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Focusing on two-level atoms, we apply the positive P-representation to a full-wave mixed bosonic
and fermionic system of Jaynes-Cummings type and identify an advantageous degree of freedom
in the choice of the involved nonorthogonal fermionic basis states. On this basis, we propose a
stochastic correction to the Maxwell-Bloch equations by relating them to a stochastic differential
equation on a nonclassical phase space, which captures the full second quantization dynamics of the
system. This approach explores the connection between semiclassical and field-quantized treatments
of light-matter interaction and can potentially be used for the simulation of nonclassical light sources
while retaining the main advantages of a semiclassical model.

I. INTRODUCTION

Nonclassical light is expected to enable breakthrough
applications in emerging quantum technologies, such as
quantum computing, quantum simulation, as well as
quantum sensing and metrology [1–4]. Therein, effects
like photon antibunching, entanglement, and squeezing
play a significant role [5]. On the other hand, field-
quantized numerical simulations of the light-matter inter-
action in, e.g., optoelectronic devices are challenging [6].
Realistic devices often exhibit considerable complexity,
i.e., they may feature coherent interactions of many op-
tical modes with a large number of atomic systems,
as well as additional incoherent decay mechanisms and
losses. Hence, straightforward approaches using orthog-
onal basis state expansion or moment recursion rapidly
encounter computational hardware limitations or exces-
sive simulation durations, primarily due to exponential
scaling issues [7].

Semiclassical simulations have a greatly reduced nu-
merical load and provide a viable alternative to full quan-
tum modeling of optoelectronic devices such as quantum
cascade [8–13] and quantum dot (QD) [14–18] lasers in
the classical optical field limit. However, in the case of
devices like single-photon sources based on QDs [19, 20],
which depend on the quantization of the optical field,
these semiclassical methods fall short in delivering an
accurate description. For comparisons between semi-
classical and full quantum models, see, e.g., [21–23].
Semiclassical formalisms have been stochastically en-
hanced to include spontaneous emission [24–27], a non-
classical feature which is useful for the investigation of
noise in lasers [11, 28], laser linewidths [29, 30], random
lasers [31, 32], and active metamaterials [33, 34]. This has
been achieved by adding specific noise terms to the widely
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used Maxwell-Bloch (MB) equations (see [10, 35]). Su-
perfluorescence [36–40], optical bistability [41], and ther-
mal cavity noise [42] have also been statistically modeled
in the MB framework by adding decay-induced fluctu-
ations or in-coupled black-body radiation in the latter
case. The fluctuation statistics up to second order can
be derived by the Heisenberg-Langevin method, where
expressions for the correlations are obtained by the gen-
eralized Einstein relations and the dissipation-fluctuation
theorem [43, 44]. Intuitively, this type of noise is col-
ored by the quantum system but does not account for
the inherent quantum noise (see [45]), which should be
independent of the decay in an open system (see [46]).
To address this limitation, we adopt the positive

P-representation [47], a quantum optical phase space
method [4, 48] which, under specific conditions, allows
us to use classical statistical physics according to the
quantum-classical correspondence [49]. The underly-
ing probability distribution of the abstract phase-space
variables is then governed by a Focker-Planck equation
(FPE) and can be directly sampled by means of a cor-
responding stochastic differential equation (SDE) [50].
Since the positive P-representation was initially devel-
oped for purely bosonic systems, the literature dealing
with SDEs for fermionic or mixed bosonic and fermionic
systems [7, 51–55], as required for the treatment of
light-matter interaction is sparse. Indeed, the result-
ing SDEs suffer from inherent instabilities, nonlinearities,
and singularities. Alternatively, a few other stochastic
approaches applicable to fermions exist. These include
Gaussian phase space representations [56–59], Grass-
mann phase space methods [60–63] and operator alge-
bra techniques involving characteristic functions (Haken-
Risken-Weidlich method) [40, 45, 64–66]. Generally the
last method, originating in the investigation of lasers, is
correct in the small noise limit which may not be appli-
cable in the strong coupling regime of cavity quantum
electrodynamics (cavity QED) [49].
In this contribution, we show that some of the prob-
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FIG. 1. Outline of the derivation of the stochastic MB equa-
tions and their relation to the MB equations. Some of the
key concepts involved are highlighted: (a) nonorthogonal ba-
sis state expansion (positive P-representation), (b) dipole ap-
proximation for the interaction Hamiltonian, (c) change of
fermionic and bosonic variables.

lems associated with mixed bosonic and fermionic sys-
tems can be remedied by engineering a set of diffusion-
optimized nonorthogonal basis states for the expansion
of the fermionic system component in terms of the pos-
itive P-representation. Moreover, by a multi-step pro-
cess, we derive stochastic partial differential equations
(SPDEs) [67, 68] for a dissipative two-level atom (TLA)
in a perfect optical cavity featuring phase space variables
with a direct physical interpretation, namely inversion,
coherence, as well as electric and magnetic field. This
corresponds to a stochastic correction to the MB equa-
tions, where the evolution of the deterministic part of the
SPDE represents the standard MB equations. The out-
line of the aforementioned derivation process is shown in
Fig. 1.

Previous approaches for the derivation of modified or
corrected MB equations rely on, e.g., the Wigner quasi-
probability distribution [69], the orthogonal projection
of single atom cavity QED [70], a FPE in the bad cavity
limit [71], or the Itô formula applied to a suitable stochas-
tic ansatz [38, 39]. Our stochastic correction to the MB
equations by means of the inherent quantum noise sup-
plied by the positive P-representation SDE goes beyond
adding decay-induced fluctuations with second-order ac-
curate statistics. In this way, we propose to integrate key
quantum effects while maintaining compatibility with ex-
isting semiclassical solvers [72–74], leveraging their nu-
merical efficiency. This connection between stochastic
modeling and proven simulation methods allows for a
more intuitive understanding of light-matter interaction.

The paper is structured as follows: In Sec. II, we com-
pare suitable existing second-quantization and semiclas-
sical models for light-matter interaction in optical cav-
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FIG. 2. Two-level atom located at position x0 in an otherwise
empty optical cavity without mirror losses, i.e., we assume
perfect electric conductors (PECs) on either end. The first
three cavity modes with angular frequencies ω1, ω2 and ω3

are shown.

ities. We apply the positive P-representation to the
field-quantized model in Sec. III and state the associ-
ated full-wave Jaynes-Cummings-type SDE, introducing
diffusion-optimized nonorthogonal fermionic basis states.
The simulation of these SDEs poses some general and
practical problems, which are discussed in Sec. IV. Ulti-
mately, we want to simulate realistic optoelectronic de-
vices. Therefore, we incorporate unavoidable dissipation
into our SDE in Sec. V. Our main result, namely the
stochastic correction to the MB equations, is finally given
Sec. VI.

II. LIGHT-MATTER INTERACTION

We consider one of the simplest possible systems for
studying light-matter interaction: a TLA with lower level
|↓⟩ and upper level |↑⟩ placed in a perfect optical cavity
(see Fig. 2). The energies of the levels are −ℏΩ/2 and
ℏΩ/2 where Ω is the angular frequency of this transition
and ℏ denotes the reduced Planck constant. We now look
at two possible models, differing by whether the optical
field is treated quantum mechanically or classically. The
latter is only an approximation that precludes the treat-
ment of all effects due to atom-field entanglement.

A. The second quantization case

The details of the optical field quantization in the
perfect cavity depend on its geometrical features length
l, transverse area A, and volume V = lA [75]. Let
x0 ∈ (0, l) be the position of the TLA in the cavity. We
also need the vacuum speed of light c = 1/

√
µ0ϵ0 and

the impedance of free space Z =
√
µ0/ϵ0. Here, ε0 and

µ0 denote the vacuum permittivity and permeability, re-
spectively.
The n-th cavity mode for n ∈ N has the angular fre-

quency

ωn =
πcn

l
(1)
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and wave number kn = ωn/c. The electric field per pho-
ton in the cavity is given by

ep(ωn) =

√
ℏωn

ϵ0V
, (2)

and of course depends on the energy of the photon (by
way of the angular frequency). Then, the electric and
magnetic field operators

Êz(x, t) =

∞∑
n=1

ep(ωn)
[
â†n(t) + ân(t)

]
sin(knx) ,

Ĥy(x, t) = − 1

Z

∞∑
n=1

ep(ωn)i
[
â†n(t)− ân(t)

]
cos(knx)

(3)

can be written in terms of the bosonic creation â†n and an-
nihilation ân operators of each cavity mode and the corre-
sponding spatial mode functions sin(knx) and cos(knx).
For later use, we introduce the notation

en = ⟨â†n + ân⟩ ,
hn = i⟨â†n − ân⟩ ,

(4)

since we are mostly interested in the electric and mag-
netic fields

Ez(x, t) =

∞∑
n=1

ep(ωn)en(t) sin(knx) ,

Hy(x, t) = − 1

Z

∞∑
n=1

ep(ωn)hn(t) cos(knx) .

(5)

which are obtained by taking the expectation values of
the respective operators.

Now directing our attention to the TLA, we introduce
the pseudospin operators

Ŝz = −1

2
|↓⟩⟨↓|+ 1

2
|↑⟩⟨↑| ,

Ŝ+ = |↑⟩⟨↓| ,

Ŝ− = |↓⟩⟨↑| = Ŝ†
+ .

(6)

It is also common to use the operators σ̂z = 2Ŝz, σ̂+ =

Ŝ+, and σ̂− = Ŝ− [49] but we follow the same convention
as [52].

The second quantization description of the system

leads to the Hamiltonian

ĤJC =ĤA + ĤF + ĤI

=ℏΩŜz +

N∑
n=1

ℏωnâ
†
nân

+

N∑
n=1

ℏg(ωn) sin(knx0)
(
â†n + ân

)(
Ŝ+ + Ŝ−

)
.

(7)
Here ĤA and ĤF are the free Hamiltonians of the atom
and optical field, respectively. The interaction Hamil-
tonian ĤI contains the frequency dependent bosonic-
fermionic coupling constants g(ωn) and position factors
sin(knx0). Note that (7) reduces to the analytically
solvable Jaynes-Cummings model [76] if we only con-
sider one cavity mode and moreover drop the two energy
non-preserving counterrotating terms âŜ− and â†Ŝ+ in
the interaction Hamiltonian, which corresponds to the
rotating-wave approximation (RWA) [43]. An investi-
gation of the RWA’s influence on the TLA’s stochastic
dynamics can be found in [77].

B. The semiclassical case

If we treat the optical field classically, we can eliminate
the bosonic degrees of freedom in the Hamiltonian (7) by
introducing the dipole operator

d̂ = d21Ŝ+ + d∗21Ŝ− , (8)

and using the dipole approximation

ĤI,DA = −d̂Ez (9)

for the interaction Hamiltonian. In this section, ρ̂ = ρ̂A
denotes the atomic density operator, which fully deter-
mines the mixed state of the TLA, i.e., the only remain-
ing quantum mechanical system. The corresponding ma-
trix entries are[

ρ11 ρ12
ρ21 ρ22

]
=

[
⟨↓ |ρ̂| ↓⟩ ⟨↓ |ρ̂| ↑⟩
⟨↑ |ρ̂| ↓⟩ ⟨↑ |ρ̂| ↑⟩

]
. (10)

Applications involving the simulation of realistic opto-
electronic devices make it necessary to also account for
scattering and dephasing [10]. For this reason, we con-
sider the following dissipation superoperator in Lindblad
form [78, 79]

D(ρ̂) = rp

(
2Ŝz ρ̂Ŝz −

1

2
ρ̂

)
+ r↑↓

[
Ŝ−ρ̂Ŝ+ − 1

2

(
Ŝz ρ̂+ ρ̂Ŝz + ρ̂

)]
+ r↓↑

[
Ŝ+ρ̂Ŝ− +

1

2

(
Ŝz ρ̂+ ρ̂Ŝz − ρ̂

)]
, (11)

where rij denotes the scattering rate from level i to j
(i, j =↓, ↑) and rp the pure dephasing rate. From the

complete time evolution equation for our system

dρ

dt
= − i

ℏ
[ĤA + ĤI,DA, ρ̂] +D(ρ̂) , (12)
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we can derive the familiar full-wave Bloch equations

dρ21
dt

= −iΩρ21 −
i

ℏ
d21Ezν − γ2ρ21 ,

dν

dt
= 2

i

ℏ
(d21Ezρ

∗
21 − d∗21Ezρ21)− γ1(ν − ν0)

(13)

for the coherence ρ21 and population inversion ν =
ρ22−ρ11 (by virtue of the hermiticity ρ̂† = ρ̂ no separate
equation for ρ12 = ρ∗21 is needed). Here the relaxation
rates γ1, γ2 and the steady state inversion ν0 are given
by

γ1 = r↓↑ + r↑↓ ,

γ2 =
1

2
(r↓↑ + r↑↓) + rp ,

ν0 =
r↓↑ − r↑↓
r↓↑ + r↑↓

.

(14)

Indeed, the form of (11) was chosen specifically to yield
these results, which are in agreement with an intuitive
understanding of the scattering and dephasing process.

Now, the Bloch equations are closed by coupling them
to the 1D Maxwell equations

∂Ez

∂x
= µ0

∂Hy

∂t
,

∂Hy

∂x
= ε0

∂Ez

∂t
+
∂Pz

∂t
,

(15)

containing the macroscopic polarization

Pz = n3D⟨d̂⟩ = 2n3DRe{d∗21ρ21} . (16)

Here, n3D denotes the number density of atoms. The
resulting semiclassical MB equations are well-suited for
optoelectronic device simulations whenever the reduction
of the 3D Maxwell equations to 1D can be justified. For
example, semiconductor lasers often possess a waveguide
geometry where the cavity cross-section remains constant
along the optical axis. In this case, the transverse mode
profile calculation can be decoupled from the longitu-
dinal propagation simulation [10]. The standard finite-
difference time-domain (FDTD) method [80, 81] for the
numerical solution of the 1D Maxwell equations offers a
huge computational benefit compared to the numerical
treatment of the quantized optical field from Sec. IIA.
Further details concerning the combined numerical so-
lution of the MB equations, including the appropriate
treatment of the coupling between them, can be found
in [10].

In conclusion of this section, we note that plugging an
ansatz of the form (5) into (15) (without the polarization
term) yields the conditions

den
dt

= ωnhn ,

dhn
dt

= −ωnen ,

(17)

which can be regarded as the cavity mode form of the
1D Maxwell equations. We make use of this observa-
tion in the derivation of the stochastic MB equations in
Sec. VI.

III. FROM THE POSITIVE
P-REPRESENTATION TO SDES

Given a quantum mechanical system with Hamiltonian
Ĥ, our goal is to specify a c-number stochastic process
that captures the dynamics of the von Neumann equation

dρ̂

dt
= − i

ℏ
[Ĥ, ρ̂] , (18)

for the density operator ρ̂. To this end, we make the
ansatz

ρ̂(t) =

∫
P (x, t)Λ̂(x) dµ(x), x = (x1, . . . , xn) , (19)

where P should behave like a probability distribution on
a complex nonclassical phase space [49]. As noted in [40],
a consistent replacement of operators by c-numbers gen-
erally requires a nonclassical phase space. Here, the in-
tegration measure

dµ(x) = d2x1 · · · d2xn (20)

calls for separate integration over all real and imaginary
parts. Let us assume that the kernel Λ̂ of this integral
representation satisfies

[Ĥ, Λ̂(x)] =iℏ

[
n∑

i=1

Ai(x)
∂

∂xi

+
1

2

n∑
i,j=1

Dij(x)
∂2

∂xi∂xj

]
Λ̂(x) ,

(21)

i.e., only partial derivatives with respect to the phase
space variables of order one and two occur. Combining
(18), (19), and (21) yields
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Λ̂(x)

∂

∂t
P (x, t) dµ(x) = − i

ℏ

∫
P (x, t)[Ĥ, Λ̂(x)] dµ(x)

=

∫
P (x, t)

 n∑
i=1

Ai(x)
∂

∂xi
+

1

2

n∑
i,j=1

Dij(x)
∂2

∂xi∂xj

Λ̂(x) dµ(x)

=

∫
Λ̂(x)

−
n∑

i=1

∂

∂xi
Ai(x) +

1

2

n∑
i,j=1

∂2

∂xi∂xj
Dij(x)

P (x, t) dµ(x) ,
(22)

provided that all boundary terms from partial integration
vanish. By getting rid of the integrals, we obtain the FPE

∂

∂t
P (x, t) =

[
−

n∑
i=1

∂

∂xi
Ai(x)

+
1

2

n∑
i,j=1

∂2

∂xi∂xj
Dij(x)

]
P (x, t) ,

(23)

with a drift vector A(x) = [Ai(x)] ∈ Cn and a diffusion
matrix D(x) = [Dij(x)] ∈ Cn×n. It is understood that in
the last line of (22) as well as in (23) the differential op-
erator ∂/∂xi acts on the whole product Ai(x)P (x, t) and
analogously for the remaining second order differential
operators. If we can find a (nonunique) factorization

D(x) = B(x)B(x)T (24)

with a noise matrixB(x) ∈ Cn×m, then (23) is equivalent
to the Itô SDE

dXt = A(Xt) dt+B(Xt) dWt , (25)

driven by the m-dimensional Wiener process W [50, 67].
Its solutionX = {X(t) = Xt|t ∈ [0, T ]} on a time interval
[0, T ] is the stochastic process we are looking for. Note
that we clearly distinguish between stochastic processes
and their realizations (e.g., X and x) by using uppercase
and lowercase letters, respectively.

Before continuing, a few comments are in order: An-
other way to write the SDE, namely

dXt

dt
= A(Xt) +B(Xt)ξt , (26)

uses the concept of white noise ξ = dW /dt and high-
lights the connection to Langevin forces [82]. Further-
more, under the necessary assumption of D = DT, the
existence of a corresponding B satisfying (24) is guar-
anteed by the Autonne-Takagi factorization [83]. For
numerical reasons, it is important to be able to spec-
ify such a factorization explicitly. As exemplified later
in this section, the freedom to choose a wide rectangu-
lar (i.e., more columns than rows) instead of quadratic B
can prove useful here, but the additional noise dimensions
are also a numerical drawback by themselves. Regard-
ing the attainable simulation time, numerical diffusion
gauges realized by algorithmically solving for B in each
time step can even be beneficial [59]. In general, the in-
herent nonuniqueness of the factorization can always be
interpreted as a diffusion gauge [84].

A. Bosonic and fermionic projectors

We want to apply the procedure above to the full-wave
Jaynes-Cummings type system described in Sec. II A, cul-
minating in an SDE. For that, we first need to construct
an appropriate kernel (see Sec. III B). Owing to the mixed
bosonic and fermionic nature of the involved Hamilto-
nian, the preparatory work is done in two separate but
related steps.

The case of purely bosonic systems is well known: For
the bosonic projector

Λ̂F(α, β) =
|α⟩⟨β∗|
⟨β∗ |α⟩

(27)

onto the normalised coherent states

|α⟩ = e−
|α|2
2 exp(αâ†)|0⟩ , (28)

our ansatz (19) corresponds to the positive P-
representation, which has proven to be very useful in
quantum optics [47, 85–87]. The off-diagonal projectors
double the phase space dimension [i.e., (α, β) replaces
(α, α∗)], and these additional dimensions are known to
capture non-classical light features [48]. Because of the
projector differential identities

â†Λ̂F =

(
∂

∂α
+ β

)
Λ̂F ,

âΛ̂F = αΛ̂F ,

Λ̂Fâ
† = βΛ̂F ,

Λ̂Fâ =

(
∂

∂β
+ α

)
Λ̂F ,

(29)

we get an expression of the desired form (21), for suit-
able Hamiltonians. In this context, it is also important
that there is an explicit formula for an initial probability
distribution in terms of a given initial density operator,
even though such a probability distribution need not be
unique.

Next, we need to find a way to also deal with the
fermionic component of a given system. An existing ap-
proach [7, 52, 54] is based on coherent spin states [88].
For spin s = 1/2 and |s, s⟩ = |↑⟩ their definition boils
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down to

|z⟩ =
(
1 + |z|2

)−s
exp(zŜ−)|s, s⟩

=
1√

1 + |z|2
(
z|↓⟩+ |↑⟩

)
.

(30)

This motivates the more general ansatz for nonorthogo-
nal fermionic states

||z⟩ = f(z)|↓⟩+ g(z)|↑⟩ , (31)

with analytic coefficient functions f and g. The notation
||·⟩ (see [84]) is chosen to remind us of the fact that these
states might be unnormalized. Not only will the resulting
freedom to fine-tune f and g pay off later, but the extra
generality is also helpful for separating inherent features
of the problem from details due to a specific choice of
these analytic coefficient functions. However, an obvi-
ous drawback of renouncing the coherent spin states is
that an extension to the case of an n-level atom is not
straightforward. It is clear from the local power series

expansions

f(z) =

∞∑
k=0

fk(z − z0)
k ,

g(z) =

∞∑
k=0

gk(z − z0)
k ,

(32)

that f̃ and g̃ defined by

f̃(z) = f(z∗)∗ =

∞∑
k=0

f∗k (z − z0
∗)k ,

g̃(z) = g(z∗)∗ =

∞∑
k=0

g∗k(z − z0
∗)k

(33)

are also analytic functions. Moreover h = g/f and h̃ =

g̃/f̃ are analytic where they are defined. Now, we define
the fermionic projector

Λ̂A(z, w) =
||z⟩⟨w∗||
⟨w∗||z⟩

=
1

1 + h(z)h̃(w)

[
|↓⟩⟨↓|+ h̃(w)|↓⟩⟨↑|+ h(z)|↑⟩⟨↓|+ h(z)h̃(w)|↑⟩⟨↑|

]
, (34)

in analogy to (27). It can be shown by direct calculation
that the projector differential identities

Ŝ+Λ̂A =

[
1

h′(z)

∂

∂z
+

h̃(w)

1 + h(z)h̃(w)

]
Λ̂A ,

Ŝ−Λ̂A =

[
−h(z)

2

h′(z)

∂

∂z
+

h(z)

1 + h(z)h̃(w)

]
Λ̂A ,

ŜzΛ̂A =

 h(z)

h′(z)

∂

∂z
− 1− h(z)h̃(w)

2
[
1 + h(z)h̃(w)

]
Λ̂A ,

Λ̂AŜ+ =

[
− h̃(w)

2

h̃′(w)

∂

∂w
+

h̃(w)

1 + h(z)h̃(w)

]
Λ̂A ,

Λ̂AŜ− =

[
1

h̃′(w)

∂

∂w
+

h(z)

1 + h(z)h̃(w)

]
Λ̂A ,

Λ̂AŜz =

 h̃(w)

h̃′(w)

∂

∂w
− 1− h(z)h̃(w)

2
[
1 + h(z)h̃(w)

]
Λ̂A

(35)

hold. This is a generalization of some of the projector dif-
ferential identities arising from coherent spin states that
can be found in [52, 54]. As already discussed for the
bosonic case, it is essential to specify an explicit way to
write an initial atomic density operator, in the form of
(19), where P is a probability distribution. Otherwise,
the states (31) would turn out to be unusable since it is
not sufficient to state an SDE; one also has to be able

to supply it with initial values. The details are quite
technical and can be found in Appendix A. Compared
to their counterpart (29), the projector differential iden-
tities (35) are highly nonlinear and have singularities.
Another positive P-representation approach [51, 53, 55],
which uses Schwinger bosons [89] for dealing with the
fermionic system component, can mitigate this problem
at the expense of much broader and therefore harder to
sample initial probability distributions.

B. The full-wave Jaynes-Cummings-type SDE

Now, we are ready to focus on the full-wave Jaynes-
Cummings type system. For the rest of the discussion,
we restrict ourselves to a finite number N ≥ 1 of cavity
modes in the Hamiltonian (7) since we are not equipped
to deal with an infinite dimensional phase space. It is
natural to consider the phase space variables

ϕ = (ϕ1, . . . , ϕ2(N+1)) = (α1, β1, . . . , αN , βN , z, w) ,
(36)

which belong to the kernel

Λ̂JC(ϕ) = Λ̂F(α1, β1)⊗ · · · ⊗ Λ̂F(αN , βN )⊗ Λ̂A(z, w) ,
(37)

built from the bosonic and fermionic projectors (27) and

(34), respectively. Evaluating [ĤJC, Λ̂JC] with the help
of the projector differential identities (29) and (35) leads
to a FPE with drift vector
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AJC(ϕ) = i



−ω1α1 − g(ω1) sin(k1x0)
h(z)+h̃(w)

1+h(z)h̃(w)

ω1β1 + g(ω1) sin(k1x0)
h(z)+h̃(w)

1+h(z)h̃(w)

...

−ωNαN − g(ωN ) sin(kNx0)
h(z)+h̃(w)

1+h(z)h̃(w)

ωNβN + g(ωN ) sin(kNx0)
h(z)+h̃(w)

1+h(z)h̃(w)

−Ω h(z)
h′(z) +

∑N
n=1 g(ωn)(αn + βn) sin(knx0)

h(z)2−1
h′(z)

Ω h̃(w)

h̃′(w)
−
∑N

n=1 g(ωn)(αn + βn) sin(knx0)
h̃(w)2−1

h̃′(w)


. (38)

The diffusion matrix

DJC(ϕ) = i


0 · · · 0 D1(ϕ)
...

. . .
...

...
0 · · · 0 DN (ϕ)

D1(ϕ) · · · DN (ϕ) 0

 (39)

is built from 2× 2-blocks. The nonzero blocks

Dn(ϕ) =

[
dn(ϕ) 0

0 −d̃n(ϕ)

]
(40)

contain the entries

dn(ϕ) = g(ωn) sin(knx0)
h(z)2 − 1

h′(z)
,

d̃n(ϕ) = g(ωn) sin(knx0)
h̃(w)2 − 1

h̃′(w)
,

(41)

which depend on the cavity mode number, the bosonic-
fermionic coupling constants, the position of the TLA in
the cavity, and the fermionic phase space variables. In
this way, we have identified all factors contributing to the
inherent quantum noise. Before we can state the desired
SDE for the system, we need to factorize DJC. To this
end consider

Pn(ϕ) =

√
dn(ϕ)

2

[
i −1
0 0

]
,

Qn(ϕ) =

√
d̃n(ϕ)

2

[
0 0
−i −1

]
,

Rn(ϕ) =

√
dn(ϕ)

2

[
−i −1
0 0

]
,

Sn(ϕ) =

√
d̃n(ϕ)

2

[
0 0
−i 1

]
,

(42)

and set

Bn(ϕ) =



0 · · · 0 0 0 · · · 0 0
...

. . .
...

...
...

. . .
...

...
0 · · · 0 0 0 · · · 0 0
0 · · · 0 Pn(ϕ) 0 · · · 0 Qn(ϕ)
0 · · · 0 0 0 · · · 0 0
...

. . .
...

...
...

. . .
...

...
0 · · · 0 0 0 · · · 0 0
0 · · · 0 Rn(ϕ) 0 · · · 0 Sn(ϕ)


, (43)

where the nonzero blocks are located in row n or N + 1
and column n or N + 1 of the block matrix. Then it is
straightforward to check that

BJC(ϕ) =
√
i
[
B1(ϕ) · · · BN (ϕ)

]
(44)

satisfies the requirementBJCB
T
JC = DJC. This construc-

tion is inspired by [52, 53]. It would be an improvement
to find a smarter factorization that requires fewer noise
dimensions. The resulting SDE

dΦt = AJC(Φt) dt+BJC(Φt) dWt (45)

is nonscalar, nonlinear, and generally has nonadditive
noise [90, 91], i.e., the noise matrix (44) is not constant.
Therefore, searching for analytic solutions is probably out
of the question, and even numerical solution methods can
struggle. Surprisingly, we are able to address the nonad-
ditive noise issue: For the parameter d ∈ C the ordinary
differential equation (ODE)

h′(z) =
1

d

[
h(z)2 − 1

]
(46)

has the family of solutions

h(z) =
1− exp

(
2z
d + k

)
1 + exp

(
2z
d + k

) , k ∈ C . (47)

Consequently, the following new full-wave additive noise
states with, e.g., k = 0

||z⟩ =
(
1 + e

2z
d

)
|↓⟩+

(
1− e

2z
d

)
|↑⟩ , (48)
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have the special property that the diffusion matrix (39)
and the noise matrix (44) are constant. It is an inter-
esting fact that the coherent spin states (30) themselves
lead to additive noise for the SDE associated with the
RWA Jaynes-Cummings model. The benefit can lie in
the order of convergence of a numerical solution method:
For example, the basic Euler-Maruyama method (weak

order ∆t, strong order
√
∆t) is equivalent to the Milstein

method (weak order ∆t, strong order ∆t) for the case of
additive noise [90]. Moreover, it is plausible that the sta-
bility of numerical solution methods can benefit as well.

IV. SDE SIMULATION CHALLENGES

Even though SDE simulations are not the focus of
this paper, we want to present a simple example for
three reasons: to test the results of Sec. III, to explain
some aspects of SDE post-processing that are relevant
for Sec. VI, and to recapitulate some general problems
that affect SDE based approaches (see Sec. VII).

The big advantage of SDEs derived by means of a
nonorthogonal basis state expansion is that the sizes of
the associated drift vector and noise matrix scale lin-
early with the complexity of the system Hamiltonian,
as opposed to the exponential complexity scaling for a
straightforward orthogonal basis state expansion [7, 53].
Contrary to this observation, we reduce the complexity
by only considering one cavity mode in the Hamiltonian
(7), which yields the full-wave Jaynes-Cummings model.
This does not play to the strengths of SDEs, but it makes
it easy to compare the results of the SDE simulation with
those of a Heisenberg picture reference simulation.

Unless otherwise indicated, we use the states (48) with
parameter d = 4. Then we obtain the drift vector

AJC(ϕ) = i


−ωα+ gs tanh

(
z
d + w

d∗

)
ωβ − gs tanh

(
z
d + w

d∗

)
−Ωd

2 sinh
(
2z
d

)
+ gsd(α+ β)

Ωd∗

2 sinh
(
2w
d∗

)
− gsd∗(α+ β)

 (49)

and noise matrix

BJC(ϕ) =

√
igs

2


i
√
d −

√
d 0 0

0 0 −i
√
d∗ −

√
d∗

−i
√
d −

√
d 0 0

0 0 −i
√
d∗

√
d∗

 (50)

[see (38) and (44)], where we have set ω = ω1, k = k1,
α = α1, β = β1, g = g(ω1), and s = sin(k1x0), in order to
condense the expressions. We observe that limd→0 BJC =
0, but the naive idea – the less noise, the better – is a bit
treacherous. In this context, it would be interesting to
investigate whether in the limit d → 0 chaos in the drift
ODE

dϕ

dt
= AJC(ϕ) (51)

−0.4 −0.2 0 0.2 0.4

−0.5

0

0.5
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Im

(a) z
w

−0.5 0 0.5 1 1.5 2 2.5

−4

−2

0

2

4

Re
Im

(b) z
w

FIG. 3. Time evolution (for the same time interval) of the
fermionic phase space variables (z, w) in the complex plane
averaged over 1000 runs of the full-wave Jaynes-Cummings
SDE for (a) coherent spin states and (b) full wave additive
noise states. The blue and orange lines belong to z and w,
respectively.

counterbalances the vanishing noise. This question ex-
ceeds the scope of the present work but, e.g., [92] deals
with chaos in the MB equations.
Now, we specify the setup of the full-wave Jaynes-

Cummings SDE simulation. Let the TLA be positioned
in the center x0 = l/2 of the cavity. Since our interest
lies in the qualitative behavior of the SDE determined by
(49) and (50), we consider the set of parameters ℏ = 1,
Ω = 1000, ω = 1100 and g = 200 with arbitrary units.
The initial density operator is taken to be of the form
ρ̂0 = ρ̂F,0 ⊗ ρ̂A,0 with ρ̂F,0 = |α⟩⟨α| and

ρ̂A,0 =
1

1 + e−βℏΩ |↓⟩⟨↓|+ 1

1 + eβℏΩ
|↑⟩⟨↑| . (52)

Here, the coherence parameter is α = 5, i.e., there are
on average |α|2 = 25 photons in the cavity and the ther-
mal parameter is β = 1/(ℏΩ), i.e., the TLA is inverted
with probability 1/(1 + e) ≈ 0.27. The initialization of
the bosonic phase space variables poses no problems. All
that is necessary to convert ρ̂A,0 into initial values for
the fermionic phase space variables can be found in Ap-
pendix A. For reasons of speed and simplicity, we choose
the basic Euler-Maruyama method on the equidistant
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temporal grid tn, n = 1, . . . , N = 8193 with t1 = 0 and
tN = π/ω (i.e. tn+1 − tn = ∆t ≈ 3.5 · 10−7).

From R independent SDE runs we obtain independent
realization paths ϕrn with r = 1, . . . , R and n = 1, . . . , N
for the phase space variables. Fig. 3 demonstrates the im-
pact of the choice of nonorthogonal fermionic basic states
on our ability to adequately sample the SDE statistics.
For the coherent spin states (30) in Fig. 3 (a) 1 000 SDE
runs quickly become insufficient to resolve the statistical
expectation values of the fermionic phase space variables
(z, w) in the time interval [0, T ]. In contrast, 1 000 SDE
runs suffice for all of [0, T ] when we instead use the full-
wave additive noise states (48) by virtue of an overall
slower diffusion [see Fig. 3 (b)]. Fig. 3 also illustrates
that because of the phase space dimension doubling, z
and w are complex conjugates only on average, and the
same does not apply for individual (or averages of too
few) realizations. However, most of the time, we are not
directly interested in these phase space variables because
they might lack a direct physical interpretation. Instead,
given an operator, e.g., Ŝ−, we ultimately want to com-
pute associated independent realization paths σr

n such
that

⟨⟨σ⟩⟩n =
1

R

R∑
r=1

σr
n → ⟨Ŝ−⟩(tn) = tr

[
Ŝ−ρ̂(tn)

]
, (53)

in the limit R → ∞. Here, we choose the notation ⟨⟨·⟩⟩
for the statistical expectation value to distinguish it from
the quantum mechanical expectation value. The required
post-processing of the data generated by the SDE runs is
described below. Because of (27) and the completeness

of the number states, it is easy to see that

∞∑
n=0

⟨n|Λ̂F(α, β)|n⟩ = 1 . (54)

After introducing the function

σ = v(ϕ) =
h(z)

1 + h(z)h̃(w)
, (55)

we can write

⟨↓ |Ŝ−Λ̂A(z, w)| ↓⟩ = v(ϕ) ,

⟨↑ |Ŝ−Λ̂A(z, w)| ↑⟩ = 0
(56)

by using (34). Plugging in (19) and simplifying with the
help of these results yields

tr
[
Ŝ−ρ̂(t)

]
=

∞∑
n=0

[
⟨n, ↓|Ŝ−ρ̂(t)|n, ↓⟩+ ⟨n, ↑|Ŝ−ρ̂(t)|n, ↑⟩

]
=

∫
P (ϕ, t)v(ϕ) dµ(ϕ) .

(57)

Hence, it is possible to just set σr
n = v(ϕrn) in (53) be-

cause due to the equivalence of the SDE and FPE, re-
alizations ϕrn come to lie in the neighborhood B∆ with
the relative frequency

∫
B∆

P (ϕ, tn) dµ(ϕ). Although this

method for computing σr
n is sufficient for most applica-

tions, we now discuss a way to get better accuracy at the
expense of increased computational load. The derivative
of the stochastic process Σ = v(Φ) is

dΣt =

 n∑
i=1

AJC,i(Φt)
∂v

∂ϕi
(Φt) +

1

2

m∑
j=1

n∑
p,q=1

BJC,pj(Φt)BJC,qj(Φt)
∂2v

∂ϕp∂ϕq
(Φt)

dt+

m∑
j=1

n∑
i=1

BJC,ij(Φt)
∂v

∂ϕi
(Φt) dWj,t

(58)

by Itô’s formula [90]. This stochastic modification of the
chain rule also lies at the heart of the derivation of the
stochastic MB equations in Sec. VI. For further recent
examples of its usefulness in the investigation of light-
matter interaction we refer to [38, 39, 51]. Incorporating
(58) into (45) yields an SDE of the form

d

[
Φt

Σt

]
=

[
AJC(Φt)
a(Φt)

]
dt+

[
BJC(Φt)
b(Φt)

]
dWt (59)

for the expanded phase space variables (ϕ, σ) (note that
the time-evolution of the ϕ-part is unaffected because σ
does not couple back into ϕ). The desired realization
paths σr

n can be computed directly from this SDE .

In this way, we can determine the time evolution of the

coherences

ρ21(t) = ⟨Ŝ−⟩(t) ,
ρ12(t) = ⟨Ŝ+⟩(t) ,

(60)

and the population inversion

ν(t) = ρ22(t)− ρ11(t) = ⟨2Ŝz⟩(t) , (61)

from 2 995 SDE runs. The results are shown in Fig. 4. It
can be seen that our SDE solutions (solid) are in good
agreement with the Heisenberg picture reference simula-
tion (dashed). For comparison, we also depict a comple-
mentary semiclassical MB simulation utilizing (13) and
(15), which only initially follows the full quantum solu-
tions and quickly deviates.
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FIG. 4. Time evolution of the atomic density operator. The
diagonal entries ρ11 (blue), ρ22 (orange), and off-diagonal en-
tries ρ21 (real part blue, imaginary part orange), ρ12 (real part
dark blue, imaginary part green) are shown in (a) and (b),
respectively. The solid lines belong to the full-wave Jaynes-
Cummings SDE simulation, the dashed lines to a Heisenberg
picture reference simulation, and the dash-dotted lines to a
complementary semiclassical MB simulation.

Note that actually 3 000 SDE runs were started, of
which 5 diverged. Discarding divergent runs interferes
with the statistics, so it can only be done on a small

scale. Therefore, it is not a fix for significant stability
issues.
For time scales that are too long, positive P-

representation SDEs for nonlinear quantum optical sys-
tems are known to sometimes produce wrong simula-
tion results, and the causes and accompanying warn-
ing signs are analyzed in [93]. For example, the crit-
ical assumption in the derivation of the FPE, namely
that boundary terms from partial integration vanish (see
Sec. III) can lose its validity in the course of the time-
evolution [49]. For some bosonic systems, drift gauges
have been successfully used to remove these boundary
terms and thereby extend the time interval that can
be simulated correctly [84, 94]. Our full-wave Jaynes-
Cummings SDE simulation does not reach this natural
time limit (if it exists) because stability issues set in be-
forehand. This is not particularly surprising given the
singularities of the tanh terms in (49). Unfortunately, we
were unable to find nonorthogonal fermionic basis states
such that both the resulting drift vector and noise matrix
are singularity-free. A more sophisticated SDE simula-
tion might be able to circumvent this issue by employing
a set of complementary nonorthogonal fermionic basis
states and switching between them on the fly.

V. INCORPORATION OF DISSIPATION

It turns out that the dissipation model from Sec. II B
is compatible with the nonorthogonal basis state expan-
sion method for deriving SDEs, which was developed in
Sec. III. This observation has the potential to pave the
way for future, more realistic SDE simulations of light-
matter interaction.
In order to check the validity of this claim, we calculate

the effect of the three terms of the dissipation superop-
erator (11) on the projector Λ̂ = Λ̂JC from (37). Using
the projector differential identities (35) we obtain

2ŜzΛ̂Ŝz −
1

2
Λ̂ =

[
−
h
(
1− hh̃

)
h′
(
1 + hh̃

) ∂
∂z

−
h̃
(
1− hh̃

)
h̃′
(
1 + hh̃

) ∂

∂w
+

1

2

(
2hh̃

h′h̃′
∂2

∂z∂w
+

2hh̃

h′h̃′
∂2

∂w∂z

)]
Λ̂ ,

Ŝ−Λ̂Ŝ+ − 1

2

(
ŜzΛ̂ + Λ̂Ŝz + Λ̂

)
=

[
−
h
(
1 + 3hh̃

)
2h′
(
1 + hh̃

) ∂
∂z

−
h̃
(
1 + 3hh̃

)
2h̃′
(
1 + hh̃

) ∂

∂w
+

1

2

(
h2h̃2

h′h̃′
∂2

∂z∂w
+
h2h̃2

h′h̃′
∂2

∂w∂z

)]
Λ̂ ,

Ŝ+Λ̂Ŝ− +
1

2

(
ŜzΛ̂ + Λ̂Ŝz − Λ̂

)
=

[
h
(
3 + hh̃

)
2h′
(
1 + hh̃

) ∂
∂z

+
h̃
(
3 + hh̃

)
2h̃′
(
1 + hh̃

) ∂

∂w
+

1

2

(
1

h′h̃′
∂2

∂z∂w
+

1

h′h̃′
∂2

∂w∂z

)]
Λ̂ .

(62)

As in (21), only partial derivatives with respect to the
phase space variables of order one and two occur. There-
fore, these terms can be incorporated into the FPE de-
scribed by the drift vector (38) and diffusion matrix (39).
Note that owing to the form of the left-hand sides of these
expressions, one would actually expect an atypical FPE

featuring a potential term VJC+,

∂P

∂t
(ϕ, t) =

[
VJC+(ϕ)−

n∑
i=1

∂

∂ϕi
AJC+,i(ϕ)

+
1

2

n∑
i,j=1

∂2

∂ϕi∂ϕj
DJC+,ij(ϕ)

]
P (ϕ, t) ,

(63)
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which cannot be translated into an SDE directly. Here,
one needs to first introduce an additional phase space
variable designed to remove the potential term [84]. How-
ever, this has the drawback of not only increasing the
computational load but also making the physical inter-

pretation of the phase space variables more complicated.
In our case, we are fortunate that because of a series of
cancellations, VJC+ = 0 holds. From (62), it follows that
the updated drift vector becomes

AJC+(ϕ) =



−iω1α1 − ig(ω1) sin(k1x0)
h+h̃
1+hh̃

iω1β1 + ig(ω1) sin(k1x0)
h+h̃
1+hh̃

...

−iωNαN − ig(ωN ) sin(kNx0)
h+h̃
1+hh̃

iωNβN + ig(ωN ) sin(kNx0)
h+h̃
1+hh̃

−iΩ h
h′ +

∑N
n=1 ig(ωn)(αn + βn) sin(knx0)

h2−1
h′ − rp

h(1−hh̃)
h′(1+hh̃)

− r↑↓
h(1+3hh̃)
2h′(1+hh̃)

+ r↓↑
h(3+hh̃)
2h′(1+hh̃)

iΩ h̃
h̃′ −

∑N
n=1 ig(ωn)(αn + βn) sin(knx0)

h̃2−1
h̃′ − rp

h̃(1−hh̃)
h̃′(1+hh̃)

− r↑↓
h̃(1+3hh̃)
2h̃′(1+hh̃)

+ r↓↑
h̃(3+hh̃)
2h̃′(1+hh̃)


. (64)

Moreover, the updated diffusion matrix

DJC+(ϕ) =


0 · · · 0 iD1(ϕ)
...

. . .
...

...
0 · · · 0 iDN (ϕ)

iD1(ϕ) · · · iDN (ϕ) D(ϕ)

 (65)

contains the additional nonzero block

D(ϕ) = d(ϕ)

[
0 1
1 0

]
, (66)

with the entry

d(ϕ) = rp
2h(z)h̃(w)

h′(z)h̃′(w)
+ r↑↓

h(z)2h̃(w)2

h′(z)h̃′(w)
+ r↓↑

1

h′(z)h̃′(w)
.

(67)
Thus, the additional quantum noise due to dissipation
depends on the scattering and pure dephasing rates as
well as the fermionic phase space variables. For the up-
dated SDE, we need to again factorize DJC+. To this
end, consider

T (ϕ) =

√
d(ϕ)

2

[
−i 1
i 1

]
, (68)

and set

B(ϕ) =


0 · · · 0 0
...

. . .
...

...
0 · · · 0 0
0 · · · 0 T (ϕ)

 , (69)

where the nonzero block is located in row N + 1 and
column N +1 of the block matrix. Then, modifying (44)
to

BJC+(ϕ) =
[√

iB1(ϕ) · · ·
√
iBN (ϕ) B(ϕ)

]
, (70)

suffices to satisfy the requirement BJC+B
T
JC+ = DJC+.

VI. THE STOCHASTIC MB EQUATIONS

We are almost in the position to accomplish our main
goal of using the SDE for the full-wave Jaynes-Cummings
type system, including dissipation derived in Sec. V to
gain new insight into the MB equations from Sec. II B.
All that remains to be done in preparation is to bring
this SDE into a more convenient form by two subsequent
changes of variables.

First, consider the change of variables

ϕ→ ψ = (α1, β1, . . . , αN , βN , ρ21, ρ12, ν) , (71)

with the new fermionic phase space variables

ρ21 =
h(z)

1 + h(z)h̃(w)
,

ρ12 =
h̃(w)

1 + h(z)h̃(w)
,

ν =
h(z)h̃(w)− 1

1 + h(z)h̃(w)
.

(72)

Their symbols are motivated by (55) and analogous re-

sults arising from Ŝ+ and Ŝz. For later use we introduce
the stochastic processes P21, P12 and N belonging to the
new fermionic phase space variables. They are denoted
by uppercase Greek letters (i.e. ρ ⇝ P and ν ⇝ N) in
accordance with our naming convention (see Sec. III).
Note that we have introduced an additional fermionic
phase space dimension (see Sec. IV). This is a convenient
choice for our purposes, but it is actually not necessary.
It should also be kept in mind that there is no reason for
realizations ρ21 and ρ12 being complex conjugates. The
change back to the previous phase space variables ψ → ϕ
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is determined by

h(z) =
2ρ21
1− ν

=
1 + ν

2ρ12
,

h̃(w) =
1 + ν

2ρ21
=

2ρ12
1− ν

,

(73)

provided that h and h̃ cooperate.

Second, consider the change of variables

ψ → ψ̄ = (ϵ1, η1, . . . , ϵN , ηN , ρ21, ρ12, ν) (74)

with the new bosonic phase space variables

ϵn = βn + αn,

ηn = i(βn − αn).
(75)

Clearly this is motivated by (4) and the fact that due
to the equalities ⟨⟨βn⟩⟩ = ⟨â†n⟩ and ⟨⟨αn⟩⟩ = ⟨ân⟩ (see
Sec. IV) it is consistent to replace ⟨â†n⟩ and ⟨ân⟩ with
βn and αn, respectively. Again, the stochastic processes
belonging to the new bosonic phase space variables are
denoted by uppercase Greek letters En and Hn (i.e. ϵ⇝ E
and η ⇝ H). The expressions

αn =
ϵn + iνn

2
,

βn =
ϵn − iνn

2

(76)

occur in the change back to the previous phase space
variables ψ̄ → ψ.
An application of Itô’s formula (58) shows that after

these two changes of variables, the drift vector becomes

ĀJC+(ψ̄) =



ω1η1
−ω1ϵ1 − 2g(ω1) sin(k1x0)(ρ21 + ρ12)

...
ωNηN

−ωN ϵN − 2g(ωN ) sin(kNx0)(ρ21 + ρ12)

−iΩρ21 +
∑N

n=1 ig(ωn)ϵn sin(knx0)ν − γ2ρ21
iΩρ12 −

∑N
n=1 ig(ωn)ϵn sin(knx0)ν − γ2ρ12

2
∑N

n=1 ig(ωn)ϵn sin(knx0)(ρ21 − ρ12)− γ1(ν − ν0)


. (77)

It is interesting that the unexpected (from the viewpoint
of the ordinary chain rule) noise-matrix-dependent con-
tribution to the drift vector in Itô’s formula is responsible
for the familiar form of the relaxation terms in the last
three rows of this matrix [see (13)]. The considerably
more complicated case of the remaining noise matrix is
treated in Appendix B. It turns out that all entries of
B̄JC+(ψ̄) are problematic regarding numerical stability.
The circumvention of such issues that stand in the way
of successful simulations based on this approach requires
further work. We limit ourselves to preparatory theoret-
ical considerations as a first step towards this goal.

Let us return to the investigation of the relationship
between the SDE

dΨ̄t

dt
= ĀJC+(Ψ̄t) + B̄JC+(Ψ̄t)ξt (78)

and the MB equations. We want to derive a stochastic
semiclassical scheme that stays as close as possible to this
SDE. For this purpose, we need to replace the bosonic
phase space variables with stochastic electric and mag-

netic fields. Their time evolution equations

dEn,t

dt
=ωnHn,t +

[
B̄JC+(Ψ̄t)ξt

]
2n−1

,

dHn,t

dt
=− ωnEn,t − 2g(ωn)(P21,t + P12,t) sin(knx0)

+
[
B̄JC+(Ψ̄t)ξt

]
2n

(79)

[see (77)] correspond to the cavity mode form of the
1D Maxwell equations (17). Here, the notation [v]n picks
the n-th entry of a vector v. Consequently, a comparison
with (5) shows that it is consistent to regard

E(x, t) =

N∑
n=1

ep(ωn)En,t sin(knx) ,

H(x, t) = − 1

Z

N∑
n=1

ep(ωn)Hn,t cos(knx)

(80)

as the required stochastic electric and magnetic fields.
With the help of (79) and (80), we obtain
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µ0
∂H

∂t
(x, t) =

∂E

∂x
(x, t) +

2

c

N∑
n=1

ep(ωn)g(ωn)(P21,t + P12,t) sin(knx0) cos(knx)−
1

c

N∑
n=1

ep(ωn)
[
B̄JC+(Ψ̄t)ξt

]
2n

cos(knx) ,

ε0
∂E

∂t
(x, t) =

∂H

∂x
(x, t) + ε0

N∑
n=1

ep(ωn)
[
B̄JC+(Ψ̄t)ξt

]
2n−1

sin(knx) ,

(81)

a version of the 1D Maxwell equations with quantum
noise corrections and an unexpected light-matter inter-
action term, which occurs in the first and not the second
equation [see (15)]. This can be explained by rewriting
the 1D Maxwell equations in terms of the electric dis-
placement field Dz = ε0Ez + Pz, i.e.

µ0
∂Hy

∂t
=

1

ε0

(
∂Dz

∂x
− ∂Pz

∂x

)
,

∂Dz

∂t
=
∂Hy

∂x
.

(82)

Here, the polarization also occurs in the first equation,
and the derivative is spatial instead of temporal, which
is compatible with the factor

cos(knx) =
1

kn

d sin(knx)

dx
(83)

in the light-matter interaction term of (81). This means

that the electric field operator Êz in (3) in fact corre-

sponds to the operator D̂z/ε0 because it implicitly con-

tains the light-matter interaction [the time evolution of

â†n(t) and â(t) depends on Ŝz(t), Ŝ+(t), and Ŝ−(t)]. Some
related observations concerning the connection between
second quantization and Maxwell’s equations in nonlin-
ear optics can be found in [95].

In order to be able to eliminate the bosonic phase space
variables from the rest of the SDE, we need to postulate
that the bosonic-fermionic coupling constants are related
to the dipole moment via the formula

d21 = −ℏg(ωn)

ep(ωn)
(84)

(see [96]). Then, (80) together with (84) yields

N∑
n=1

ig(ωn)En,t sin(knx0) = − i

ℏ
d21E(x0, t) . (85)

Using (77) and (85), the time evolution equations for the
fermionic phase space variables become

dP21,t

dt
= −iΩP21,t −

i

ℏ
d21E(x0, t)Nt − γ2P21,t +

[
B̄JC+(Ψ̄t)ξt

]
2N+1

,

dP12,t

dt
= iΩP12,t +

i

ℏ
d21E(x0, t)Nt − γ2P12,t +

[
B̄JC+(Ψ̄t)ξt

]
2N+2

,

dNt

dt
= 2

i

ℏ
d21E(x0, t)(P12,t − P21,t)− γ1(Nt − ν0) +

[
B̄JC+(Ψ̄t)ξt

]
2N+3

,

(86)

which are just the Bloch equations (13) with added quan-
tum noise. Combining the results (81) and (86) yields
an SPDE of a form described in [68], corresponding to
the MB equations. Note that the quantum noise correc-
tions bear the last remaining trace of the original cavity
mode-dependent ansatz, which was the starting point of
our derivation.

Clearly, before this SPDE can be used in practice,
a consistent numerical treatment compatible with the
FDTD method and leveraging its numerical efficiency
needs to be specified. To accomplish this goal, it might
be necessary to identify and keep only the most impor-
tant quantum noise terms in order to obtain a stable
stochastic semiclassical scheme for the future simulation
of nonclassical light in optoelectronic devices.

VII. CONCLUSION

In this paper, we present a new way to improve the use-
fulness of the positive P-representation for fermionic or
mixed bosonic and fermionic systems by highlighting the
importance of choosing the nonorthogonal fermionic ba-
sis states adequately. Additionally, we fully describe the
initialization of the corresponding fermionic phase space
variables and provide a simple example simulation of the
full-wave Jaynes-Cummings SDE as a starting point for
future applications in quantum optics. With the help of
these states, we identify the complex structure of the in-
herent quantum noise for a dissipative TLA in a perfect
optical cavity, which enables the derivation of a stochas-
tic correction to the MB equations in the form of an
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SPDE. In this way, we shed new light on how quantum
optical phase space methods can be used to reveal and
exploit the connection between semiclassical and field-
quantized models for light-matter interaction. Despite
the assumption of a perfect optical cavity, these results
should not be limited to this case since, in the MB frame-
work, mirror losses are easily treated by attenuating the
optical field via an equivalent distributed conductivity.
This is attractive because the actual modes of a lossy
cavity are difficult to determine from second quantiza-
tion [97]. Moreover, by disregarding the quantum noise
terms in the SPDE, we obtain as a bonus a new treat-
ment of the polarization in the MB equations that may
be advantageous in the strong coupling and few photon
regimes.
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Appendix A: Initialization of the fermionic phase
space variables

Consider a valid initial atomic density operator

ρ̂A = ρ11|↓⟩⟨↓|+ ρ12|↓⟩⟨↑|+ ρ21|↑⟩⟨↓|+ ρ22|↑⟩⟨↑| (A1)

[see (10)]. The construction of the associated probability
distribution P described below relies on all the properties
of ρ̂A. Let us write ρ11 = p and ρ12 = reiϕ with r ≥ 0. By

the hermiticity ρ̂†A = ρ̂A and the trace condition tr ρ̂A = 1
we have ρ22 = 1− p and ρ21 = re−iϕ. From the positive
semidefiniteness ρ̂A ≥ 0 it follows that 0 ≤ p ≤ 1 and
r2 ≤ p(1 − p). The stronger assumption 0 < p < 1 is
necessary for our purposes. Then

q =
r
(
1 +K2

)
K

with K =

√
1

p
− 1 (A2)

satisfies 0 ≤ q ≤ 1. Hence q1 = q and q2 = q3 = (1− q)/2
are probabilities that add up to 1. Provided that there
are z1, z2, z3 ∈ C and w1, w2, w3 ∈ C with

h(z1) = Ke−iϕ , h(z2) = K , h(z3) = −K ,

h̃(w1) = Keiϕ , h̃(w2) = K , h̃(w3) = −K ,
(A3)

our construction together with (34) yields

ρ̂A =

3∑
i=1

qiΛ̂A(zi, wi) , (A4)

which means that the initial probability distribution

P (z, w) =

3∑
i=1

qiδ(z − zi)δ(w − wi) (A5)

fits the requirements. In view of the mapping behavior
of analytic functions (e.g., Picard’s Theorem [98]), the
theoretical chances for being able to satisfy (A3) are ex-
cellent.

Appendix B: Noise matrix for the phase space
variables ψ̄

Each block of the noise matrix

B̄JC+(ψ̄) =
[√

iB̄1(ψ̄) · · ·
√
iB̄N (ψ̄) B̄(ψ̄)

]
(B1)

[see (70)] has the same structure as its counterpart be-
fore the change of variables [see (43) and (69)]. The
only difference is that P̄n(ψ̄), Q̄n(ψ̄), R̄n(ψ̄), S̄n(ψ̄),
and T̄ (ψ) to be given below replace its blocks Pn(ϕ),
Qn(ϕ), Rn(ϕ), Sn(ϕ), and T (ϕ), respectively. For the
sake of simplicity, we restrict ourselves to the special case
h(z) = z (which implies h̃(w) = w), corresponding to the
coherent spin states (30). Then it turns out that

P̄n(ψ̄) =

√
g(ωn) sin(knx0)

2

[
ip −p
p ip

]
,

Q̄n(ψ̄) =

√
g(ωn) sin(knx0)

2

[
−iq −q
q −iq

] (B2)

holds, with the entries given by

p =

√
4ρ221

(1− ν)
2 − 1 ,

q =

√
4ρ212

(1− ν)
2 − 1 .

(B3)

The remaining blocks R̄n(ψ̄), S̄n(ψ̄), and T̄ (ψ̄) have
three rows instead of two, as is the case for Rn(ϕ),
Sn(ϕ), and T (ϕ), because of the additional fermionic
phase space dimension. Indeed, we have

R̄n(ψ̄) =

√
g(ωn) sin(knx0)

2

−ir1 −r1
−ir2 −r2
−ir3 −r3

 ,
S̄n(ψ̄) =

√
g(ωn) sin(knx0)

2

−is1 s1
−is2 s2
−is3 s3

 ,
(B4)
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with the entries

r1 =
(1− ν)

2

4

√
4ρ221

(1− ν)
2 − 1 ,

r2 = −ρ212

√
(1 + ν)

2

4ρ212
− 1 ,

r3 = ρ12(1− ν)

√
(1 + ν)

2

4ρ212
− 1 ,

s1 = −ρ221

√
(1 + ν)

2

4ρ221
− 1 ,

s2 =
(1− ν)

2

4

√
4ρ212

(1− ν)
2 − 1 ,

s3 = ρ21(1− ν)

√
(1 + ν)

2

4ρ221
− 1 .

Finally, the block arising from the incorporation of dissi-
pation is

T̄ (ψ̄) =

√√√√2rp
1+ν
1−ν + r↑↓

(
1+ν
1−ν

)2
+ r↓↑

2

 t11 t12
t21 t22
t31 t32

 , (B5)
with the entries

t11 = −i

[
ρ221 +

(1− ν)2

4

]
,

t12 = −ρ221 +
(1− ν)2

4
,

t21 = i

[
ρ212 +

(1− ν)2

4

]
,

t22 = −ρ212 +
(1− ν)2

4
,

t31 = i(−ρ12 + ρ21)(1− ν) ,

t32 = (ρ12 + ρ21)(1− ν) .
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