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In this contribution, two versions of teleportation protocol are considered, based on either using a single
or two copies of entangled atom-field state, respectively. It is shown that, by using the first version, the
fidelity of the teleported state as well as the amount of quantum Fisher information, that contains in the
teleported state, are much better than using the second version. In general, one may increases the fidelity of
teleported information by increasing the mean photon number and decreasing the detuning parameter. The
fidelity of teleporting classical information is much better than teleporting quantum information. Moreover,
teleportating classical information that initially encoded in an exited states is much better than that encodes
in the ground states. However, the teleported Fisher information that initially encoded in a ground state is
much larger than those initially encoded in entangled states.
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1 Introduction

Since the first proposed protocol of quantum teleportation by Bennet et. al. [1], many suggested protocols are
suggested in both axes theoretically and experimentally. Effectively, their applications are very large, especially in
the context of quantum communication and information theory [2, 3]. The aim of these protocols is transferring
an unknown quantum state remotely with all security in contrast to the classical information theory [3]. Thanks
to ”non-cloning theorem” [4] which introduced by Wootters el. al. in 1982, it is impossible to clone or to get an
identical copy of an arbitrary quantum state. Recently, Ortigoso [5] denoted that a complete proof in terms of
the lack of simple nondisturbing measurements in quantum mechanics, also it was already delivered by Park in
1970 [6]. In the same way, Herbert wrote an interesting paper which used the non cloning theorem to propose
a superluminal communication device by using quantum entanglement [7]. This type of quantum correlations is
caused by the non-local hidden variables, named ”Entanglement” by Schrodinger [8]. Bell theorem [3] ensured
that two interacting quantum systems in the past can no longer be regarded as independent systems, one can say
that they are entangled. Indeed, the entanglement can be seen as the physical phenomenon which occurs when a
quantum state of two or more particles interact in such way the quantum state of each particle cannot be described
independently of others.

In general, entanglement is a fundamental concept in quantum communication such as quantum cryptography
and quantum teleportation [3]. The last one uses two kind of channels, the first is a quantum channel which allows
to transfer an unknown state and the second is a classical channel which helps to complete the communication.
However, the quantum channel can be either a partially or a maximally, Bell state [3], entangled state [9, 10]. For
the partially entangled state, it can be arrived for example from an interaction between 2-levels atom with single
electromagnetic field. The quality of the quantum information processing may be shown by measuring the so called
”fidelity” [11]. Furthermore, it gets an idea about how the final state closes to the initial state, i.e the fidelity
measures the similarity between the unknown state and the final state at the end of the protocol.
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In the quantum transmission, the total physical information encoded in a quantum state can not always be
transmitted, but one can transmit only the relevant parameter information. Moreover, the relevant parameters
that carry the information can be exploited in quantum metrology [12], quantum estimation theory [13], quantum
information theory and so on. As it is known, the quantification of these parameters can be evaluated by the so
called ”Quantum Fisher Information” (QFI). This quantifier may be considered as the most important measures
in quantum estimation theory. In general QFI is defined as the sensibility of a quantum state with respect to
changes the relevant parameters encoded in this state, i.e. QFI is a quantifier of the precision parameter estimation.
Moreover it can be considered as good resource which detect the entanglement between two particles, in particular
it it measures the quantitatively the information flow changed between an open quantum state and its surrounding
environment. Consequently, quantum Fisher information has attracted attention of many authors in order to eval-
uate the relevant parameters. Zheng et. al. [14] investigated the dynamics of QFI for a two-qubit system, where
each qubit interacts with its own Markovian environment. Ozaydin [15] quantified the QFI analytically for the
W-state in the presence of different noisy channels. Metwally [16, 17], discussed the behavior of Fisher information
for accelerated and pulsed systems. Recently, El Anouz et. al. [18] evaluated QFI for a single atomic-field state
which used as a quantum channel in quantum teleportation protocol. They showed that it’s possible to estimating
the teleported initial state parameters in resonance and non-resonance cases.

In this paper, we use two schemes of quantum teleportation. In the first scheme (FTP ) we use a single atomic-
field state as a quantum channel to perform the quantum teleportation protocol, while for second scheme (STP ),
two copies of the entangled atomic-field state are used to achieve the teleportation protocol. It is shown that, the
atomic-field parameters have the same effect on the behavior of the fidelity of the teleported state as well as on the
amount of Fisher information that encoded in the teleported state for both versions; FTP , and STP . The paper is
organized as follows. In the next section we suggest a physical model based on the interaction between two level
atom and a single electromagnetic mode field. In Sec.3 a general definitions and notations of the quantum Fisher
information are presented. The effect of the field and the atom’s parameter is displayed in Sec.4. Finally our results
are summarized in Sec.5.

2 Suggested model

In the literature, the famous model that describes the interaction matter-light is Jaynes-Cummings model. The
Hamiltonian of the suggested system, a single-two level atom interacts with a single cavity mode in the rotating
wave approximations is given by,

H = H0 + λ(a|e〉〈g|+ a†|g〉〈e|), (1)

where H0 represents the free Hamiltonian of the atom and the cavity mode, H0 = ω0σz/2+ωa
†a. The second term

represents the interaction Hamiltonian between the atom and the single field with the coupling constant λ. The
frequencies of the atomic system and the cavity mode are defined by ω0 and ω, respectively. The lower and the
ground levels of the atom are |e〉 and |g〉, respectively. Moreover, inside the cavity a† (a) describes the creation (the
annihilation) operator which allow to move up (down) a quantum state.

Let’s suppose that, the states of the atomic and the field represent by
∣

∣φA(0)
〉

=
∣

∣e
〉

and
∣

∣φF (0)
〉

=
∑∞

0
Pn

∣

∣n
〉

,
respectively. The atomic-field system is initially defined by,

|φS(0)〉 =
+∞
∑

n=0

Pn|n〉 ⊗ |e〉, (2)

where, Pn = exp(− n̄
2
)
√

n̄n

n! , and n̄ is the average photons number. At an arbitrary time (t 6= 0), the whole system

is given by:
|φS(t)〉 = O(t)|φS(0)〉, (3)

with the time evolution operator O(t) = e−iHt. In an explicit form, the final state (3) of atomic-field system takes
the form,

|φS(t)〉 =

∞
∑

n=0

Pn

{(

cos(τ
√

δ2 + n̂)− i
δ√

δ2 + n̂
sin(τ

√

δ2 + n̂)|n, e〉
)

−ie−iδτ

√
n+ 1

√

δ2 + (n+ 1)
sin(τ

√

δ2 + n̂)|n+ 1, g〉
}

, (4)
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with n̂ = a†a is the mean photon number, τ = λt and δ = ∆/2λ are the dimensionless time and detuning parameters,
respectively . It is clear that, the state Eq.(4) represents the final state of the whole system in 2×∞ -dimensions
space. In order to measure the minimum amount of entanglement which is generated between the atom and the
cavity, the final state Eq.(3) is projected in a 2 × 2 dimensions subspace [18]. In the 2-dimensions space, the
atomic-field state is collapses to be,

ρS(t) = α1|n, g〉〈n, g|+ α2|n, e〉〈n, e|+ α3|n, e〉〈n+ 1, g|+ α∗
3|n+ 1, g〉〈n, e|

+α4|n+ 1, g〉〈n+ 1, g|+ α5|n+ 1, e〉〈n+ 1, e|, (5)

where the different coefficients αi (i = 1, ..., 5) are simply obtained from Eq.(4) (see appendix A).

3 Quantum Fisher Information

In quantum information theory, quantifying directly the parameters that describe the quantum state is not always
possible. For that, quantum Fisher information (QFI) gets a way to solve this problem by estimating these pa-
rameters [19]. QFI enables to measures the sensitivity of quantum state or the physical parameter encoded in this
state. For example, let’s consider a two-qubits system which depends on parameter ξ, the corresponding quantum
Fisher information Fξ is defined as [20]

Fξ = Tr[ρξLρ
ξ ] = Tr[(∂ξρξ)Lξ], (6)

where Lξ is the symmetric logarithmic derivative, which is given by ∂ξρξ = (Lξρξ + ρξLξ)/2 with ∂ξ = ∂/∂ξ.
Using the spectrum decomposition of ρξ as ρξ =

∑n
k=1

λk|ψk〉〈ψk| where λk and |ψk〉 are the eigenvalues and the
eigenvectors respectively, one can rewrite the QFI as [17]

Fξ =
∑

k

(∂ξλk)
2

λk
+ 4

∑

k

λk[〈∂ξψk|∂ξψk〉 − |〈ψk|∂ξψk〉|2]−
∑

k 6=l

8λkλl
λl + λk

|〈ψk|∂ξψl〉|2, (7)

where, the first term in Eq .(7) allows to investigate the so called classical Fisher information. However, the possi-
bility to estimate the parameter ξ encoded in the pure state |ψk〉 is described by the second term in Eq. (7). While
the possibility to estimate the same parameter ξ of a mixed state is given by the third term in Eq.(7). In general,
the sensitivity of a mixte state is smaller the sensitivity of a pure state.

In quantum teleportation protocol, we teleport the full included information in a given quantum state, where
the efficiency scheme is measured by the fidelity. Recently it shown that it is enough to teleport some relevant
included parameters in the quantum state, and the teleportation credibility will be investigated by quantum Fisher
with respect to these parameters. Indeed in following section, we shall compare the fidelity and the quantum Fisher
of a teleported state using two different teleportation schemes.

4 Teleportation protocol

It is well known that, the quantum teleportation is one of the most important achievements over the last decade.
However, it’s almost the engine of all the tasks in the quantum information processing. In this section, the generated
entangled atomic-field state (5) is employed to teleport an unknown state between two legitime users; Alice and
Bob who share the state (5). Let’s assume that, Alice want to send the following unknown state

∣

∣ψun

〉

= cos θ
∣

∣00
〉

+ e−iφ/2 sin θ
∣

∣11
〉

, (8)

where θ ∈ [0, π] and ϕ ∈ [0, 2π]. Next, we propose two suggested schemes of quantum teleportation for achieving
the communication between the users. Now Alice’s aim is to send the state Eq.(8) to Bob. For this task, Alice may
use the first teleportation version, FTP , in which the partners use only a single copy of atomic-field state (5), or
they use the second version STP , where two copies of the state (5) are used.
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4.1 First Teleportation Protocol FTP

In this suggested protocol, it is assumed that the partners, Alice and Bob share a single copy of the state (5). Alice
is given unknown state (8). The users perform the steps of the teleportation protocol which are described in [18].
At the end of the protocol, Bob will get the state

ρB1
=

∑

ij

Pij(σi ⊗ σj)ρun(σj ⊗ σi), (9)

where Pij = Tr[Eiρac]Tr[E
jρac],

∑

ij Pij = 1 (ij = 0, x, y, z), and σm (m = i, j) are the Pauli operators, the
different projection E are given by

E0,z = |ψ∓〉〈ψ∓|, Ex,y = |φ∓〉〈φ∓|,

|ψ±〉 =
1√
2
(|01〉+ |10〉), |φ±〉 = 1√

2
(|00〉+ |11〉), (10)

where |ψ±〉 and |φ±〉 represent the Bell states [3]. Using these different expressions of states, the final Bob’s state
in the basis {|n, g〉, |n, e〉, |n+ 1, g〉, |n+ 1, e〉}, is given by

ρBob1 =









β1 0 0 β2
0 0 β3 0
0 β∗

3 0 0
β∗
2 0 0 β4









, (11)

where,

β1 = (α1 + α5)
2 sin2(θ) + (α2 + α4)

2 cos2(θ),

β2 = (α3 + α∗
3)

2 cos(θ) sin(θ)eiϕ/2,

β3 = (α1 + α5)(α2 + α4),

β4 = (α2 + α5)
2 cos2(θ) + (α1 + α4)

2 sin2(θ), (12)

and αi (i = 1, .., 5) are given in appendix (A). The measure of how the final state closes to the initial state is given
by the fidelity as,

FB1
=

[

(α1 + α5)
2 sin2(θ) + (α2 + α4)

2 cos2(θ)
]

cos2(θ) + (α3 + α∗
3)

2 sin2(2θ)/2

+
[

(α2 + α5)
2 cos2(θ) + (α1 + α4)

2 sin2(θ)
]

sin2(θ). (13)
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Figure 1: The fidelity of the teleported state (8) by using a single copy of (5) in the resonance case δ = 0,n = 2,
and φ = 0, where (a) θ = π/4, (b) θ = π/2 and (c) θ = 0. The solid, dash and dot for n̄ = 2, 4, 6, respectively.

Fig.(1) displays the behavior of the fidelity FB1
at the resonance case (δ = 0), where the teleported state is

initially prepared in the state (8) and different values of the n̄ are considered. The general behavior shows that,
the fidelity FB1

, oscillates between its upper and lower bounds. The maximum/minumm values depend on the
value of the mean photon numbers n̄, inside the cavity, where as n̄ increases, the maximum bounds increase. The
amplitude of oscillation depends on the type of the teleported information. However, as it is shown in Fig.(1a),
where the initial state prepared in the state |ψun〉 = 1√

2
(|00〉+ |11〉), the amplitude of these oscillations is small and

the minimum value of the fidelity is slightly changed at different values of the mean photon numbers. Moreover, the
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Figure 2: The same as Fig.(1) but for non resonance case, where the solid, dash and dot curves for δ = 0.1, 0.3, 0.5
respectively, n=2 and n̄ = 4.
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Figure 3: The Fisher information with respect to the parameter θ, FI1(θ) of the state (11) at the resonance case
δ = 0,n = 2, where (a) θ = π/4, (b) θ = π/2 and (c) θ = 0. The solid, dash and dot for n̄ = 2, 4, 6, respectively.

fidelity survives during the interaction time and never vanishes. Fig.(1b), displays the behavior of the fidelity when
the initial teleported state contains only classical information, namely |ψun〉 =

∣

∣11
〉

. In this case, the amplitudes
of these oscillations are large and the effect of the mean photon number is clearly displayed. The Fidelity of the
teleported state, may vanish periodically and fast as the mean photon numbers increases. The fidelity of teleported
unknown state by using FTP , when the initial teleported state is prepared in the ground state is displayed in
Fig.(1c). The behavior of FB1

is similar to that predicted in Fig.(1b), but the upper bounds are much smaller. The
mean photon number has the same effect on the behavior of the fidelity, where the fidelity increases as n̄ increases.

From Fig.(1), by using the FTP , the possibility of teleporting unknown state depends on the initial state settings,
where the maximum fidelity is predicted if the initial information is encoded in an excited state. The minimum
bounds of teleporting quantum information are much better than teleporting classical information. Therefore, one
can conclude that, the maximum fidelity is achieved at large values of the mean photon number and encoding the
unknown information in an excite state.

In Fig.(2), we investigate the behavior of the fidelity of the teleported information at non-resonance case, namely
δ 6= 0. The displayed behavior is similar to that depicted in Fig.(1). The different values of δ has a remarkable
effect on the maximum/minimum bounds of the fidelity of teleported state, where these bounds are much better
at non-resonance case. Small values of δ improve the minimum and the maximum values of the fidelity. Also,
the teleported information that encodes on the unknown state plays an important role on its teleported fidelity.
However, teleporting classical information prepared initially in an excited state is much better than those prepared
in a ground state. Although, the fidelity of teleporting quantum information is improved in the non-resonance case,
but it is smaller than those for classical information, which are initially encoded in the excited state.

From Fig.(1) and (2), we conclude that small values of the detuning parameter improves the minimum bounds
of the teleported fidelity. Different values of the detuning parameter have slightly effect on the upper bounds of the
fidelity of the teleported state.

The amount of Fisher information FI1(θ), with respect to the parameter θ, that contained on the teported
state is displayed in Figs.(3) and (4). Similarly, the behavior of FI1(θ) depends on the type of the teleported
information. However, as it is shown in Fig.(3a), the teleported FI1(θ) that encoded in the state |ψun(θ = π/4)〉
collapses, revivals and death periodically. The behavior of teleported quantum Fisher information that encoded
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Figure 4: The same as Fig.(3) but for non resonance case, where the solid, dash and dot curves for δ = 0.1, 0.3, 0.5
respectively, n=2 and n̄ = 4.
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Figure 5: The same as Fig.(1), but the second teleportation protocol, STP is used.

in |ψun(θ = 0)〉 is displayed in Fig.(3b). In this case, the behavior of Fisher information is different from that
depicted in Fig.(3a), where the FI1(θ) oscillates between the upper bounds and temporary vanishes. Moreover,
the upper bounds of Fisher information increase as the mean photon number increases. In Fig.(3c), we plot the
quantum Fisher information FI1(θ), when the initial information is encoded in a ground state. The general behavior
is similar to that displayed in Fig.(3b), but the maximum bounds are very large compared with those displayed in
Figs.(3a),(3b). Moreover, it increases gradually to reach its maximum values and vanishes temporary at large time
compared with that displayed in Figs.(3a),(3b).

The effect of the detuning parameter on the teleported Fisher information is displayed in Fig.(4). A similar
behavior is shown as that depicted in Fig.(3). However, as one increases the detuning parameter the amount of
the telported quantum Fisher information decreases and reaches its minimum values fast. Similarly, the maximum
amount of the teleported FI1(θ) depends on the initial type of the encoded information. However, as it is displayed
in Fig.(3a) the minimum amount of the teleported quantum Fisher information is depicted if the initial information
is encoded with θ = π/4, where FI1(θ) disappears for long time. It is clear that, the larger values of the detuning
parameter, increases the fidelity of teleported Fisher information that encoded on the ground state. At the non-
resonance case, the upper bounds of FI1(θ) increases at small value of the detuning parameter. Moreover, the
maximum bounds are very large than those displayed in Figs.(4b) and (4c), where the initial information is encoded
in the states

∣

∣ψun(π/4)
〉

and
∣

∣ψun(π/2)
〉

, respectively.

4.2 Second Teleportation Protocol (STP )

In the second scheme of quantum teleportation STP , the users share two copies of the state Eq.(5). After performing
the required steps, Bob will get the state

ρBob2 =









γ1 0 0 γ4
0 γ2 0 0
0 0 γ2 0
γ∗4 0 0 γ3









, (14)
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Figure 6: The same as Fig.(5), but for the non-resonance, n̄ = 4.
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Figure 7: The Fisher information with respect to the parameter θ, FI2(θ) using the second protocol in resonance
case δ = 0, n = 2, where (a) θ = π/4, (b) θ = π/2 and (c) θ = 0. The solid, dash and dot for n̄ = 2, 4, 6, respectively.

where,

γ1 = cos2(θ)α2
1 + sin2(θ)α2

4,

γ2 = cos2(θ)α1α2 + sin2(θ)α4α5,

γ3 = cos2(θ)α2
2 + sin2(θ)α2

5,

γ4 = cos(θ) sin(θ)e−iϕ/2|α3|2. (15)

The fidelity of Bob’s state (14) is given as

FB2
= cos2(θ)[cos2(θ)α2

1 + sin2(θ)α2
4] + sin2(θ)[cos2(θ)α2

2 + sin2(θ)α2
5] + 4 cos2(θ) sin2(θ)(α2

3 + α∗
3
2). (16)

In Fig.(5), we display the behavior of the fidelity of the teleported state by using the second suggested telepor-
tation protocol, namely the partner share two copies of the atomic-field state (5). The general behavior of FB2

is
similar to that displayed in Fig.(1) for FB1

. The behavior shows that FB2
flocculates between its maximum and

minimum values regularly. The mean photon number has the same effect that displayed in Fig.(1), namely, the
fidelity increases as the mean photon number increases. Also, the initial state settings has a clear effect, where for
teleporting classical information the fidelity is much larger than teleporting quantum information. These results
are displayed clearly by comparing Fig.(4a) with Figs.(4b) and (4c). Moreover, the minimum values that predicted
for teleporting quantum information are much larger than that displayed for teleporting classical information.

Similarly in Fig.(6), we investigate the behavior of the fidelity FB2
of the teleported information at non-resonance

case. It is clear that, the upper bounds are larger than those displayed in Fig.(5) (see at n̄ = 4). However, the initial
unknown state settings has the same effect as that displayed for FTP , where the fidelity of teleporting quantum
information is much smaller than teleporting classical information. Larger values of the detuning parameter has a
slightly effect on the upper bounds of the fidelity, but increases the exchange between its maximum and minimum
values.

The quantum Fisher information FI2(θ) of the teleported state by using the second version STP is displayed in
Figs.(7) and (8) for the resonance and non-resonance cases, respectively. The effect of the mean photon number and
the detunig parameter is similar to that displayed in Figs.(3) and (4) for FI1(θ), where the partners use the first
teleportation version STP . The maximum bounds are predicted for the quantum Fisher information that initially
encoded in ground state.
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Figure 8: The same as Fig.(7) but for the non-resonance case.
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Figure 9: The fidelity of the teleported state, where the FTP is considered in (a), (b) and STP is considered in (c)
in the resonance case δ = 0,n = 2, and φ = 0, where (a), (c) θ = π/2 and (b) θ = 0. The Cray, Blue, Red and Black
for n̄ = 1000, 800, 400, 100, respectively.
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Figure 10: The fidelity of the teleported state, where the FTP is considered in (a), (b) and STP is considered in
(c), where n = 2, n̄ = 4, and φ = 0, where (a), (c) refer to θ = π/4 and (b) θ = 0. The Cray, Blue, Red and Black
for δ = 0.001, 0.005, 0.02, 0.05, respectively.

Moreover in order to maximize the fidelity to one, we consider large number of n̄ and small values of δ. Indeed
in Fig. (9) and (10) we display the evolution of fidelity as a function of τ . It is clear that in both techniques, namely
FTP and STP , the fidelity reaches the maximum bounds for large values of the mean number photon and small
values of detuning parameters ( n̄ = 1000, δ = 0.001) .Based on this, the control of these parameters gives rise to
a threshold values of n̄ and δ, namely n̄ = 1000 and δ = 0.001. Thanks to these critical parameters, the fidelity in
the first technique FTP reaches the maximum bound and never exceeds one while in the second technique STP the
fidelity approaches to one. However in both techniques the choice of n̄ ≥ 1000 and δ ≤ 0.001 gives always the same
results where the fidelity still constant or approaches to its maximum bound.

As a result the main advantages of this work is to propose a two schemes of quantum teleportation process, using a
single copy and two copy of 4, respectively. The control of the mean number photon and detuning parameters allows
to determine a threshold, where the fidelity is maximized to one. Moreover in the proposed models the measures
of the sensitivity of the teleported state via quantum Fisher information is investigated in order to improve the
credibility of transmitting the information encoded in the unknown quantum state. Using a single copy of the
entangled atom-field state as quantum channel (FTP ) gives rise to large bound of fidelity as well as high sensitivity,
with respect to the threshold value mentioned in Figures 9 and 10. These results may be useful analytically and
experimentally in the context of quantum information theory, quantum sensing, quantum metrology and many
others fields.
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5 Conclusion

In this contribution, we investigate the possibility of using the minimum amount of entangled state, that is gener-
ated between an atom and a cavity mode, to teleport a quantum and classical information encoded in a two-qubit
state. In this context, we used two techniques of a teleportation protocol, in the first one FTP , the partners share
only one copy of the generated entangled atom-field state. However, for the second suggested protocol, STP , the
partners use two copies of the entangled atom-field state. We investigate the effect of the atomic and filed parame-
ters on the fidelity of the teleported states as well as the amount of the teleported Fisher information. It is shown
that, for both versions FTP and STP , the behavior of the teleported information is similar. However, for FTP the
teleported state, which contains quantum or classical information never vanishes, but for the second version STP ,
the teleported classical information vanishes periodically. Moreover, the upper bounds of the fidelity as well as the
quantum Fisher information that predicted by FTP is much better than that displayed by the second teleportation
version FTP . The interaction parameters; the mean photon number and detuning parameters have the same effect
on both versions.

Our results show that the fidelity increases as the mean photon number increases or the detuning parameter de-
creases. By these choices, the generated entanglement between the atom and the cavity increases and consequently
its efficiency to be used as quantum channel to perform the telportaion protocols increases. However, the atomic
and the field’s parameters have the same effect on the amount of the teleported Fisher information, namely, the
maximum bounds are displayed at large values of the mean photon number and small values of the detuning pa-
rameter. However, the Fisher information that displayed for a state initially encodes classical information oscillates
fast and temporary vanishes to rebirth suddenly. The freezing phenomena of the Fisher information is displayed if
the initial teleported state encodes quantum information. The initial state settings has a noticeable effect, where
the upper bounds of the fidelity that predicted for a system encodes quantum information are smaller than those
encodes classical information. On the other hand, the classical information may be initially encoded in an exited or
ground states. In this context, the fidelity of the teleported information that encoded in an excited state is much
larger than that encoded initially on the ground state.

From the behaviors of the fidelities and the quantum Fisher information, one may conclude that in the resonance
and non-resonance case, the possibility of teleportating quantum/ classical information by using a single copy of a
two-qubit state, namely using the first version (FTP ) of teleportation, is much better than using the second version
(STP ), where two copies of the atomic-field states are used. However, by using (FTP ) version, the fidelity never
vanishes and the maximum bounds are always larger than those are displayed by using the second teleportation
version. The detuning and the mean photon numbers have the same effect on the fidelity of the teleported state by
using the both versions of the teleportation protocols. In general, one may increases the fidelity of the teleported
state by increasing the mean photon number or increasing the detuning parameter.

Appendix A.

The coefficients αi (i = 0, ..., 5) are obtained from Eq.(4) as

α1 =
P 2
n−1

N
n

δ2 + n
sin2(τ

√

δ2 + n),

α2 =
P 2
n

N
[

cos2(τ
√

δ2 + (n+ 1)) +
δ2

δ2 + (n+ 1)
sin2(τ

√

δ2 + (n+ 1))
]

,

α3 = i
P 2
n

√
n+ 1e−iδτ

N
√

δ2 + (n+ 1)
sin(τ

√

δ2 + (n+ 1))
[

cos(τ
√

δ2 + (n+ 1))

−i δ sin(τ
√

δ2 + (n+ 1))
√

δ2 + (n+ 1)

]

,

α4 =
P 2
n

N
(n+ 1)

δ2 + (n+ 1)
sin2(τ

√

δ2 + (n+ 1)),

α5 =
P 2
n+1

N
[

cos2(τ
√

δ2 + (n+ 1)) +
δ2

δ2 + (n+ 1)
sin2(τ

√

δ2 + (n+ 1))
]

, (17)
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where δ is the dimentionless detuning and the normalization of the state N is given by,

N = P 2
n +

[ n

δ2 + n
sin2(τ

√

δ2 + n)
]

P 2
n−1

+
[

cos2(τ
√

δ2 + (n+ 1)) +
δ2

δ2 + (n+ 1)
sin2(τ

√

δ2 + (n+ 1))
]

P 2
n+1. (18)
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