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The famous Goldbach conjecture [1]
states that any even natural number N
greater than 2 can be written as the sum
of two prime numbers p and p′, with p , p′

referred to as a Goldbach pair. In this ar-
ticle we present a quantum analogue pro-
tocol for detecting – given a even number
N – the existence of a minimal Goldbach
partition N = p + p′ with p ≡ pmin(N) be-
ing the so-called minimal Goldbach prime,
i.e. the least possible value for p among
all the Goldbach pairs of N . The proposed
protocol is effectively a quantum Grover
algorithm with a modified final stage. As-
suming that an approximate smooth up-
per bound N (N) for the number of primes
less than or equal to pmin(N) is known, our
protocol will identify if the set of N (N)
lowest primes contains the minimal Gold-
bach prime in approximately

√
N (N) steps,

against the corresponding classical value
N (N).

In the larger context of a search for vio-
lations of Goldbach’s conjecture, the quan-
tum advantage provided by our scheme ap-
pears to be potentially convenient. E.g.,
referring to the current state-of-art numer-
ical search for violations of the Goldbach
conjecture among all even numbers up to
Nmax = 4 × 1018 [T. O. e Silva, S. Herzog,
and S. Pardi, Mathematics of Computa-
tion 83, 2033 (2013)], a quantum realiza-
tion of the search would deliver a quan-
tum advantage factor of

√
N (Nmax) ≈ 37
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and it will require a Hilbert space span-
ning N (Nmax) ≈ 1376 basis states.

1 Introduction
1.1 Statement of the problem
The Goldbach conjecture [1] is a consequential
[2, 3, 4] but yet unproven statement in num-
ber theory. It states that for every even natural
number N , there exists a pair of prime numbers,
(p, p′) such that N is a sum of these two numbers,

p + p′ = N .

Of course, there can be more than one Goldbach
pair for a given N . We will use the convention
that p′ ≥ p and call (p, p′) a Goldbach pair.

The Goldbach conjecture has been successfully
verified numerically up to a maximal even num-
ber Nmax = 4 × 1018 [5]. For a given N , the
complexity of the computation is presumed to be

(classical complexity)given N = O(N (N)) ,

where N (N) is a smooth estimate for the upper
bound for the number of primes less then or equal
to the minimal prime pmin(N) participating in a
Goldbach pair [6] (called, from now on, the min-
imal Goldbach prime). Our goal is to reduce the
complexity of the problem to

(quantum complexity)given N = O(
√

N (N)) .

It has been suggested [7, 8] that

pmin(N) ≲ pmin, sup(N) , (1)

with

pmin, sup(N) = C ln2(N) ln(ln(N)) . (2)
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A very simple argument to get (2) is to use the
Hardy-Littelwood estimate of Godlbach pairs as-
sociated to N [9], which is ∼ N ln2 N . Assuming
the Godbach pairs are equispaced, one can get an
estimate the minimal Goldbach prime pmin ob-
taining pmin(N) ∼ ln2(N).

If one studies the minimal Goldbach primes
pmin(N) as a function of N one realizes that the
are rather well separated maxima. We call such
maxima Goldbach champions. More precisely,
the Goldbach champion pchamp(N) the maximum
of the minimal Goldbach primes in the interval
[4, N ]: pchamp(N) = maxi=4,6,...,N pmin(i).

Given the available numerical data that cov-
ers all even numbers up to to N = 24488559567
reported [8] (where the Goldbach champions are
also listed,) we estimate the prefactor C as

C ≈ 1.5

. For the number of primes up to that N , we get,
accordingly:

N (N) ≈ 0.75 ln2(N) . (3)

Note that according to [8], all minimal Goldbach
primes obey pmin(N) ≤ 1.5 ln2(N) ln(ln(N))
with no exceptions.

1.2 The state of the art

Our proposal assumes an ability to build a one-
body potential with an arbitrarily tailored spec-
trum. By using holographic traps [10, 11], such
potentials recently became an experimental real-
ity [12] with the implementation of the quantum
prime potential for the first 15 prime numbers,
i.e. of a potential V (x) such p2/2m + V (x) has
as eigenvalues the first 15 prime numbers (apart
from an overall ebergy scale). In [12] the poten-
tial v(x) giving the first 10 lucky primes.

The possibility of having a one-body potential
opens the possibility of implementing schemes for
translating number theory problems in quantum
physical settings [13, 14, 15, 16, 17, 18, 19, 20, 21,
22], including applications to few-body quantum
prime factorization [14, 16, 17, 18, 19, 21, 22].
Also in [23], we present a quantum proposal for
testing the Goldbach conjecture, with no aspira-
tion for a quantum advantage.

2 Protocol and its implementation

2.1 A (lightly) modified Grower protocol

The canonical Grover database search protocol
[24] allows, in approximately π

4
√

N steps, to iden-
tify a state |w⟩ hidden in a unitary transformation

Ûw =
N∑

n=1

{
−1 if n = w
+1 otherwise

}
|n⟩⟨n| .

The protocol uses a state

|s⟩ ≡ 1√
N

N∑
n=1

|n⟩ ,

and the second unitary transformation

Ûs =
N∑

m=1

{
−1 if m = s
+1 otherwise

}
|m⟩⟨m| ,

where {|m⟩} is an orthonormalized basis of which
|s⟩ is a member. Often, in literature, Ûs is pre-
sented with an opposite sign.

It can be shown that a two operator sequence
ÛwÛs, applied to the state |s⟩

r(N ) ≈ π

4
√

N

times, leads to the state |w⟩ sought after, with a
probability close to unity:

(
ÛsÛw

)r(N )
|s⟩ ≈ |w⟩ . (4)

The sought key |w⟩ be read out using the state
measurement in the {|n⟩} ⊗ |g⟩ basis.

As we will see below, the problem of identify-
ing a minimal Goldbach prime is slightly differ-
ent. In (hypothetical) the case of the Goldbach
conjecture being violated for some N , there will
not be any minimal Goldbach primes whatsoever.
Therefore, in a quantum version of the Goldbach
test, we are presented with a unitary

ÛX = either Ûw or Î ,

with an unknown |w⟩. Here Î is a unity transfor-
mation. Our goal is to identify which of the two
choices we were given. On the other hand, the
actual value of w, even if it existed, will not be
discoverable.
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Our suggestion is to use the protocol (4), with
Ûw replaced by ÛX and measure the result in the
{|m⟩} ⊗ |g⟩ basis instead. In that case, we get

(
ÛX Ûs

)r(N )
|s⟩ ≈

{
|s⟩ if ÛX = Î
|m⟩ ≠ |s⟩ if ÛX = Ûw

}
.

(5)

Finding the state |s⟩ would point to either a rare
case of an anomalously large minimal Goldbach
prime p > pmin, sup(N) (to be further investigated
classically) or to a true violation of the Goldbach

conjecture, yet undetected.

2.2 Hamiltonians

Our scheme involves a single atom with two in-
ternal states, |g⟩ and |e⟩ and two different poten-
tials for each of the internal states and two time-
dependent perturbations. In the course of the
protocol, we alternate between the two pairs of
potentials and two different perturbations. These
two Hamitonians read:

Ĥ(w) = U0


nmax∑

n=nmin

(−pn)|n⟩⟨n| ⊗ |g⟩⟨g| +
n′

max∑
n′=nmin

(pn′ − N)|n′⟩⟨n′| ⊗ |e⟩⟨e|


+Θ(w)(t)


nmax∑

n=nmin

n′
max∑

n′=n′
min

V
(w)

n′,n|n′⟩⟨n||e⟩⟨e| + h.c.


. (6)

and

Ĥ(s) = U0


mmax∑

m=mmin

(−lm)|m⟩⟨m| ⊗ |g⟩⟨g| +
m′

max∑
m′=m′

min

km′ |m′⟩⟨m′| ⊗ |e⟩⟨e|


+Θ(s)(t)


mmax∑

m=mmin

m′
max∑

m′=mmin

V
(s)

m′,m|m′⟩⟨m||e⟩⟨e| + h.c.


(7)

Here, U0 is a global energy scale, N is the natural
even number to be Goldbach partitioned, pn is
a contiguous sequence of prime numbers greater
than 2,

p1 = 3; p2 = 5; p3 = 7; p4 = 11; . . . ,

lm is an arbitrary sequence of widely spaced nat-
ural numbers, with a typical spacing

∆l ≫ 1 ,

km′ is a widely spaced subset of negative integers,

∆k ≫ 1 ,

with
km′

min
= −lmmax

and no other coincidences between the {km′} and
{−lm} sets; functions Θ(s)(t) and Θ(w)(t) are al-
lowed to have values that are either 0 or 1, the

matrix elements of both perturbations are as-
sumed to be small,

V
(w)

n′,n ≪ U0

V
(s)

m′,m ≪ U0∆l
. (8)

The bounds for the sequences of indices m and n
are indicated at the Fig. 1.

The state |n̄⟩ ⊗ |g⟩, with

pn̄ = pmin(N)

—if pmin(N) is an element of the set of primes
from p1 through pN (N)—plays a role of Grover’s
state |w⟩.

Two further assumptions are harder to realize,
and an additional work will be needed to find a
proper empirical setting supporting them.

We furthermore assume that the matrix ele-
ments of the V̂ (w) perturbation are approximately

3



−pnmax ≡ − p𝒩(N)

|g⟩ |e⟩

pn′￼max − N ⪆ − pnmin

pn′￼− N
Ûw

pn̄′￼− N

−pn

−pnmin ≡ − p1

−pn̄ ≂ |w⟩

pn′￼min − N ⪅ pnmax

|g⟩ Ûs

−lmmin ≡ − l1

−lmmax ≡ − l𝒩(N) ≂ |s⟩

−lm

|e⟩

km′￼

km′￼min ≡ k1 ≡ − l𝒩(N)

km′￼max ≡ k𝒩(N)

Figure 1: The major ingredients of the protocol. Energy
is expressed in units of U0.

equal to each other, in magnitude:

|V (w)
n′,n| ≈ const ≡ V (w) .

Further, we will associate the ground state of
the Hamiltonian Ĥs, |mmax⟩ ⊗ |g⟩, with Grover’s
state |s⟩. However, for the Grover procedure to
work, we must arrange for the potentials that
produce a balanced decomposition of the |mmax⟩
onto the members of the {|n⟩} basis:

|mmax⟩ = 1√
N (N)

N (N)∑
n=1

|n⟩ .

2.3 Initial state
The system is initialized in the ground state of the
Hamiltonian Ĥs, |mmax⟩: this state is associated
with Grover’s state |s⟩.

2.4 Realizing Ûw

To realize the unitary Ûw, we place the atom to
the Ĥ(w) potential, in the internal ground state
|g⟩, and apply the corresponding perturbation for
a time

τ (w) = π
ℏ

V (w)

(a 2π pulse, for a transition between the minimal
Goldbach prime state |n̄⟩ ⊗ |g⟩ and the second
member of the pair, |n̄′⟨⊗|e⟩ (so that pn̄ + pn̄′ =
N) and then wait for the nearest integer multiple
of ℏ

U0
. In the end, the prefactor in front of mini-

mal Goldbach prime state |n̄⟩⊗|g⟩, in the decom-
position in the {|n⟩ ⊗ |g⟩} basis will change sign.
For a sufficiently small perturbation strength, the
residual off-resonant processes will play no role in
the process [25, 23].

2.5 Realizing Ûs

To realize the unitary Ûs, we can place our atom
in the potential of the Hamiltonian Ĥ(s), in the
ground state |g⟩, and apply the perturbation for
a time

τ (s) = π
ℏ

V
(s)

m′
min,mmax

(hence realizing another 2π pulse) and then wait
for the nearest integer multiple of ℏ

U0
. The latter

step is designed to annul the effect of the phases
accumulated in the free propagation. In the end,
the prefactor in front of |mmax⟩⟩ ⊗ |g⟩, in the de-
composition in the {|m⟩ ⊗ |g⟩} basis will change
sign.

2.6 Readout

In the end, we measure the atom state in the
{|m⟩⟩ ⊗ |g⟩} basis. Finding the system in the
state |mmax⟩⟩⊗ |g⟩ would indicate that either the
lowest Goldbach prime, pn̄ does not belong to the
set of the first N (N) primes or the Goldbach con-
jecture is violated altogether. As in the case of
the conventional Grover algorithm [24], this result
can be achieved in O(

√
N (N) steps leading to a

O(
√

N (N) quantum advantage over the classical
listing the set of primes of interest.

As the next step, broader sets of primes should
be tested, potentially classically.

3 Conclusion and Outlook
In this article, we suggested a quantum polyno-
mial speed improvement to a query whether a
given even number N admits a Goldbach parti-
tion N = p + p′, with p being taken from the first
N (N) primes. The bound N (N) was chosen in
such a way that for the majority of N ’s, such par-
tition is known to exist. E.g. for a N (N) given

4



by (3), all even numbers N up to 2×1010 can be
Goldbach partitioned with the lowest prime be-
ing within the first N (N) primes. We were also
implicitly assuming that the bound N (N) was
low enough to exclude the appearance of another
Goldbach prime within the same set.

Our proposal is an analogue version of
Grover’s algorithm [24] realized with a single one-
dimensional two-level atom in a trap. We altered
the last step of Goldbach’s procedure, i.e. the de-
tection step of the algorithm: in doing so, we re-
placed the question “which of the first N primes
is a Goldbach prime?” by “is there a Goldbach
prime among the first N primes?”

Two weakest parts of the proposal are (a) the
assumption of constancy of the transition ma-
trix elements V

(w)
n′,n, and (b) the assumption of

constancy of the coefficients of decomposition of
the ground state of the unperturbed Hamiltonian
Ĥ(s) in the |g⟩ sector (|mmax⟩⊗|g⟩ = |s⟩) over the
Ĥ(w) (again the |g⟩ sector) unperturbed eigen-
states.

Tailoring the matrix elements of experimen-
tally realizable, i.e. coordinate-dependent pertur-
bations is addressed in a separate publication
[25].

The role of the shape of the decomposition of
|s⟩ over the basis also deserves further research.
In our case, the requirements to the decomposi-
tion of the |s⟩ are much weaker than in the orig-
inal Grover problem. The final state no longer
needs to be aligned with a particular state (i.e.
|w⟩) but instead sufficiently misaligned away from
a particular state (i.e. |s⟩). The requirement on
the relative difference between the coefficients of
decomposition of |s⟩ over the |g⟩ eigenstates of
the Hamiltonian Ĥ(w), |w′⟩ is going to be much
more forgiving than in the case of the conven-
tional Grover database search: one can show that
for a securely turning the system state away from
|s⟩ it is sufficient that the variance of the weights
|⟨w′|s⟩|2 is smaller than its mean:

∆|⟨w′|s⟩|2 ≪ ¯|⟨w′|s⟩|2 .

We expect an appearance of a generous cri-
terion on the relative difference between the co-
efficients of decomposition that may allow for a
broad variety of potentials to be used.

In the larger context of a search for violations
of Goldbach’s conjecture, the quantum advantage
provided by our scheme appears to be very mild.

E.g. the current state-of-art numerical (obviously
unsuccessful) search among all the even numbers
up to Nmax = 4 × 1018 [5], a quantum realization
of the search would deliver a quantum advantage
factor of

√
N (Nmax) ≈ 37 and it will require a

Hilbert space spanning N (Nmax) ≈ 1376 basis
states. In the future, we would like to find a way
to quantum-parallelize the so far classical listing
of the even numbers N to be tested.
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