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We demonstrate theoretically and experimentally how the diffraction and interferometric resolu-
tion limit for single-mode coherent cw laser light can be overcome by multi-photon interference. By
use of a Mach-Zehnder interferometer, operated in the single input and single or double output port
geometries, we observe a fringe width reduction of the conventional interference pattern, predicted
by the wave or single photon quantum theory, by a factor of up to 1/

√
2N through coincident de-

tection of N = 2, 3, 4 photons. Our scheme does not require squeezed or entangled light to overcome
the standard quantum limit and greatly facilitates precision interferometry experiments.

I. INTRODUCTION

An important goal and application of modern quantum
optics, pioneered by Glauber in the 1960s [1–3], has been
overcoming the limits set by classical wave optics [4–9].
By now, quantum optics protocols have led to overcoming
the classical Rayleigh diffraction limit in imaging as hon-
ored by the 2014 Nobel Prize in Chemistry, proving the
existence of the fascinating phenomenon of entanglement
honored by the 2022 Nobel Prize in Physics, and creating
quantum based metrology methods for the detection of
minute distance changes caused by gravitational waves,
honored by the 2017 Nobel Prize in Physics. The under-
standing of the quantum substructure of light in terms of
correlated multi-photon quantum states, has also led to
paradigm shifts in the broad field of information technol-
ogy, based on the novel concepts of quantum computa-
tion and communication which underlie the development
of artificial intelligence.
Conventional quantum mechanics, such as Dirac’s for-

mulation [10], give results that are equivalent to those
of the classical wave theory. This fact, expressed by the
wave-particle ambiguity, originates from the linearity of
conventional quantum mechanics which ignores possible
correlations between photons. In quantum theory, in-
terference patterns of light arise through geometric path
length differences a single photon can take from photon
birth to destruction points. The complex electric wave
fields that are superimposed in the classical Huygens-
Fresnel principle are simply replaced by a sum over all
possible single photon probability amplitudes, reflecting
the alternative paths a single photon can take [11–13].
While wave interference predicts a continuous macro-
scopic pattern, the quantum pattern forms probabilisti-
cally as a mosaic of single photon detection points (bright
spots).
Modern quantum optics extends Dirac’s original for-

mulation [10] of single photon or first order quantum
processes to multi-photon processes. The theory may

be viewed as the photon-only part of the general theory
of light and matter, quantum electrodynamics (QED),
which is correct to infinite order. Similar to Feynman’s
formulation of QED through increasingly higher order
correlations between photons and electrons, Glauber’s
formulation of quantum optics allows for higher order
correlations between photons. The behavior of sin-

gle photons corresponds to first order, while higher or-
ders are defined through the number of photons, N >
1, simultaneously involved. These higher order multi-
photon correlations are expressed by different multi-
photon quantum states of light that can be produced by
energetic excitations out of the zero-point quantum vac-
uum. Some of these multi-photon quantum states have
no analogues in a wave-like description and hence give
rise to non-classical phenomena.

While the detection process is left unspecified in the
classical wave formulation, which simply predicts the ex-
istence of a continuous macroscopic interference pattern
in space, it plays a crucial role in quantum optics. Al-
though the concept or nature of a photon remains contro-
versial among fundamentalists [14, 15], it is the detection
process that allows us to state with confidence that we
have observed a photon. Photon detection is based on
the local destruction of a photon and creation of a pho-
toelectron that gives rise to a detector click. Clicks in dif-
ferent detectors are also used to distinguish whether the
detected photons are completely independent or whether
there is some kind of correlation between them. Corre-
lations between different photons may be due to simul-
taneous birth processes in a source or secondary source.
Examples are entangled photon pairs generated through
spontaneous parametric down conversion [16] or cloned
photons created in stimulated emission [13].

In quantum optics, the concept of wave interference is
extended to the non-trivial concept of photon interfer-
ence. So-called multi-photon interference effects are said
to exist when a number of photons detected at points
in space and instances in time are deemed indistinguish-
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able. Indistinguishability, resulting in interference, exists
when two or more photons arrive at single or multiple
spatial areas that are smaller than the lateral coherence
area (defined by wave-optics), and within a coincident
time window that is shorter than the coherence time (de-
fined by the energy bandwidth). When more than single
photons are involved, there are more indistinguishable
alternatives or photon probability amplitudes that link
the photon birth and destruction (detection) processes in
space and time. The interference of these multi-photon
probability amplitudes change the classical or first order
interference pattern.
Here we investigate multi-photon interference effects

for coherent cw laser light. Such light contains a large
average number 〈n〉 of photons, expressed by a collective
coherent quantum state or Glauber state of light, and is
said to be higher order coherent [17]. The photons are
statistically distributed in a Poisson probability distribu-
tion, which means that the photon arrivals are uncorre-
lated in time and occur randomly. Coherent laser light
most closely resembles a stable classical wave but it has
finite quantum uncertainties.
We discuss how the quantum uncertainties of such

light manifest themselves in the fundamental double slit
diffraction experiment or a corresponding Mach-Zehnder
interference experiment, and how the quantum uncer-
tainties can be reduced through the detection process.
We show experimentally that the coincident detection
of an increasing number of N photons in coherent light
changes the interference pattern, with a strong reduction
of the width of the interference fringes with N .

II. THE STANDARD QUANTUM LIMIT OF

UNCERTAINTY

In first order quantum optics, the ultimate precision
of a measurement is limited by Heisenberg’s uncertainty
principle [18]. It was formulated in 1927 through matrix
mechanics in terms of the non-commutativity of the po-
sition and momentum operators. As discussed in Heisen-
berg’s original paper and in Dirac’s [19, 20] closely related
1927 papers, uncertainty relationships may be phrased
more generally in terms of conjugate variables, in anal-
ogy to Fourier relationships.
The position-momentum (e.g. source size and coherent

emission angle) uncertainty relation which determines
the diffraction limit and the energy-time (bandwidth
and pulse length) correlation which defines the transform
limit both have the form AB ≥ C, where A and B repre-
sent statistical errors of different conjugate variables and
C is a constant [13, 21]. The uncertainty principle only
limits the product of the two conjugate variables and in
principle allows for the trade-off of uncertainties in the
two variables by keeping their product constant.
In the position-momentum or diffraction limit formula-

tion, the trade-off has long been known and is utilized by
enlarging the lens of a telescope to get a smaller diffrac-

tion limited spot size. By inversion of the optical path,
the reduction of a source size, say by an aperture, leads
to a concomitant increase of the coherent emission angle.
Similarly, in the energy-time or transform limit formula-
tion, one can use a monochromator to reduce the energy
bandwidth with a corresponding increase of the coher-
ence time. The inverse method is used to extend the
spectral range of lasers into the soft x-ray region through
the generation of ultrashort attosecond pulses [22] which
also allow unprecedented temporal resolution, as honored
by the 2023 Nobel Prize in Physics.
Conventional photon counting detectors sum over the

number of photons arriving in time. For coherent light,
the photon arrival time is random according to a Poisson
distribution in time. One therefore observes the same
multi-slit diffraction patterns recorded with low-intensity
light that is deemed “coherent” from a wave point of
view and with high-intensity laser light which is higher
order coherent [23, 24]. Despite the fact that first and
higher-order coherent light are formally distinguished in
quantum optics [3, 17], for coherent light the diffraction
patterns recorded with typical detectors such as position
sensitive CCDs are independent of the order of coherence.
This remarkable fact has the important consequence

that x-ray diffraction experiments, where the slits are re-
placed by periodic 3D arrangements of atoms, give the
same Bragg patterns when recorded with conventional
detectors, independent of whether the x-ray source is
first or higher order coherent! The patterns recorded
with conventional x-ray tubes, synchrotron radiation, x-
ray free electron lasers [21] and even phase-stabilized x-
ray laser oscillators [25] are therefore the same, except
for the required recording time.
Starting in the early 1980s, the precision of interfer-

ometers were explored for the detection of gravitational
wave induced distance changes between widely separated
masses [4]. In this process, the quantum properties of
fully coherent laser light emerged as a benchmark for
quantum behavior. Such light contains a large average
number 〈n〉 of photons which are statistically distributed
in a Poisson probability distribution centered around 〈n〉,
with a standard deviation width of the distribution given
by σ = ∆n =

√

〈n〉. This value represents the fundamen-
tal “shot noise” or “Poisson noise” in photon counting.
Its quantum mechanical origin lies in the fluctuations in
the zero-point quantum vacuum.
The finite quantum uncertainties of single mode laser

light are expressed by an uncertainty product that has
balanced contributions from the uncertainty in the num-
ber of photons ∆n, a quantum property, and in the phase
of the associated classical field amplitude, ∆ϕ, according
to [5]

∆n∆ϕ = 1 where ∆n =
√

〈n〉 and ∆ϕ =
1

√

〈n〉
(1)

This uncertainty relationship is referred to as the shot

noise limit or Standard Quantum Limit (SQL). It states
that the fractional uncertainty in the photon number,
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∆n/〈n〉, and the uncertainty in the phase ∆ϕ of the as-

sociated field amplitude both decrease as 1/
√

〈n〉 with
increasing mean photon number, i.e. both the amplitude
and phase of the corresponding electromagnetic wave be-
come better defined. The value of the uncertainty prod-
uct in (1), given here as 1, like the constant C in the
Heisenberg uncertainty product, depends on the shape
of the distribution functions of the variables and defini-
tion of their width [21]. The signal-to-noise ratio (SNR)
in this limit is given by the well-known expression,

SNR =
〈n〉
√

〈n〉
(2)

In contrast to the position-momentum and energy-time
uncertainty relationships, it is considerably more difficult
to trade off between the balanced uncertainties in ∆n
and ∆ϕ in the SQL expressed by (1). Its manipulation
requires an extension of the wave and first order quantum
descriptions, whose concepts it unites.

III. BEYOND THE STANDARD QUANTUM

LIMIT: THE HEISENBERG LIMIT

The SQL stated by (1) corresponds to a transforma-
tion of the first order position-momentum principle into
a phase space that is spanned by so-called quadrature op-
erators, constructed from linear combinations of creation
and annihilation operators of the quantized electric field
[16, 26]. The four 90◦ phase quadrants completely char-
acterize the complex electric field.
The reduction of one uncertainty in the SQL at the

expense of the other became possible only by considering
correlations between photons, which are only allowed in
higher order quantum optics. The so-called “squeezing”
of the uncertainty of one of the variables in the SQL
at the expense of the other, was conjectured in 1976 by
Yuen [27] and discussed for interferometry in 1981 by
Caves [4]. It was experimentally demonstrated in 1985
[28, 29]. Squeezing of a coherent state may be visualized
by deforming an uncertainty circle in phase space into an
uncertainty ellipse of equal area but different lengths or
uncertainties along the principal axes [16, 26]. Squeezing
is fundamentally a higher order or non-linear concept.
In practice, for precision interferometry one squeezes

the more important phase uncertainty at the expense of
increasing the number uncertainty. The phase uncer-
tainty in the SQL may then be reduced to the so-called
Heisenberg limit (HL) according to,

∆ϕSQL =
1

√

〈n〉
−→ ∆ϕHL =

1

〈n〉 (3)

Accordance with (3), the phase uncertainty in the HL
is theoretically reduced relative to the SQL by a factor
of

√

〈n〉. For a strong laser beam with a mean photon
number of 〈n〉 ∼ 1024 as used in gravitational wave de-
tection, this in principle leads to an improvement by an

amazing factor of 1012 [5]. Although this improvement is
not reached in practice, squeezing has been implemented
nevertheless in upgrades of gravitational wave detectors
[30].
More generally, the HL expresses an extension of the

conventional first order Heisenberg uncertainty principle
to higher order. This is mathematically defined through
photon correlation functions of a well-defined integer
number N of photons [31]. In practice, the correlation
between the N photons is established through their co-

incident detection. The Heisenberg limit may then be
written in the modified form AB ≥ C/N , where N is
the number of photons detected in coincidence and A
and B are statistical errors of conjugate variables, such
as the lateral dimension of a detection area and the pla-
nar angle of the observation (detection) cone. It is the
coincident detection process that allows the reduction of
the width of the measured interference fringes in 1D up
to a factor 1/N , relative to those predicted by the wave
theory of light, which corresponds to N = 1.
In contrast to quadrant squeezing which expresses a

continuous interplay of the variables in the SQL by keep-
ing the product constant, the reduction of the width
of the interference fringes toward the Heisenberg limit
proceeds in discrete steps since N is a positive integer.
The most suitable quantum states for reaching the HL
are the maximally entangled N00N states of the form
(|N〉a|0〉b + |0〉a|N〉b)/

√
2, where 0 and N are the num-

bers of photons in the modes a and b [32–35]. In contrast
to the SQL described by (1), the HL is expressed by,

∆n∆ϕ = 1 where ∆n = N and ∆ϕ =
1

N
(4)

The width reduction of the interference pattern was orig-
inally demonstrated by use of a beam splitter for the
entangled biphoton state N = 2 [33] created by sponta-
neous parametric down conversion [16]. Similar results
were also obtained by use of a double slit geometry [36].
In both cases, the observed fringe width reduction by
a factor of 2 reflects the reduction in phase uncertainty
for N = 2 relative to N = 1 in (4). The more difficult
preparation of higher N N00N states has been discussed
by Dowling [5] and has been implemented for N = 6
photons which are furthermore hyper-entangled to form
a 18-qubit state [37].
Our discussion leads to the following simple conceptual

distinction of the SQL and the HL, which better reflects
their essence than the somewhat confusing names. The
“standard quantum limit” or SQL is the limit determined
by a description of light in first order QED. It describes
the behavior of single, independent, and non-interacting
photons. This is Heisenberg’s original 1927 theory lead-
ing to the uncertainty principle [18], and Dirac’s original
formulation of what he called “quantum electrodynam-
ics” [20]. The name “Heisenberg limit” or HL is some-
what of a misnomer since it goes beyond Heisenberg’s
theory and describes the ultimate limit within Glauber’s
multi-photon quantum optics, which is the photon-only
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part of the general theory of light and matter, QED, for-
mulated by Feynman, Schwinger and Tomonaga around
1950. The two limits reflect the general principle that
the total uncertainty of a measurement has to take into
account all factors involved. Thus the consideration of
an increasing number of participating photons and their
possible correlations allows one to overcome the conven-
tional single photon uncertainty principle.
In the following we discuss how the classical wave

limit can be overcome by use of single mode laser light.
Such light, described by a multi-photon collective coher-
ent quantum state, is typically used for the creation of
various esoteric quantum states such as number states,
squeezed states or entangled states, but we here utilize it
directly. Coherent light most closely resembles a classi-
cal wave, yet with finite quantum uncertainties. It is this
intrinsic quantum behavior, caused by the photon-based
graininess, which exemplifies the nature of light beyond
the simple wave approximation and its associated lim-
itations. In particular, we show how the conventional
interference fringe width of the double slit experiment,
performed in a Mach-Zehnder interferometer (MZI) ge-

ometry, can be reduced by more than 1/
√
N through

coincidence detection of N photons.

IV. INTERFERENCE PATTERNS: DOUBLE

SLIT VERSUS MZI GEOMETRY

In Figs. 1 (a) and (b) we illustrate the correspondence
of the well-known double slit configuration with the il-
lustrated specific input-output paths of a MZI [23, 24].

In Fig. 1 (a) the slits are illuminated by a coherent sin-
gle mode laser beam. We have assumed that the slit
separation ℓ is much larger than the slit width w. The
interference or diffraction pattern is recorded at a large
distance z0 (Fraunhofer approximation) by scanning a
detector as a function of the lateral distance ρ from the
optical axis or by use of a position sensitive detector.
If the diffracted intensity is calculated classically by use
of the Huygens-Fresnel principle of wave interference or
quantum mechanically by adding the number of single
photons arriving at a given position ρ, one obtains the
conventional diffraction pattern given by [38],

I(1)(ρ) =
1

2

(

1 + cos

[

kℓρ

z0

])

= cos2
[

kℓρ

2z0

]

(5)

where k = 2π/λ. In (5) we have neglected a
sinc2[kwρ/2z0] envelope function arising from the finite
slit widths w, which is nearly unity for w ≪ ℓ. The super-
script (1) of the normalized intensity I indicates that the
classical pattern corresponds to the single photon, N = 1,
quantum pattern, recorded by averaging over many single
photon events by use of a single photon counting module
(SPCM) or by use of a position-sensitive detector such
as a charge coupled device (CCD), which in each pixel

( ) Double-slit geometrya

w <<
double slits

w

cw
laser
beam

detector

piezo
phase
shifter

beam
splitter

mirror

neutral

cw laser

( ) Mach-Zehnder geometryb

detector

density
filter

port B

port A

1234

coincidence

(c) Photon counting methods

SPCMs

D1

D2

D3

D4

counting unit

or

beam
splitters

single photon
counting module

(SPCM)

FIG. 1: Comparison of double-slit and Mach-Zehnder
interferometer (MZI) geometries for the measurement of the
multi-photon interference patterns of a fully coherent laser
beam. (a) The double slits, separated by a distance ℓ much
larger than the slit widths w, are illuminated by a coherent

laser beam. The interference (diffraction) pattern is
measured at a large distance z0 by scanning a detectors as a

function of distance ρ from the optical axis. (b)
Corresponding MZI arrangement yielding identical

interference patterns as the double-slit case. The coherent
laser beam is injected into one port of a beam splitter, with
the other kept open. The relative path length of the light
through the two arms of the interferometer are changed by
precision movement of one of the mirrors by a piezoelectric
transducer. The two beams are combined by a second beam
splitter and exit collinearly through one exit port, with the
other kept open. (c) Detection scenarios for cases (a) and
(b). The single photon interference pattern is measured by

use of a single photon counting module (SPCM).
Multi-photon interference patterns of N photons are

measured by use of the coincidence detection scheme linking
N SPCMs, as shown for N ≤ 4.

simply adds the charges created by the incident single
photons over time.

In the corresponding MZI geometry in Fig. 1 (b), uti-
lized in our experiments, a single mode cw laser beam
with indicated polarization is injected into one of the
two input ports, while the other port contains no pho-
tons, i.e. is the quantum mechanical zero-point state.
The non-polarizing beam splitter preserves the coherent
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nature (Poisson statistics) of the input beam [16, 17],
and the interference of the beams travelling through the
two arms of the MZI is recorded by changing the path
length difference ∆x through the two MZI arms. This
is accomplished by moving the mirror in one of the MZI
arms by a piezoelectric transducer with sub-wavelength
resolution (λ = 633nm in our case), as shown.
The phase shift ϕ = k∆x = 2π∆x/λ between the two

MZI paths introduced by the piezoelectric phase shifter
leads to an interference pattern when the beams through
the two arms are combined by the second beam splitter
in the MZI and exit collinearly through the shown exit
port A. One may also utilize the unused exit port B, as
discussed later. The two schemes in Figs. 1 (a) and (b)
are equivalent for ϕ = kℓρ/z0, so that the interference
pattern is given in analogy to (5) by

I(1)(ϕ) =
1

2
(1 + cosϕ) = cos2

ϕ

2
(6)

The intensity or number of photons exiting the interfer-
ometer are again assumed to be recorded by use of a
SPCM that adds charges created by the incident single
photons over time.
In this paper we are interested in the change of the

first order quantum pattern (6) in higher order quantum
optics, corresponding to N ≥ 2. For either the two-
slit or MZI cases, the multi-photon diffraction pattern
is then recorded with a detector capable of resolving a
specific number of photons N that arrive within a short
coincidence window. In practice, such multi-photon co-
incidence detectors are typically constructed as shown in
Fig. 1 (c) through a combination of 50/50 beam splitters
and SPCMs linked by coincidence circuits. We will use
this detection scheme to compare the interference pat-
terns for 1 ≤ N ≤ 4 photons.
For convenience, our experimental results are obtained

by use of the MZI scheme in Fig. 1 (b), but the double slit
configuration would yield the same patterns [23, 24]. In
order to avoid false coincidences within a typical detec-
tion time interval (∼ 1 ns), the incident laser beam can
be attenuated by a neutral density filter as shown, since
it maintains the Poisson statistics of the unattenuated
coherent laser beam [24]. We will later show, that the
same results may be conveniently obtained with higher
intensity beams and modified detection as discussed in
Sect. VC. Experimental details are given in the “Meth-
ods” section VIII below.

V. FROM SINGLE TO MULTI-PHOTON

INTERFERENCE PATTERNS

A. Experimental Results

The measured interference pattern for the conventional
single photon, N = 1, case representing also the classical
wave pattern (6), is shown in black in Fig. 2 (a). It is

compared to the intensity normalized patterns for N =
2, 3, 4 recorded in coincidence.
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FIG. 2: (a) Measured intensity as a function of the
number N of photons detected in coincidence. The

classical or N = 1 finge width (FWHM) is Γ1 = π.(b)
Theory according to (14). The narrowing of the FWHM
of the central fringe, ΓN , with N , relative to that of the
classical width, Γ1 = π, of the black curve, is given by

(15) below.

Coincidence detection with 1-photon detectors illus-
trated in Fig. 1 (c) typically requires attenuating the in-
cident laser beam to avoid accidental coincidences. This
was fulfilled for the data shown in Fig. 2 (a) recorded with
an incident rate of R = 2 × 107 photons/sec and a de-
tection time window τ ≃ 6 ns, yielding a single photon
arrival probability of Rτ ≃ 0.12.
The FWHM width of the central fringe, ΓN , in

Fig. 2 (a) reduces with N according to Γ1 = 3.14 = π,
Γ2 = 2.28, Γ3 = 1.88, and Γ4 = 1.64. The maximum
photon count rate for N=1 of 2× 107 per second drasti-
cally decreased with increasingN , resulting in ≃ 5.2×105

(N = 2), ≃ 1.7 × 104 (N = 3), and ≃ 1.3 × 103 (N = 4)
counts per second.

B. Quantum Optics Theory

The coherent laser beam injected into the single port of
the MZI corresponds to a single mode collective coherent

state |α〉 given by [17]

|α〉 = e−
|α|2

2

∞
∑

N=0

αN

√
N !

|N〉 (7)
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The state contains a mean photon number 〈N〉 = |α|2
and is normalized according to 〈α|α〉 = 1. The other in-
put port is left open, corresponding to the vacuum state
|0〉. The beam splitter (BS), assumed to be lossless,
changes the incident state |α〉, |0〉 into two equal parts
containing half of the incident number of photons, each.
The output beams emerge in the reflected (r) and trans-
mitted (t) directions relative to the input direction of |α〉
according to the input-output relation [16, 17, 39],

|α〉, |0〉 BS
=⇒ i

∣

∣

∣

∣

α√
2

〉

r

,

∣

∣

∣

∣

α√
2

〉

t

(8)

The output beams emerging from the first beam split-
ter of the MZI are again coherent states, with the
subscripts indicating the two propagation directions or
modes through the two branches of the MZI. The fac-
tor i in (8) indicates that the reflected beam experiences
a phase shift of 90◦, while the transmitted beam is not
phase shifted [40]. This phase convention is unimportant
for the measured intensities.
The output states of the two exit ports A and B of the

MZI defined in Fig. 1 (b) are the superimposed beams
through the two arms. The complete action of the MZI
including the phase shifter may be derived as [41, 42],

|α〉, |0〉 MZI
=⇒ i(1 + eiϕ)

2
|α〉A,

(1 − eiϕ)

2
|α〉B (9)

For a loss-less MZI, the average number of detected
photons emerging from the two output ports A and B
conserves the number of injected photons 〈N〉in = |α|2
according to,

〈N〉A = |α|2 cos2 ϕ

2

〈N〉B = |α|2 sin2 ϕ

2
(10)

For a path (phase) balanced MZI, ϕ = 0, all photons
emerge from port A while port B is “dark” due to de-
structive interference.
The single-mode collective coherent state defined by

(7) is a sum of number states |N〉 which contribute to the
Poisson probability distribution around the mean value
〈N〉 with weight factors given by

PN = e−|α|2 |α|2N
N !

= e−〈N〉 〈N〉N
N !

(11)

It may be rewritten to express the arrival probability ofN
photons within a given detection time interval of length τ .
Denoting the average count rate as R = 〈N〉/〈t〉, where
〈t〉 is a sufficiently long time interval to obtain a reliable
average, the N photon coincident detection probability
within a detection time window τ is given by,

PN (R, τ) = e−Rτ (Rτ)N

N !
(12)

This arrival probability allows us to express the N photon
coincidence count rate in terms of the single photon count

rate. The ratio of N - versus 1-photon counts within an
interval τ is obtained as,

RN,1 =
PN

P1
=

(Rτ)N−1

N !
(13)

Assuming identical detection time intervals of τ ≃ 6 ns,
the experimental count ratios R2,1 = 5.2 × 10−2, R3,1 =
1.6× 10−3, R4,1 = 1.4× 10−4 compare to the theoretical
ones R2,1 = 3 × 10−2, R3,1 = 6 × 10−4, R4,1 = 9 × 10−6.
The large discrepancy for N = 4 is a consequence of the
low 4-photon coincident count rate relative to the dark
count rate of 50 per second.
The relation (13) also reveals why multi-photon coin-

cidence detection is required to change the conventional
1-photon interference pattern as illustrated in Fig. 2 (a).
For a coherent beam, the single-photon rate exceeds the
multi-photon coincidence rates by orders of magnitude.
One therefore needs to pick out the much lower joint N -
photon counts through the coincidence trick [43]. This
corresponds to the quantum projection of the collective
coherent state |α〉 given by (7) onto its specific num-
ber substates |N〉. It is this quantum projection method
which is at the heart of picking apart the near-classical
wave behavior of the collective state |α〉.
For our case of the beam emerging from port A in

Fig. 1 (b), the change of the one photon interference pat-
tern I(1)(ϕ) given by (6) to the N photon pattern follows
from the special properties of the coherent Glauber state.
For a coherent state, the N th-order photon-photon corre-
lation function factors into the product of N single pho-
ton correlation functions [17, 21, 44]. As a consequence,
the N -photon coincidence interference pattern is simply
the first order pattern to the N th power,

I(N)(ϕ) =
[

cos2
ϕ

2

]N

(14)

This simple relationship reflects the fact that the N pho-
tons within the detection window τ are indistinguishable,
and hence may interfere. Unlike the classical interfer-
ence of complex wave-fields E which possess a phase, the
quantum mechanical “interference” of phase-less photons
arises more specifically from interference of their path-
related probability amplitudes. Multi-photon interfer-
ence is a non-linear process which becomes allowed when
Dirac’s conventional first order quantum mechanics is ex-
tended to higher order.
The theoretically predicted interference pattern (14)

for 1 ≤ N ≤ 4 is shown in Fig. 2 (b) and it fully agrees
with the experimentally observed pattern in Fig. 2 (a).
Before we discuss the scaling of the fringe width with N
which is of particular interest, we briefly discuss another
detection scheme that yields the same results.

C. Alternative Detection Scheme

For a coherent cw laser beam, the simple quantum op-
tics evolution of the interference pattern with increasing
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order N expressed by (14) allows us to conveniently sim-
plify the detection process, as shown in Fig. 3 (a). The
single-photon counting modules (SPCMs) are replaced
by fast avalanche photo diodes (APDs) and their inten-
sity product is calculated by use of a built-in AND gate
function of a fast digital oscilloscope (see Sect.VIII be-
low). The so-measured interference patterns are shown
in Fig. 3 (b). They are identical within statistics to the
coincident patterns in Fig. 2 (a).
In Figs. 2 (a) and 3 (b), the scalability with N is in

principle up to the total photon number of the input
light. In practice, a linear detector response is re-
quired which in our case limited the incident intensity
to ≃ 1013 photons/s (see Sect. VIII). The use of high in-
tensity coherent beams is a great benefit of the present
method in comparison to quantum sensing based on
N00N states, whose production becomes increasingly dif-
ficult for N > 2 [5, 34].
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FIG. 3: (a) Modified detection scheme of Fig. 1 (c). The
single photon counting modules (SPCMs) are replaced by
avalanche photo diodes (APDs), and the coincidence signal

is calculated by a built-in AND gate function of a fast
digital oscilloscope. (b) Experimental interference patterns.

D. Fringe Width Reduction through Multi-Photon

Interference

The reduction of the full-width-at-half-maximum
(FWHM) of the fringe width with N , schematically in-
dicated in Fig. 2, represents to what degree the conven-
tional diffraction limit can be overcome. The interfer-
ence fringes narrow around ϕ = 0 and the equivalent
phase angle ϕ = ±2π at the expense of intensity loss
around ϕ = ±π. The shown intensity distributions are
normalized to their peak value to better reveal the fringe
narrowing.

The FWHM of the central fringe of the pattern (14),
ΓN (see Fig. 2), reduces as a function of N relative to the
first order N = 1 width according to,

ΓN

Γ1
=

4

π
arcsec

[

2
1

2N

]

≃ 1√
N

(15)

The reduction of the fringe width (FWHM) with N rel-
ative to the classical width according to (15) is shown
in Fig. 4 for N ≤ 4 (black points). Also shown is a re-

duction according to 1/
√
N (red points), which is a good

approximation.
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FIG. 4: Relative reduction of the fringe width (FWHM)
of the patterns in Fig. 2 with order N , according (15)

(black) and scaling 1/
√
N (red).

The slight deviation of the black data points from the
1/

√
N dependence shown in red in Fig. 4 is due to the fact

that the minimum possible quantum mechanical uncer-
tainty product holds only for Gaussian distributions [45].
Given a single photon intensity distribution I(x) with a
peak value I(0) = 1 in the detector plane, the FWHM of
the normalized distributions I(x) and [I(x)]N scale with

1/
√
N only for Gaussian distributions I(x) = e−a2x2/2Γ2

,

where Γ = aσ is the FWHM, a = 2
√
ln 4 and σ is the rms

width. In this case we have the exact scaling law [13]

∫ ∞

−∞

[I(x)]N dx =
1√
N

∫ ∞

−∞

I(x) dx (16)

It is only approximately fulfilled for our case of I(x) =
cos2(x) given by (6) and [I(x)]N = [cos2(x)]N expressed
by (14) when integrated over a cycle interval −π to π.

VI. FURTHER FRINGE WIDTH REDUCTION

BY CORRELATION OF BOTH MZI OUTPUT

PORTS

The multi-photon interference fringe width can be fur-
ther reduced by correlating the intensities (or photons)
emerging from the two MZI output ports A and B, as il-
lustrated in Fig. 5 for the case of correlating the 2-photon
coincidence patterns of A and B, respectively.
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FIG. 5: Alternative MZI geometry for the measurement
of the multi-photon cross interference patterns between
the two output ports A and B. Instead of a single beam
output shown in Figs. 1 and 3, both exit beams are used
to feed two single-photon coincidence detectors D1 and
D2 in one and D3 and D4 in the other output arm.
Multi-photon interference patterns of 4 photons can

now be measured as shown.

According to (10) the interference patterns for the two
output ports A and B are out of phase by π. If we corre-
late the intensities of ports A and B, both composed of
half of the incident number N as shown in Fig. 5, the sin-
gle output port A intensity for N -photon given by (14), is
replaced by the cross-correlated intensity of N/2 photons
per port according to,

I(N)
cross = I

(N
2
)

A I
(N
2
)

B =
[

cos2
ϕ

2

]
N

2

[

sin2
ϕ

2

]
N

2

(17)

This theoretical 2-port pattern for N = 4 (2 photons
in each port) is shown as a magenta curve in Fig. 6 (a)
together with the classical or N = 1 reference pattern
(black) given by (6) and the N = 4 single output-port
pattern (blue) expressed by (14).
The single-port classical fringe width Γ1 = 3.14 = π

reduces to the single-port N = 4 coincidence width Γ4 =
1.64 as previously shown in Fig. 2 and plotted in Fig. 4.
Denoting the fringe width of the two-port correlated N
photon pattern given by (17) as ΓN

2
,N
2

, it can be shown

that for the same N , we have,

ΓN

2
,N
2

=
ΓN√
2

(18)

Therefore we obtain an additional 1/
√
2 fringe width re-

duction for the two-port relative to the one-port case.
This is confirmed by the experimental results shown
in Fig. 6 (b). The black and blue curves are those in
Fig. 3 (b). The magenta curve was also recorded with
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FIG. 6: (a) Port A interference pattern for N = 1
(black, classical pattern) and N = 4 coincidence pattern

(blue) according to (14), in comparison to the cross
correlation pattern of ports A and B for N = 4 (2

photons in each port) according to (17) (magenta). The
fringe width of the magenta is reduced relative to the

blue pattern by a factor of 1/
√
2.

(b) Corresponding experimental results. The black and
blue curves are taken from Fig. 3 (b). The magenta
curve was recorded with the same cw-like detection

scheme of Fig. 3 (a), but the N = 2 port A intensity was
correlated with the N = 2 port B intensity as shown in

Fig. 5.

the APDs and built-in AND gate function of a fast digi-
tal oscilloscope shown in Fig. 3 (a), but the N = 2 port A
intensity was correlated with the N = 2 port B intensity
as shown in Fig. 5.

VII. DISCUSSION AND CONCLUSIONS

We have theoretically and experimentally investigated
interference effects and the associated minimum fringe
width observed for single-mode coherent cw laser light.
Such light most closely resembles a classical electromag-
netic wave of well defined amplitude and phase. This
is reflected by the fact that both Young’s fundamental
double slit experiment and related interferometer-based
metrology schemes carried out with laser light and con-
ventional detection schemes reproduce the interference
patterns predicted by the classical wave-based Huygens-
Fresnel principle.
Despite the perceived wave-like behavior of coherent
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laser light, its fundamental description through the pho-
ton concept in QED is more intricate and complex. As
discussed in this paper, the quantum complexity may be
utilized to overcome classical limitations. The classical
paradigms are shown to hold only in first order QED,
as reflected by the wave-particle ambiguity supported by
conventional quantum mechanics. The equivalence of the
classical wave and the first order QED description is ev-
idenced by the same predicted diffraction limit. In first
order QED or conventional quantum mechanics, mea-
surement uncertainties are determined by Heisenberg’s
position/momentum uncertainty principle. This princi-
ple, in the form of the corresponding area/solid-angle re-
lation underlies the diffraction limit [13]. It also emerges
from the classical Huygens-Fresnel principle, as already
shown in the late 1800s by Abbe [46] and Lord Rayleigh
[47].

We show, that the limitations of the wave theory or
the equivalent first order quantum theory, can be over-
come through the quantum optics formulation of higher
order coherence, which is accompanied by the concept of
multi-photon interference. While finite quantum uncer-
tainties are always present due to the fluctuations in the
zero-point quantum vacuum, their relative size can be in-
creasingly reduced in higher order leading to the Heisen-
berg limit. We show that for coherent light the reduc-
tion of the fringe width according to the 1/N Heisenberg
limit is not reached, yet a substantial reduction according
to 1/

√
2N is accomplished with great experimental ease.

This exceeds the previously predicted 1/
√
N optimum

scaling [32].

In principle, the use of entangled N00N states with
N > 2 may yield the 1/N fringe width reduction accord-
ing to the HL. In practice, it is difficult to prepare such
states for N > 2 [5, 34, 43]. Another issue in quantum
sensing with either N00N or squeezed states is photon
loss of the weak beams in the transmission process. In
this context, the demonstration of the direct use of high
intensity laser light in conjunction with the alternative
intensity-product sensing discussed in Sect. VC provides
a great practical benefit.

We note that for the two-dimensional case of a coher-
ent circular source, the 2D area of the central Airy disc
which defines the diffraction limit of a telescope or micro-
scope, indeed scales as 1/N with the number of photons
N detected in coincidence at a given point or at two
points that are symmetrically separated from the optical
axis [13]. For optical imaging with a 1mW laser (∼ 1015

photons per second), a 2D photo-detector array with 107

pixels, and an overall 1% instrumental efficiency, each
pixel would still accumulate on average 106 photons per
second. If the intensity of all pixels is multiplied using the
detection scheme in Fig. 3, one would obtain a thousand
times-enhanced resolution with sufficient SNR.

Finally, we would like to point out that the interference
theory for the MZI case is considerably simpler than for
the double slit case. The MZI case can essentially be de-
scribed by a single mode theory, since the modes exiting

the two interferometer ports are orthogonal. In contrast,
the quantum mechanical theory of the double slit case is
considerably more complicated, both in the single- and
multi-photon treatment [38]. It requires a two-mode the-
ory since interference paths from the two slits to a detec-

tion point involve finite angles between possible ~k direc-
tions. The double slit case, however, more clearly reveals
a new paradigm emerging from the quantum treatment
of diffraction. It states that the observed diffraction pat-
terns are direct signatures of the quantum states of light
emitted by the slits. In practice, different quantum states
of light may be created at the slit positions by modifica-
tion of a single mode laser beam [38].

VIII. METHODS

The Mach-Zehnder interferometer (MZI) comprized
two 50/50 non-polarizing beam splitters (BS). The wave-
length of the cw laser (Thorlabs HNL020L) was 633 nm
with a coherence time of 200 ns. The incident polariza-
tion direction is in the MZI plane as shown in Fig. 1 (b).
Four single-photon counting modules (SPCMs) (Exceli-
tas SPCM-AQRH-15) with a dynamic range > 3.5× 107

photons/s, a dark count rate of 50 photons/s, and a tem-
poral resolving time of ∼ 350ps generated the intensities
utilized in the coincidence measurements. For the inten-
sity correlations of N = 1 − 4 photons, a four-channel
coincidence counting unit (Altera, DE2) post-selected a
specific number N photons from the Poisson distribution
of the coherent quantum state.
For the experimental results in Fig. 3, the input

laser power before entering the MZI was set at 3µW
(≃ 1013 photons/s) and fast silicon avalanche photodi-
odes (APDs) (Thorlabs, APD-110A), each with a linear
response up to 1.5µW, replaced the SPCMs in Fig. 1 (c).
Also, the coincidence counting unit was replaced by a
four-channel digital oscilloscope (Yokogawa, DL9040)
with a maximum 5GHz sampling rate and 500MHz
bandwidth. Each data point was averaged 30 times. The
intensity products of the APDs were calculated by use
of a built-in AND gate function of the oscilloscope. For
both detection schemes used for Figs. 2 (a) and 3 (b), the
piezoelectric phase shifter in Fig. 1 (b) was scanned for
36 seconds in a forward mode from ϕ = −2π to ϕ = 2π
at steps of 2π/180. Thus, there are a total of 360 data
points in each curve. The mean photon number of each
data point was counted for 0.1 second.
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