC and the various
“side-information” registers (as long as we include any memory in the source device as part of those side-information
registers). Now let the optimal value of the optimization (1) be denoted abstractly as a function r(ϕabxy, ϕ̂ab̂xŷ) of
the constraint values ϕabxy, ϕ̂ab̂xŷ. Using SDP methods similar to those in this work, one can derive an affine lower
bound on r(ϕabxy, ϕ̂ab̂xŷ) (for instance by using the Lagrange dual as described in [42] or [19]), and rescale the domain
(see e.g. [42, 44]) such that it is a function of probability distributions on C as required by the GEAT. With this,
the finite-size keyrate (secure against coherent attacks) according to the GEAT is basically given by the minimal
value of this affine bound over the δ-neighbourhood specified in the accept condition, minus the error-correction term
H(A|XY B)hongen and some explicit finite-size terms that scale as O(1/

√
n) asymptotically [21, 41, 42]. (Again, for this

sketch we omit some technical details regarding the test-round fraction.) This gives similar results as in the IID case
described above, though with different (typically larger) finite-size corrections.

Appendix B: Details on optimization problem

1. Reductions on Ben’s operators

There is a subtlety to be aware of in our framework: when reformulating the device behaviours in terms of the
new POVMs N̂

b̂|ŷ
Q̃E

, we have focused on correctly reproducing the outcome probabilities in test rounds and the final
states (including Eve’s side-information) in generation rounds, but some inspection shows that our construction does
not correctly reproduce the final states (on Eve’s side-information) in test rounds where the state is routed to Ben.
For the purposes of the optimization (1), this is not a problem since Eve’s side-information for the test-round case
does not appear anywhere in the optimization problem; furthermore, it is indeed true that solving this optimization
is already sufficient to compute finite-size keyrates against either IID attacks or coherent attacks, and the asymptotic
keyrates converge to the formula (2). However, when proving security against coherent attacks in DIQKD, the finite-
size keyrates can be slightly improved [41, 42] by also incorporating the entropy contributions from test rounds. Our
approach does not seem to give a straightforward method to compute such contributions (because it does not correctly
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reproduce Eve’s side-information when the state is routed to Ben), and hence it may not be easy to incorporate this
slight improvement when using our approach.

We also note that in our approach, we first constructed the new POVMs from the original ones via the relation
N̂

b̂|ŷ
Q̃E

:= V
(
M̂

b̂|ŷ
Q̂

⊗ IE
)
V †, but in our final optimization we simply treated them as completely arbitrary POVMs

on Q̂E. A priori, it would seem that this could potentially cause some looseness in the resulting bounds, because
we have not preserved the constraint that they originally arose from measurements with a tensor-product structure
across Q̂ and E. However, we now argue that for the purposes of bounding H(A|XY E)gen subject to constraints on
the test-round correlations, there is in fact no loss of tightness by instead considering the optimization as expressed
in (1). This is because while in the main text we allowed Eve to hold some side-information E in the initial state
σQQ̂E for the sake of generality, we can in fact show that this was not necessary, and we could have just considered
an initial state of the form σQQ̂ (with Eve’s attack isometry being of the form V : Q̂ → Q̃E instead).

To do so, let us first consider some initial state σQQ̂E and attack isometry V : Q̂E → Q̃E as described in the main
text. Now let Q̂′ be a register isomorphic to Q̂E, and define the following device behaviour and attack by Eve: first,
it generates the state σQQ̂′ (recalling Q̂′ ≡ Q̂E) without any register being held by Eve, then Q̂′ is routed to either
Ben or Bob. If it is routed to Ben, his device measures Q̂′; if it is routed to Bob, Eve performs her attack isometry
V : Q̂′ → Q̃E (recalling Q̂′ ≡ Q̂E), and then Bob’s device measures Q̃. Clearly, this can produce exactly the same
generation-round states and test-round outcome probabilities as the original strategy (where Eve started with some
side-information in the initial state); furthermore, note that every behaviour of this form (including any possible initial
state on QQ̂′ and measurements on Q̂′) is clearly allowed within the routed Bell test setup we consider. However,
notice that in this formulation, Eve started with no side-information in the initial state σQQ̂′ . Therefore if we now

repeat our argument from the main text, the new POVMs we construct would have the form N̂
b̂|ŷ
Q̃E

:= V M̂
b̂|ŷ
Q̂′ V

†,

without any tensor-product structure to preserve in the measurements M̂
b̂|ŷ
Q̂′ . (Again, this construction runs into

some difficulties reproducing Eve’s side-information in test rounds, so we stress that this is focused on only the
generation-round states and the test-round outcome probabilities.)

2. Relaxation to SDPs

While it is not strictly necessary for any of the following analysis, we first note that without loss of generality, we
can assume that all the measurements are projective (this property allows for some simplifications in the resulting
SDPs [19, 24]). For standard Bell-test scenarios, this is a “well-known” reduction, but here we take additional care
due to the interaction between Bob and Ben’s measurements (in such reductions, the main subtlety as compared
to a standard Naimark dilation is to ensure all the possible POVMs can be simultaneously replaced by projective
measurements). The argument is as follows: first, note that when analyzing a single round for the purposes of applying
an IID security proof or the GEAT, all quantities of interest (i.e. all relevant entropies and the probability distributions
produced on various classical registers) can be written entirely in terms of the classical-quantum states produced by
the various possible combination of input choices and/or routing (where the classical part of the state consists of a
record of the measurement outcomes). Therefore, it would suffice to show that for any such classical-quantum states
produced by general POVMs acting on some initial state, we can reproduce the same classical-quantum states by
applying projective measurements on some other initial state.

To do so, we note that starting with Alice’s device which could perform one of several POVMs {Ma|x
Q }a, we can

apply a standard Naimark dilation construction (e.g. as in [23]) to obtain the following: there exists an ancillary state
|0⟩⟨0|R such that for each x, if we append |0⟩⟨0|R to the state on Q and perform a suitable projective measurement
{P a|x

RQ}a across RQ, the outcome probabilities are the same as though we had measured {Ma|x
Q }a on Q directly. (The

state |0⟩⟨0|R does not depend on x, which will be critical in our later argument. If we use the alternate perspective
of viewing Naimark dilations as an embedding in a larger Hilbert space, this is essentially a statement that we can
perform “the same embedding” regardless of x.) This implies that the resulting classical-quantum states after such
a process, with the classical part recording the measurement outcome, are the same as for the original POVMs. We
follow an analogous construction for Bob and Ben, except that we use the same ancillary state |0⟩⟨0|R̃ for both of
them, i.e. the resulting projective measurements {P̃ b|y

R̃Q̃
}b for Bob and {P̂ b̂|ŷ

R̃Q̂
}b̂ for Ben act on R̃Q̃ and R̃Q̂ respectively.

(For Ben, we are directly analyzing the original POVMs {M̂ b̂|ŷ
Q̂

}b̂, not the transformed POVMs {N̂ b̂|ŷ
Q̃E

}b̂; this keeps
our argument here slightly more general since it does not rely on the reductions described in the main text.) With
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this, we see that for any initial state σQQ̂E to be measured by POVMs in Alice/Bob/Ben’s devices (after the routing
and/or attack channel), we can reproduce exactly the same final classical-quantum states by instead starting with
the state |00⟩⟨00|RR̃ ⊗ σQQ̂E and having Alice/Bob/Ben’s devices perform the projective measurements constructed
above (implicitly using the fact that Alice’s measurement commutes with Bob/Ben’s). Note that for this to work, the
R register must be sent to Alice and the R̃ register routed to either Bob or Ben (and not acted on by Eve’s attack
channel in the former case), but this can indeed be achieved. Put another way, we can view RQ in this state as being
“Alice’s register” and R̃Q̂ as being the register that will be routed to Bob or Ben. In conclusion, we can suppose all the
parties’ original measurements are projective without loss of generality. Our transformation of Ben’s measurements
to some new measurements N̂

b̂|ŷ
Q̃E

:= V
(
M̂

b̂|ŷ
Q̂

⊗ IE
)
V † also preserves the property that they are projective.

We now turn to describing the relaxation of the optimization (1) to an SDP. In [19], a converging sequence of
arbitrarily tight lower bounds were constructed for that optimization. All bounds in the sequence have the following
form, where the infimum is over the state ρQQ̃E , the measurement operators M

a|x
Q , M̃

b|y
Q̃

, N̂
b̂|ŷ
Q̃E

, and some additional
operators Zc

E acting on Eve’s register E:

inf Tr
[
ρQQ̃Ef

(
M

a|x
Q , Zc

E

)]
s.t. Tr

[
ρQQ̃

(
M

a|x
Q ⊗ M̃

b|y
Q̃

)]
= ϕabxy,

Tr
[
ρQQ̃E

(
M

a|x
Q ⊗ N̂

b̂|ŷ
Q̃E

)]
= ϕ̂ab̂xŷ,

(B1)

where the function f
(
M

a|x
Q , Zc

E

)
is defined in Eq. (15) in [19]: basically, it is a noncommutative polynomial in

the operators M
a|x
Q , Zc

E (allowing the polynomial to combine tensor products and operator products). In turn,
optimizations of this form can be efficiently lower-bounded using the NPA hierarchy [24]: the basic idea is to relax
the above optimization by replacing all tensor products with operator products, and impose commutation relations
in place of the original tensor-product structure. With regards to the above optimization, that means the resulting
M

a|x
Q , M̃

b|y
Q̃

, Zc
E operators after this replacement satisfy the commutation relations

[
M

a|x
Q , M̃

b|y
Q̃

]
=

[
M̃

b|y
Q̃

, Zc
E

]
=[

Zc
E ,M

a|x
Q

]
= 0; also, all the N̂

b̂|ŷ
Q̃E

operators commute with all the M
a|x
Q operators, but not with the M̃

b|y
Q̃

or Zc
E

operators.
We computed the plots shown in this work by modifying the code provided at

https://github.com/peterjbrown519/DI-rates/blob/main/2222_global.py to implement the approach we describe
here. Following that code, we used global level 2 of the NPA hierarchy together with some additional monomials,
and used 12 nodes in the Gauss-Radau quadrature. We also retained the simplification used in that code based on
Remark 2.6 of [19], where a sum and infimum are swapped in order to significantly reduce the SDP size at the cost
of potentially looser keyrate bounds. We chose to retain this in order to speed up the optimization of parameter
choices for each detection efficiency value — due to the size of the input/output sets in our setup, optimizing each
data point already required over an hour even with this simplification. (More precisely, any single evaluation of the
optimization (B1) with this simplification is fairly fast; the time consumption arises from having to evaluate it many
times to optimize the choices of ϕabxy, ϕ̂ab̂xŷ and noisy-preprocessing parameter.)

3. Numerical computation details

As noted at the start of Sec. II, we focus on protocols that do not use the y = 3 input in test rounds, and hence
when solving the optimization (1), we omit any constraints involving this input. This implies that the y = 3 input
entirely does not feature in the optimization (1) — while it might appear that it could play a role in the objective
function due to the Y register in H(A|XY E)gen, recall that we have chosen to focus on protocols where the fixed
input pair (X,Y ) = (0, 3) is used in all generation rounds, and so we basically just have H(A|XY E)gen = H(A|E)gen
(though with the implicit understanding that A is produced by the X = 0 input). Therefore, our choice to preserve
the b = ⊥ outcome label for this input choice does not affect the SDP size. Previous works such as [19] have often
followed this convention of excluding this y = 3 input from the optimization in order to keep the SDP size manageable;
it is generally believed that this choice should not cause a significant decrease in the certifiable keyrates.

We also remark that for Fig. 2, when ϕqPER or ϕ̂CHSH are too close to their extremal values, the above SDP can be
numerically unstable. Therefore, when producing the plot, the data points we chose at the plot boundaries are 10−5

away from the true extremal values. However, even with this slight deviation from the extremal values, we found

https://github.com/peterjbrown519/DI-rates/blob/main/2222_global.py
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for instance that our data points for ϕ̂CHSH = ϕ̂max
CHSH − 10−5 already returned entropy bounds within 0.005 of the

“self-tested” value 1 − h2(ϕqPER) that would be obtained at ϕ̂CHSH = ϕ̂max
CHSH exactly; furthermore, they are in fact

already slightly better than the values obtained by substituting ϕ̂CHSH = ϕ̂max
CHSH − 10−5 into the previous closed-form

bound from [16, 35].
Also, regarding Fig. 3, our numerical results suggested that in fact it did not seem critical for Bob to have all 3

test-round inputs — specifically, for the ηshort = 0.85 or 0.90 cases, we were able to obtain almost identical keyrate
plots by instead considering a scenario with only 2 test-round inputs. In other words, while our analysis of the scenario
based only on ϕqPER, ϕ̂CHSH indicates that it is useful for Bob to have more test-round inputs than just the “qPER
measurement” alone, it seems a single additional input is enough to achieve most of the advantage found in Fig. 3,
rather than giving him two additional inputs to separately certify long-distance CHSH violation. Presumably, in this
version Bob’s inputs could be informally viewed as certifying some combination of the qPER and long-distance CHSH
violation.
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