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Quantum resource theories provide a new perspective and method for the de-
velopment and application of science. Imaginary numbers are used to describe and
solve many complex problems. Therefore imaginarity resource theory proposed re-
cently has become increasingly important and it is worthy of research. In this paper,
we find two imaginarity measures, one of which is induced by α–z–Rényi relative
entropy and the other defined for positive definite density matrices is induced by
Tsallis relative operator entropy. The relationships between different imaginarity
measures and their properties are also discussed.
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1. Introduction

Quantum resource theories provide an operational way dealing with the quantifica-
tion and manipulation of resources in quantum systems, where resources can refer to
various quantum properties such as entanglement [1] or coherence [2]. It is considered an
important branch in quantum information theory. Recently, a novel resource theory has
been proposed in [3], that is imaginarity resource theory, which has garnered significant
attention in recent years.

In the framework of the imaginarity resource theory, let H be a d-dimensional Hilbert
space, and consider {|m〉}

d−1
m=0 as a fixed set of orthonormal basis on H, L(H) denotes the

set of density matrices on H. In the imaginarity resource theory, free states are defined
as real states, and the set of free states denoted by R is defined as:

R = {ρ ∈ L(H) : 〈m|ρ|n〉 ∈ R} .

Free operations Λ are defined as real operations. that is Λ(·) =
∑

j Kj ·K
†
j , where Kraus

operators {Kj} sastisfy 〈m|Kj |n〉 ∈ R.
After defining free states and free operations, an appropriate imaginarity measure M

should satisfy the following conditions [3]:
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(I1): M(ρ) > 0 for any quantum state ρ, and M(ρ) = 0 ⇐⇒ ρ ∈ R, that is, ρ equals
its conjugate ρ∗.
(I2): M(Λ(ρ)) 6 M(ρ), where Λ is a real operation.

(I3): M(ρ) >
∑

j pjM(ρj), where pj = Tr[KjρK
†
j ], ρj = KjρK

†
j /pj, Kj are Kraus

operators of a real operation Λ.
(I4):

∑

j pjM(ρj) > M(
∑

j pjρj) for any {ρj} and {pj} satisfied with pj > 0 and
∑

j pj = 1.
In fact, similar to alternative framework for quantifying coherence [4], under the

premises of (I1) and (I2), the condition (I3)+(I4) is equivalent to the following condition
under [5] as:
(I5): There isM(p1ρ1⊕p2ρ2) = p1M(ρ1)+p2M(ρ2) for any p1, p2 satisfied with p1+p2 =
1 and ρ1, ρ2 ∈ R.

Hence, it’s easier to verify (I1), (I2), and (I5) than a common method when verifying
whether a certain function can serve as an imaginarity measure.

In addition to the robustness of imaginarity and the l1 measure which were born
along with the imaginarity resource theory [3], many imaginarity measures have been
given recently, such as the fidelity of imaginarity [6], the geometric imaginarity measure
[7] and convex roof [8]. Next, we will introduce some some imaginarity measures that
may be helpful for the subsequent study. Suppose ρ and σ are density matrices, then the
relative entropy of ρ with respect to σ is defined as:

S(ρ||σ) = Tr[ρlog(ρ)]− Tr[σlog(σ)].

The imaginarity measure MV (ρ) induced by S(ρ||σ) is defined by [5] as follows:

MV (ρ) = min
σ∈R

S(ρ||σ) = S[
1

2
(ρ+ ρ∗)]− S(ρ),

The advantage of the second representing is more convenient to measure without
using nonlinear programming.

Tsallis entropy as a generalization form of Shannon entropy was extended to the
quantum field in [9]. The definition of Tsallis relative entropy is written as:

Kq(ρ||σ) =
1

1− q
[1− Tr(ρqσ1−q)].

MT
q (ρ) is a imaginarity measure given by Xu [10] as follows:

MT
q (ρ) = (1− q)Kq(ρ||ρ

∗).

The value of the parameter q required in the above two expressions should be chosen in
the interval (0, 1).

Of course, in addition to these two relative entropies above, various other quantifiers
have been discovered, such as Rényi entropy [11, 12], Tsallis entropy [13, 9, 14], Brègman
distances [15, 16], and so on. Moreover, recent research [17, 18, 19] has shown that some
linear combinations or functions of different quantifiers can also emerge as new quantifiers.
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With the development of resource theory, some quantifiers have indeed proven to be
effective measures, while others still require further investigation.

In this paper, we focus on the imaginarity measure induced by relative entropy. In
section 2., we demonstrate that the family of quantifiers induced by α–z–Rényi relative
entropy is indeed a measure and provide Properties and examples. In section 3., we
discuss the relationship between different imaginarity measures. In section 4., we give
an imaginarity measure that holds only for positive definite density matrices. Finally, in
section 5., we provide a brief summary. Remarks made in certain places represent our
own understanding.

2. Imaginarity measure induced by α–z–Rényi relative entropy

Different from the two specific single-parameter relative entropies S(ρ||σ) andKq(ρ||σ)
mentioned in section 1., the α–z–Rényi relative entropy defined with two parameters α
and z was introduced in [20], regarded as:

Dα,z(ρ||σ) :=
1

α− 1
logfα,z(ρ, σ),

where fα,z(ρ, σ) = Tr(σ
1−α
2z ρ

α
z σ

1−α
2z )z . It is observed that when z = α, Dα,z(ρ||σ) reduces

to the quantum Rényi divergence [12].
It can be seen that, just like MV or MT

q , the measurements only depend on the
quantum state ρ itself, without the need for any σ as an auxiliary. This is understandable,
in fact, since the imaginarity resource theory delineates the boundary between the real
and the imaginary. The requirement in (I1) that ρ ∈ R prompts us to link the quantum
state itself with its conjugate, thus choosing σ as ρ∗ is a good choice.

2.1. Establishment of the measure

In the coherence resource theory, the quantifier inducing coherence measure can be
extended from Rényi relative entropy to α–z–Rényi relative entropy [21]. Therefore,
we can also conduct the following research in the imaginarity resource theory. For the
smooth flow of the text, we need to introduce a lemma that will be used subsequently.

Lemma 1. Suppose A, B are two positive semidefinite matrices, 0 < t < 1, r > 1,
and q > 0, then the following inequality holds:

(1)Tr(A
1−t
2t BA

1−t
2t )t 6 Tr[(1− t)A+ tB],

(2)Tr(ArBrAr)q > Tr(ABA)rq.

These two inequalities respectively appear in the literature [22] and [23].
We have already saw that choosing σ as ρ∗ is a wise move. Therefore, what we are

going to do next is exactly this. Based on the α–z–Rényi relative entropy, when the
parameters α and z satisfy 0 < max(α, 1−α) 6 z < 1, we present the following results:

Theorem 1. The parametrized function MR
α,z of the state ρ is given as an imagi-

narity measure:
MR

α,z(ρ) = 1− fα,z(ρ, ρ
∗),
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where 0 < max(α, 1− α) 6 z < 1.

Proof. We only need to prove (I1) + (I2) + (I5).
(I1): The trace of the density matrix ρ is 1, and the same applies to ρ∗, then we can
know from Lemma 1:

Tr[(ρ∗)
1−α
2z ρ

α
z (ρ∗)

1−α
2z ]z = Tr[(ρ∗)

1−α
2z ρ

α
z (ρ∗)

1−α
2z ]

z
α
α

6 Tr[(ρ∗)
1−α
2α ρ

α
α (ρ∗)

1−α
2α ]α

6 Tr[(1 − α)(ρ∗) + αρ]

= 1.

This leads to MR
α,z(ρ) > 0. When the equality sign holds, an equivalence chain exists:

MR
α,z(ρ) = 0 ⇐⇒ fα,z(ρ, ρ

∗) = 1

⇐⇒ Dα,z(ρ||ρ
∗) = 0 ⇐⇒ ρ = ρ∗,

This implies ρ ∈ R, thus the condition (I1) is satisfied.
(I2): Since the density matrix ρ can be written as Re(ρ) + iIm(ρ), we can know that
Λ(ρ∗) is equal to the conjugate of Λ(ρ) by using Kraus operators. Then, α–z–Rényi
relative entropy satisfies the property of Data Processing Inequality (DPI), that is, for
any completely positive trace-preserving (CPTP) map Λ, the inequality between Λ and
ρ, σ:

Dα,z(Λ(ρ)||λ(σ)) 6 Dα,z(ρ, σ).

The condition (I2) holds, just notice

MR
α,z(ρ) = 1− e(α−1)Dα,z(ρ,ρ

∗).

(I5): set ρ = p1ρ1⊕p2ρ2, and verify fα,z(ρ, ρ
∗) directly, we have the following derivation:

fα,z(p1ρ1 ⊕ p2ρ2, p1ρ
∗
1 ⊕ p2ρ

∗
2)

= Tr





2
⊕

j=1

p
1−α
2z

j p
α
z

j p
1−α
2z

j (ρ∗j )
1−α
2z ρ

α
z

j (ρ∗j )
1−α
2z





z

=

2
∑

j=1

pjTr
[

(ρ∗j )
1−α
2z ρ

α
z

j (ρ∗j )
1−α
2z

]z

= p1fα,z(ρ1, ρ
∗
1) + p2fα,z(ρ2, ρ

∗
2),

Note that p1 + p2 = 1, we obtain:

MR
α,z(p1ρ1 ⊕ p2ρ2) = p1M

R
α,z(ρ1) + p2M

R
α,z(ρ2),

Thus MR
α,z satisfies (I5).
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2.2. Properties of the measure

Some axiomatic properties existed at the beginning of the definition of relative entropy
[20], and they can now be applied to the imaginariyt measures.

Theorem 2. The imaginarity measures MR
α,z and MT

q have the following properties:

(1)MR
α,z and MT

q are invariant under any unitary matrix U .

(2)For any density matrix τ , we have MR
α,z(ρ⊗ τ) > MR

α,z(ρ)M
R
α,z(τ), which means

that imaginarity measure increases under the tensor product. It’s the same case for MT
q .

Proof. We only prove the case for MR
α,z, the case for MR

q is entirely similar. Here, we
denote ρ∗ as σ and τ∗ as γ for easier notation.

fα,z(UρU∗, UσU∗)

= Tr
[

(UσU∗)
1−α
2z (UρU∗)

α
z (UσU∗)

1−α
2z

]z

= Tr
[

U(σ
1−α
2z ρ

α
z σ

1−α
2z )U∗

]z

= Tr
[

U(σ
1−α
2z ρ

α
z σ

1−α
2z )zU∗

]

= fα,z(ρ, σ).

Therefore, MR
α,z(UρU∗) = MR

α,z(ρ) holds.

fα,z(ρ⊗ τ, σ ⊗ γ)

= Tr
[

(σ ⊗ γ)
1−α
2z (ρ⊗ τ)

α
z (σ ⊗ γ)

1−α
2z

]z

= Tr
[

(σ
1−α
2z ⊗ γ

1−α
2z )(ρ

α
z ⊗ τ

α
z )(σ

1−α
2z ⊗ γ

1−α
2z )

]z

= Tr
[

(σ
1−α
2z ρ

α
z σ

1−α
2z )⊗ (γ

1−α
2z τ

α
z γ

1−α
2z )

]z

= Tr
[

(σ
1−α
2z ρ

α
z σ

1−α
2z )z ⊗ (γ

1−α
2z τ

α
z γ

1−α
2z )z

]

= Tr(σ
1−α
2z ρ

α
z σ

1−α
2z )zTr(γ

1−α
2z τ

α
z γ

1−α
2z )z

= fα,z(ρ, σ)fα,z(τ, γ).

Due to fα,z(τ) 6 1, 1 − fα,z(ρ)fα,z(τ) > 1 − fα,z(τ) holds, the proof of property (2) is
finished.

2.3. Two examples of the measure

We can not obtain an intuitive sense from abstract concepts. Here, we provide two
examples of MR

α,z.

Example 1. In this example, we take α = z in MR
α,z and set its values to be 0.3

and 0.7 respectively. We randomly generate 25 density matrices for measurements, and
the results are plotted below as Fig 1.
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0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

alpha=z=0.3

alpha=z=0.7

Fig. 1: MR
0.3,0.3 and MR

0.7,0.7

The sorting criterion in the figure is that the first group of measurements are sorted
in ascending order, and the other groups are sorted simultaneously according to the
corresponding index of this group, the same rule goes for all the following figures.

Ignoring the error introduced by precision, we can intuitively see that 25 randomly
generated density matrices are non-negative under two different measurements. The
values measured using MR

0.3,0.3 are always smaller than those measured using MR
0.7,0.7.

Example 2. In this example, we fix α = 0.2 in MR
α,z and set the values of z to be

0.6 and 0.8 respectively. We randomly generate 25 density matrices for measurements,
and the results are plotted below as Fig 2.

0 5 10 15 20 25
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

alpha=0.2,z=0.6

alpha=0.2,z=0.8

Fig. 2: MR
0.2,0.6 and MR

0.2,0.8

Ignoring the error introduced by precision, we can intuitively see that 25 randomly
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generated density matrices are non-negative under two different measurements. The
values measured using MR

0.2,0.6 are always smaller than those measured using MR
0.2,0.8.

From the two examples above, we can see that the measurement MR
α,z exhibits mono-

tonicity with respect to its parameters. Next section, we will study this phenomenon.

3. Relationships between imaginarity measures

3.1. Monotonicity with respect to parameters

The example at the end of the previous section prompts us to study the monotonicity
of the imaginarity measure with respect to its parameters. For simplicity, we denote
MR

α,z as MR
α when α = z. We introduce the following properties:

Theorem 3. The imaginarity measure MR
α,z satisfies monotonicity with respect to

its parameters:
(1)MR

α,z = MR
1−α,z;

(2)MR
α1

6 MR
α2

if α1 6 α2;
(3)MR

α,z1
6 MR

α,z2
if z1 6 z2.

Proof. The proof is not difficult. Taking the conjugate in the trace gives (1). It is
indicated in [12] that when α1 6 α2, D̃α(ρ||σ) 6 D̃α(ρ||σ) holds. Consider that α−1 < 0
and the monotonicity of the logarithmic function, we have fα1,α1

> fα2,α2
, which gives

us the first conclusion. The proof of (ii) only needs to consider z2
z1

> 1, which directly
leads to fα,z1 > fα,z2 by Lemma 1, thus the prove is finished.

Thus, we have explained why monotonicity appears in the example from the previous
section. Additionally, we can also give similar properties for MT

q :

Theorem 4. The imaginarity measure MT
q satisfies properties below:

(1)MT
q (ρ) = MT

1−q(ρ);

(2)if q1 6 q2 6 1
2 holds, MT

q1
(ρ) 6 MT

q2
(ρ) holds.

Proof. Property (1) is similar to theorem 3..(1), and it remains to prove Property (2).
Notice that the research in [24] indicates Tr(ρq(ρ∗)1−q) is Log-convex function when
q ∈ (0, 1). A Log-convex function must be convex [25], Combined with (i), we can
conclude the inequation Tr(ρq1(ρ∗)1−q1) > Tr(ρq2(ρ∗)1−q2) holds, MT

q1
(ρ) 6 MT

q2
(ρ) is

followed.

In the following subsection, we begin to investigate the relationship between different
imaginarity measures.
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3.2. The magnitude relation between the two imaginarity measures

First, let’s compare the relationship between MR
α,z and MT

q (ρ). Since
1
z
> 1, we can

know from Lemma 1 that:

Tr(σ
1−α
2z ρ

α
z σ

1−α
2z )z > Tr(σ

1−α
2 ρασ

1−α
2 )

1

z
z

= Tr(σ
1−α

2 ρασ
1−α

2 )

= Tr(ρασ1−α).

Therefore, from the above content and in combination with Theorem 3 and Theorem 4,
we can obtain the following theorem:

Theorem 5. For any quantum state ρ, the order of imaginarity measures MR
α,z,

MR
α , and MT

α is as follows:

MR
α (ρ) 6 MR

α,z(ρ) 6 MT
α(ρ).

This can also be seen in the following Fig 3.

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

alpha=z=0.4

alpha=0.4,z=0.7

q=0.4

Fig. 3: MR
0.4,0.4, M

R
0.4,0.7 and MT

0.4

Unfortunately, when q 6= α, MT
q cannot be simply included in the above theorem.

Let’s choose an example to illustrate.

Example 3. In this example, we take the density matrix:

ρ0 =
1

10

(

4 3− i
3 + i 6

)

,

then the calculation shows:

MT
0.3(ρ0) 6 MR

0.5(ρ0) 6 MT
0.5(ρ0),

this indicates that the situation is variable when q 6= α.
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Remark 1. We codsider that the impact of multiple parameters may increase due
to the matrix operations involved, which could lead to unnecessary delays, increasing
consumption and propagation of errors. Since MR

α is a single-parameter quantifier and
has relatively small measurement values according to the above theorem, we subjectively
prefer to use MR

α .

We can also consider the combination of Theorem 2 and Theorem 4. We assert that,
regardless of the relationship between α and q, the following theorem obviously holds:

Theorem 6. For any density matrix ρ and τ , if MR
α,z(ρ) 6 MT

q (ρ) and MR
α,z(τ) 6

MT
q (τ) holds, then MR

α,z(ρ⊗ τ) 6 MT
q (ρ⊗ τ) holds.

The proof of the theorem is trivial, as it only requires following the definitions. Based
on this, we can derive some inequalities, such as:

(1)MR
α (ρ⊗ τ) 6 MT

α (ρ⊗ τ);
(2)MR

α (ρ⊗n) 6 MT
α (ρ⊗n).

Apart from the above theorems, based on the literature [12, 20] and so on, we can
also introduce some other properties of MR

α,z, such as limit properties, which will not be
listed here.

4. Imaginarity measure of positive definite density matrices

As mentioned in the introduction of section 1., some parameterized functions induced
by quantifiers cannot be considered as a appropriate measure because they do not satisfy
certain conditions or concepts in resource theory, as also suggested in other literatures
[26]. In order to empower quantifiers that were previously ineffective, a new approach is
presented here. We need to change the domain to positive definite density matrices.

In order to distinguish positive definite density matrices or not, we do not use ρ in this
section but δ instead. Here, we present a imaginarity measure built on positive definite
density matrices.

4.1. Imaginarity measure induced by Tsallis relative operator entropy

In [13], the authors introduced the Tsallis relative operator entropy, defined as follows:

Tλ(δ||η) := δ
1

2 lnλ(δ
− 1

2 ηδ−
1

2 )δ
1

2 ,

where δ and β are two invertible positive operators, lnλX = Xλ−I
λ

for positive definite
operator X and identity operator I with λ ∈ (0, 1].

We can rewrite Tλ(δ||η) in another form by introducing the notation δ♯λη = δ
1

2 (δ−
1

2 ηδ−
1

2 )λδ
1

2 .

Tλ,β(δ||η) =
1

λ
(δ♯λη − δ).

In fact, we can observe that similar to the relationship between MR
α,z(δ) and MV (δ),

the extension of MT
q (δ) is also possible.

Now, return to the our work, literature [13] provides favorable properties of Tλ(δ||η),
which facilitates our subsequent study.
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Lemma 2. For positive definite density matrices δ and η, any real parameter a sat-
isfied a > 0 and λ ∈ (0, 1], the following inequality holds:

{

Tλ(δ||η) > δ♯λη − 1
a
δ♯λ−1η + (lnλ

1
a
)δ,

Tλ(δ||η) 6
1
a
η − δ − (lnλ

1
a
)δ♯λη,

where lnλ
1
a
=

( 1

a
)λ−1

λ
. In particular, we can choose the parameters a = 1 such that, when

the condition Tλ(δ||η) = 0 holds, δ = η simultaneously.

The lemma ingeniously provided by the authors in this paper aims to demonstrate the
equivalence between δ = η and the vanishing of Tλ(δ||η), which is precisely what we need.
From [27], a useful lemma is:

Lemma 3. If Φ is a positive linear map, then for any positive definite matrices A
and B, there is:

Φ(A♯λB) 6 Φ(A)♯λΦ(B).

Next, similar to Theorem 1, we can still verify the following theorem by proving (I1) +
(I2) + (I5).

Theorem 7. The parametrized function MO
λ of the state δ is given as an imaginarity

measure:
MO

λ (δ) = 1− Tr(δ♯λδ
∗),

where λ ∈ (0, 1).

Proof. Let us start the proof.
First of all, we can see Tr(A♯αB) 6 Tr[(1 − α)A + αB] in [23], thus MO

α (δ) > 0, in
conjunction with the discussion in subsection above, the condition (I1) is satisfied.

From Lemma 3, Φ(δ∗) is equal to the conjugate of Φ(δ) and the trace-preserving of
Φ, we can see:

Tr(δ♯αδ
∗) = Tr[Φ(δ♯αδ

∗)] 6 Tr[Φ(δ)♯αΦ(δ
∗)] = Tr[Φ(δ)♯αΦ(δ)

∗]

In this way, it can be known that the condition (I2) is satisfied.
Suppose δ = d1δ1 ⊕ d2δ2 with d1 + d2 = 1, there will be δ∗ = d1δ

∗
1 ⊕ d2δ

∗
2 , next:

MO
α (δ) = 1− Tr(δ♯αδ

∗) = 1− Tr[(d1δ1 ⊕ d2δ2)♯α(d1δ
∗
1 ⊕ d2δ

∗
2)]

= 1− Tr
{

(d1δ1 ⊕ d2δ2)
1

2

[

(d1δ1 ⊕ d2δ2)
− 1

2 (d1δ
∗
1 ⊕ d2δ

∗
2)(d1δ1 ⊕ d2δ2)

− 1

2

]α

(d1δ1 ⊕ d2δ2)
1

2

}

= 1− Tr





2
⊕

j=1

d
1

2

j (d
− 1

2

j djd
− 1

2

j )αd
1

2

j δ
1

2

j (δ
− 1

2

j δ∗j δ
− 1

2

j )αδ
1

2

j





= 1− Tr





2
⊕

j=1

djδ
1

2

j (δ
− 1

2

j δ∗j δ
− 1

2

j )αδ
1

2

j





= d1

{

1− Tr[δ
1

2

1 (δ
− 1

2

1 δ∗1δ
− 1

2

1 )αδ
1

2

1 ]
}

+ d2

{

1− Tr[δ
1

2

2 (δ
− 1

2

2 δ∗2δ
− 1

2

2 )αδ
1

2

2 ]
}

= d1Tr(δ1♯δ
∗
1) + d2Tr(δ2♯δ

∗
2) = d1M

O
α (δ1) + d2M

O
α (δ2)
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Combine all the above, we obtain the proof of the Theorem 7.

MO
λ also has many properties similar to MR

α,z, which we skip here.

4.2. MO
λ versus MR

α,z and MT
λ

What we need to declare is that only positive definite density matrices can be com-
pared among the three measures at this moment.

With the help of [23], we have the inequality:

Tr(δ♯λδ
∗) 6 Tr[δ1−λ(δ∗)λ] = Tr[δλ(δ∗)1−λ].

Therefore, we can establish a connection between MO
λ , M

R
α,z, and MT

λ .

Theorem 8. For positive definite density matrices σ, the order of imaginarity mea-
sures MR

α,z, M
T
α and MO

λ is as follows:

MR
α (δ) 6 MR

α,z(δ) 6 MT
α(δ) 6 MO

α (δ).

As the end of this subsection, we intuitively present a comparison as Fig 4 obtained after
randomly selecting 25 positive definite density matrices in.

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

alpha=z=0.35

alpha=0.4,z=0.75

q=0.35

lambda=0.35

Fig. 4: MR
0.35,0.35, M

R
0.35,0.75, M

T
0.35 and MO

0.35

However, please attention, when λ 6= α, the situation becomes more complicated, See
the following example.

Example 4. Take the positive definite density matrix δ0:

δ0 =
1

10

(

6 1 + i
1 + i 4

)

,

the result of the calculation shows:

MO
0.3(δ0) 6 MR

0.5(δ0) 6 MT
0.5(δ0)
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Remark 2. From the special case above, we can see that in the case of positive
definite density matrices, MO

λ may have lower measurements than general imaginar-
ity measures. So, we need to consider comprehensively when choosing the appropriate
measure.

5. Conclusion

In conclusion, we present a new definition of imaginarity measure MR
α,z which is

shown to be an appropriate imaginarity measure, and some of its properties are also
given. We also supplement some properties of MT

q , and since the similarity between

MT
q and MR

α,z, we compare them. An imaginarity measure MO
λ that only applies in

positive definite density matrices was introduced, under the assumption of a positive
definite density matrices, we present relations between MR

α,z, M
O
λ and MT

q . Remarks in
this paper indicate that our idea is there should be different choices in different situations.

Acknowledgment

This project is supported by National Natural Science Foundation of China (Grants
No. 12271474).

REFERENCES

[1] M. B. Plenio and S. Virmani. An introduction to entanglement measures. Quantum infor-
mation and computation, 7(2005), 1–51.

[2] T. Baumgratz, M. Cramer, and M. B. Plenio. Quantifying coherence. Physical Review
Letters, 113(2014), 140401.

[3] A. Hickey and G. Gour. Quantifying the imaginarity of quantum mechanics. Journal of
Physics A: Mathematical and Theoretical, 51(2018), 414009.

[4] X. D. Yu, D. J. Zhang, G. F. Xu and D. M. Tong. Alternative framework for quantifying
coherence. Physical Review A, 94(2016), 060302.

[5] S. N. Xue, J. Guo, P. Li, M. F. Ye and Y. M. Li. Quantification of resource theory of
imaginarity. Quantum Information Processing, 20(2021), 383–402.

[6] K. D. Wu, T. V. Kondra, S. Rana, C. M. Scandolo, G. Y. Xiang, C. F. Li, G. C. Guo and A.
Streltsov. Operational resource theory of imaginarity. Physical Review Letters, 126(2021),
090401.

[7] K. D. Wu, T. V. Kondra, C. M. Scandolo, S. Rana, G. Y. Xiang, C. F. Li, G. C. Guo and
A. Streltsov. Resource theory of imaginarity: New distributed scenarios. ArXiv, (2023).

[8] Q. Chen, T. Gao and F. L. Yan. Measures of imaginarity and quantum state order. Science
China Physics, Mechanics & Astronomy, 66(2023), 1–10.

[9] S. Abe. Monotonic decrease of the quantum nonadditive divergence by projective measure-
ments. Physical Review A, 312(2003), 336–338.

[10] J. W. Xu. Quantifying the imaginarity of quantum states via tsallis relative entropy. ArXiv,
(2023).



[Author and title] 13

[11] D. Petz. Quasi-entropies for finite quantum systems. Reports on Mathematical Physics,
23(1986), 57–65.

[12] M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr and M. Tomamichel. On quantum rényi
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