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ABSTRACT

Hyperentangled swapping is a quantum communica-
tion technique that involves the exchange of hyperentan-
gled states, which are quantum states entangled in mul-
tiple degrees of freedom, to enable secure and efficient
quantum information transfer. In this paper, we demon-
strate schematics for the hyperentanglement swapping
between separate pairs of neutral atoms through the
mathematical framework of atomic Bragg diffraction,
which is efficient and resistant to decoherence, yielding
deterministic results with superior overall fidelity. The
utilized cavities are in superposition state and interact
with the incoming atoms off-resonantly. Quantum infor-
mation carried by the cavities is swapped through reso-
nant interactions with two-level auxiliary atoms. We also
discuss entanglement swapping under a delayed-choice
scenario and provide a schematic generalization covering
multiple-qubit scenarios. Finally, we introduce specific
experimental parameters to demonstrate the experimen-
tal feasibility of the scheme.

Keywords: Quantum Communication, Quantum In-
formation, Quantum Optics

I. INTRODUCTION

Entanglement is an essential component in many quan-
tum information technologies, including quantum com-
puting [1], quantum sensing[2, 3], and, most notably,
quantum communication [4–7].

Many quantum communication protocols based on
entanglement have been developed and experimentally
demonstrated [8–14]. One of these protocols is Entangle-
ment Swapping, which is a quantum phenomenon that
allows the entanglement of two particles, even if they
have never directly interacted. In fact, it has many ap-
plications in quantum information[8–10]. Recently, many
quantum communication protocols began to use a vari-
ant of the normal quantum entanglement, known as Hy-
perentanglement, where the entanglement takes place
between multiple degrees of freedom. Hyperentangled
states improve channel capacity by minimizing the phys-
ical resources, and hence, in certain situations, lower the
decoherence linked to the number of quantum entities
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involved [15–17]. The swapping of such hyperentangled
states presents a viable solution for efficient quantum
information transfer that requires minimal physical re-
sources, especially in the context of information distribu-
tion over complex quantum networks [18, 19].

In this paper, we engineer hyperentanglement with its
internal degree of freedom being molded by the atom’s
ability to be in the ground or in the excited state, and use
the transverse quantized momentum state of the atom as
its external degree of freedom. We use Atomic Bragg
diffraction to generate hyperentangled atomic states i.e.
states entangled simultaneously in atomic internal and
external degrees of freedom and their further manip-
ulation for intended entanglement swapping. Atomic
Bragg diffraction is one of the most exciting applications
of cavity quantum electrodynamics, which is often used
for quantum state engineering and atomic interferometry
and can be used to generate hyperentanglement with ex-
ternal and internal degrees of freedom of atoms [18, 20].
Atomic Bragg diffraction is a technique through which
one can develop different types of optical gadgets such as
atomic beam splitters and atomic mirrors [21–24].

Our scheme involves three parties: Alice, Bob, and
Carol. First, Alice and Bob mutually generate a hy-
perentangled pair of two-level atoms. Engineering of
such states involves off-resonant atomic Bragg diffrac-
tions with the cavity field, which is initially in a super-
position state of zero and one followed by exposing a
momentum arm to a classical laser. Atoms are initially
in the ground state |g⟩ with the momentum state |P0⟩.
The interactions are first-order Bragg diffractions. Con-
sequently, after controlled exposure to the laser field, the
hyperentangled atomic state is produced, where the in-
ternal and external (transverse-momentum) degrees of
freedom are correlated. Once Alice and Bob generate
such state, each one sends 1 qubit (atom) to a third-
party, Carol, who possesses two further cavity fields in
superposition. Carol adjusts the cavities so that the de-
flected arm of each atom passes through one cavity, and
the undeflected arm of each atom passes through an-
other cavity. Finally, Alice and Bob detect the internal
and external states of the two atoms through four differ-
ent state-selective detectors after passing them through
a Ramsey zone. Therefore, this results in the remaining
two atoms, which never interacted with each other, shar-
ing an entangled state. This completes the entanglement
swapping process, in which the entanglement is swapped
between the entangled pairs that were initially prepared.

The rest of this paper is organized as follows: In sec-
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tion II, review the mathematical framework of atomic
Bragg diffraction along with the generation of hyper-
entangled Bell state among couple of two-level atoms.
In Section III, we describe our entanglement swapping
scheme. Section IV describes the delayed-choice hyper-
entangled swapping along with its due generalization.
Section V briefly elaborates on the experimental feasi-
bility envisioned for the proposal under the prevailing
experimental scenario. Finally, Section VI concludes the
paper.

II. ATOMIC BRAGG DIFFRACTION

Atomic Bragg diffraction is a Raman scattering phe-
nomenon that follows the general conditions of Bragg
diffraction. Thus, the conservation of momentum and
energy of the system remains intact. Momentum ex-
change occurs between the quantized field trapped in a
cavity and the atom, where the magnitude remains con-
stant, and only the direction of the external momenta
changes. The atom’s momentum consists of two compo-
nents: transverse and longitudinal. The atom travels at a
slight angle relative to the axis of the cavity, which results
in the quantization of the transverse component of the
momentum, and the longitudinal component, still large,
may be treated classically. When such an atom interacts
with the quantized cavity field, the atom experiences a
momentum kick and, consequently, discrete multiples of
quantized atomic momentum are transferred along the
k-vector of the field. This is provided by the relation
Pout = Pin + lℏk, where Pin = P0 = l0ℏk

/
2 is the initial

momentum of the atom and l0 is an even integer that
refers to the order of Bragg diffraction. Each interaction
transfers a momentum kick to the atom of magnitude 0 or
2ℏk and thus Pout is the resultant momentum after l such
interactions [25]. Furthermore, the relation of energy
conservation is |pin|2

/
2M = |pout|2

/
2M , where M is the

mass of the atom. Using the relations for conservation of
momentum and energy, we obtain the fundamental prin-
ciple of atomic Bragg diffraction: l(l + l0)ℏ2k2/2M = 0,
which consists of two solutions, the first is l = 0 repre-
senting the undeflected momentum state and the second
is l = −l0 representing the deflected momentum state.
Similarly, first, second and third-order Bragg diffractions
will be represented by higher-order of even integers 2, 4
and 6, respectively [26, 27].

To demonstrate the phenomena of first-order Bragg
diffraction, consider a two-level atom in its ground state
|g⟩ and quantized external momentum state |P0 = ℏk⟩ on
the x-axis, i.e., cavity axis, with the atom moving in the
z-axis direction with longitudinal classical momentum,
as shown in Fig. (1). Meanwhile, the cavity is initially

taken to be in superposition state (|0⟩+ |1⟩)/
√
2. The in-

teraction picture Hamiltonian under dipole and rotating
wave approximation is [15, 26–38],

HI =
P 2
x

2M
+

ℏ∆
2
σz + ℏµ cos(kx)

[
bσ+ + σ−b

†] . (1)

FIG. 1. Schematics of the hyperentangled Bell state genera-
tion using off-resonant Bragg diffraction of two atoms initially
in states |g1, P 1

0 ⟩ and |g2, P 2
0 ⟩ injected sequentially in a cavity

which is in superposition state (|0⟩+ |1⟩)/
√
2.

Here, the term P 2
x/2M represents the kinetic energy of

the atom associated with the quantized momentum com-
ponent, and σ−, σ+ and σz are the atomic lowering,
raising, and inversion operators, respectively. ∆ repre-
sents atom-field de-tuning and µ is the coupling con-
stant between the atom and field with b and b† being
the annihilation and creation field ladder operators. In
order to build a correlation between the internal and
external degrees of freedom of a pair of atoms, we be-
gin with consideration of an atom in initial ground state
|g⟩ with quantized momentum state |P0⟩ which interacts

with a cavity field in a superposition state (|0⟩+ |1⟩)/
√
2

as represented in Fig. (1). The initial state vector is

|ψ(t = 0)⟩ = |g, P0⟩ ⊗ (|0⟩ + |1⟩)/
√
2. This specific ini-

tial state can be used to engineer the hyper-superposition
state of a single atom [8, 18]. For this the proposed state
vector can be written as,

|ψ(t)⟩ =e
− ˙̇ι

(
P2
0

2Mℏ−∆
2

)
t

∞∑
l=−∞

[
CPl

g,0(t) |g, 0, Pl⟩

+CPl
g,1(t) |g, 1, Pl⟩+ CPl

e,0(t) |e, 0, Pl⟩
]
,

(2)

where CPl
g,0(t), C

Pl
g,1(t) and C

Pl
g,1(t) are the unknown time-

evolved probability amplitudes of the respective states.
It should be noted that CPl

g,0(t) represents the possibility

that the atom remains in the ground state |g⟩ leaving the

cavity in fock state |0⟩, while CPl
g,1(t) represents the pos-

sibility that the atom leaves the cavity in fock state |1⟩
and still remains in ground state |g⟩ and finally CPl

g,1(t)
represents the case where the internal state of the atom
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gets excited |e⟩ leaving the cavity in fock state |0⟩, af-
ter l interactions. Solving the Schrodinger equation us-
ing the proposed state vector given in Eq. (2) with the
Hamiltonian expressed in Eq. (1), we obtain the follow-
ing differential equations for the rate of change of the
probability amplitudes. We note that expression (3) is
a simple first-order differential equation, while Eq. (4)
and (5) represent an infinite set of coupled differential
equations,

˙̇ι
∂

∂t
CPl

g,0(t) =

(
l(l0 + l)ℏk2

2M

)
CPl

g,0(t), (3)

˙̇ι
∂

∂t
CPl

g,1(t) =

(
l(l0 + l)ℏk2

2M

)
CPl

g,1(t)

+
µ

2

(
C

Pl+1

e,0 (t) + C
Pl−1

e,0 (t)
)
,

(4)

˙̇ι
∂

∂t
CPl

e,0(t) =∆CPl
e,0(t)

+
µ

2

[
C

Pl+1

g,1 (t) + C
Pl−1

g,1 (t)
]
.

(5)

In this case, the atom-cavity interaction is considered
to be off-resonant and obeys the Bragg diffraction
condition, i.e ∆ > ωr where ωr = ℏk2/2M is the recoil
frequency imparted to the atom. The adiabatic as-
sumption is applied where the contribution of the slowly
varying probability amplitudes is considered negligible
[38]. Initially, the atom is in the ground state |g⟩,
therefore, Eq. (4) shows an even number of interactions
and Eq. (5) shows an odd number of interactions.
Setting l0 = 2 for first order Bragg diffraction, we get,

For l=1,

˙̇ι
∂

∂t
CP1

e,0(t) = ∆CP1
e,0(t) +

µ

2

(
CP2

g,1(t) + CP0
g,1(t)

)
, (6)

For l=0,

˙̇ι
∂

∂t
CP0

g,1(t) =
µ

2

(
CP1

e,0(t) + C
P−1

e,0 (t)
)
, (7)

For l=-1,

˙̇ι
∂

∂t
C

P−1

e,0 (t) = ∆C
P−1

e,0 (t) +
µ

2

(
CP0

g,1(t) + C
P−2

g,1 (t)
)
, (8)

For l=-2,

˙̇ι
∂

∂t
C

P−2
g,1 (t) =

µ

2

(
C

P−1

e,0 (t) + C
P−3

e,0 (t)
)
, (9)

For l=-3,

˙̇ι
∂

∂t
C

P−3

e,0 (t) = ∆C
P−3

e,0 (t) +
µ

2

(
C

P−2

g,1 (t) + C
P−4

g,1 (t)
)
.

(10)

Furthermore, under the adiabatic approximation,
the time evolution of the probability amplitudes

∂CP1
g,1(t)/∂t, ∂C

P−1

g,1 (t)/∂t and ∂C
P−3

g,1 (t)∂t can be ignored
on practical grounds and the higher order amplitudes

CP2
g,1(t) and C

P−4

g,1 (t) may also be skipped due to meager

contributions [15, 32, 35, 37–39]. Under these approxima-
tions, the above infinite set of coupled equations reduces
to the following two coupled differential equations:

∂

∂t
CP0

g,1(t) =
˙̇ιβt

[
2CP0

g,1(t) + C
P−2
g,1 (t)

]
, (11)

∂

∂t
C

P−2

g,1 (t) = ˙̇ιβt
[
C

P−2
g,1 (t) + CP0

g,1(t)
]
, (12)

with β = µ2/4∆. By solving these equations, we retrieve
the time-evolved probability amplitudes associated with
the state vector given in Eq. (2):

CP0
g,1(t) =e

2 ˙̇ιβt
[
CP0

g,1(0) cos (βt) +
˙̇ιC

P−2
g,1 (0) sin (βt)

]
,

(13)

C
P−2

g,1 (t) =e2
˙̇ιβt

[
C

P−2
g,1 (0) cos (βt) + ˙̇ιC

P 1
0

g1,1
(0) sin (βt)

]
.

(14)

By selecting the appropriate initial probability ampli-
tudes, one can engineer the hyper-superposition state. In
this specific case, we have selected CP0

g,1(0) = CP0
g,0(0) =

1/
√
2 and C

P−2

g,1 (0) = 0 together with the appropriate

interaction time as t = 2π∆/µ2 we get the state [18, 20]:

|ψ(t = 2π∆/µ2)⟩ = 1√
2

[
|0, g1, P0⟩ − ˙̇ι |1, g1, P−2⟩

]
.

(15)
However, if initially the atom would have been considered
to be in excited state, the same mathematical procedure
would be followed, which is presented in Appendix A.
To generate the hyper-superposition state between the

internal and external degrees of freedom of a single atom,
the lower deflected momenta arm i.e. |P−2⟩ is exposed to
the classical laser beam along the y-axis, as depicted in
Fig. (1). This semi-classical resonant interaction [40] is

governed by the Hamiltonian, (ℏΩ/2)[e− ˙̇ιϕσ+ + e
˙̇ιϕσ−],

where Ω is the Rabi frequency of the atom and choosing
the interaction time as t = π/Ω, the state becomes:

|ψ(t = π/Ω)⟩ = 1√
2

[∣∣0, g1, P 1
0

〉
− ˙̇ι

∣∣1, e1, P 1
−2

〉]
. (16)

Here, it is apparent that a correlation has been built be-
tween the atom’s external and internal states, and the
cavity field. The subscripts of the internal states and
the superscripts of the external states represent the first
atom to pass through the cavity field. Passing a sec-
ond atom, initially in state |g2, P 2

0 ⟩ from the same atom-
cavity system, a correlation will be generated between
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the external states of both atoms with the cavity field.
This second atom will follow similar conditions [18, 20]
to off-resonant Bragg diffraction as described earlier, and
following the same mathematical procedure, which will
obtain the probability amplitudes as described in the
equation. (13) and Eq. (14). This second atom will
again pass through the semi-classical laser field obeying
resonant interaction and the state of the system will be-
come:

|ψ(t)⟩ = 1√
2

(∣∣0, g1, g2, P 1
0 , P

2
0

〉
−
∣∣1, e1, e2, P 1

−2, P
2
−2

〉)
.

(17)
When the cavity of the atomic system is traced out, a
hyperentangled bipartite Bell state [20] will be gener-
ated. For this, an auxiliary two-level atom initially in the
ground state interacts resonantly with the cavity field.
This resonant interaction is governed by the Hamilto-
nian, HR = ℏµ

[
σ+b+ σ−b

†], with b(b†) being the ladder
operators for the field and σ+(σ−) are transition opera-
tors for the atom. This resonant auxiliary atom leaves
the cavity field into the vacuum state and is detected
in either of its internal states after passing through the
Ramsey zone, which allows us to engineer two mutually
orthogonal equi-probable states. For brevity, we take the
following engineered state:

|ψ(t)⟩ = 1√
2

(∣∣g1, g2, P 1
0 , P

2
0

〉
− ˙̇ι

∣∣e1, e2, P 1
−2, P

2
−2

〉)
.

(18)
The above equation represents the hyperentangled Bell
state, which shows that the internal and external degrees
of freedom of both atoms are entangled [28]. This ba-
sic hyperentangled state acts as a building block for our
proposal of hyper-entanglement swapping.

III. ENTANGLEMENT SWAPPING

Fig. (2) visually describes our proposed scheme, which
consists of two stages: 1) the generation of a bipartite
hyperentangled state, 2) swapping to another bipartite
hyperentangled state. At stage 1 in Fig. (2), two inde-
pendent parties, Alice and Bob, generate hyperentangled
pairs of atoms 1 and 2, and atoms 3 and 4, respectively,
as described by Eq. 18. Once these pairs are generated,
the initial cavities (Cavity 1 and 2) are traced out. This
produces two pairs of hyperentangled atoms, which can
be jointly written as:

|ψ0⟩ =
1

2

[(
|g1, g2, P 1

0 , P
2
0 ⟩ − ˙̇ι |e1, e2, P 1

−2, P
2
−2⟩

)
⊗
(
|g3, g4, P 3

0 , P
4
0 ⟩ − ˙̇ι |e3, e4, P 3

−2, P
4
−2⟩

)]
. (19)

Eq. 19 show that there is no correlation between atoms
1 and 4 and similarly between atoms 2 and 3. In stage
2, we swap this hyper-entanglement on the pair of atom
1 and atom 4 by performing Bell basis measurement of
the internal and external states of atoms 2 and 3. We

FIG. 2. Illustration for implementing Quantum Swapping.

consider two cavities (A and B) that exist in the super-

position state (|0⟩ + |1⟩)/
√
2. Then, the joint state of

the two pairs of hyperentangled atoms, together with the
cavities, can be written as:

|ψ⟩ =1

2

[∣∣g2, P 2
0

〉 ∣∣g3, P 3
0

〉 ∣∣g1, g4, P 1
0 , P

4
0

〉
− ˙̇ι

∣∣g2, P 2
0

〉 ∣∣e3, P 3
−2

〉 ∣∣g1, e4, P 1
0 , P

4
−2

〉
− ˙̇ι

∣∣e2, P 2
−2

〉 ∣∣g3, P 3
0

〉 ∣∣e1, g4, P 1
−2, P

4
0

〉
−
∣∣e2, P 2

−2

〉 ∣∣e3, P 3
−2

〉 ∣∣e1, e4, P 1
−2, P

4
−2

〉]
⊗ 1√

2
(|0A⟩+ |1A⟩)⊗

1√
2
(|0B⟩+ |1B⟩) .

(20)

The undeflected atomic wavepackets of atom 2 and atom
3, namely |g1, P 2

0 ⟩ and |g3, P 3
0 ⟩, respectively, interact with

cavity A. Similarly, the deflected atomic wavepacket,
namely |e1, P 2

−2⟩ and |e3, P 3
−2⟩, respectively, interact with

cavity B. This is illustrated in Fig. (2). Hence, Eq. 20
can be re-ordered as:

|ψ⟩ =1

2

[
|g2, P 2

0 ⟩ |g3, P 3
0 ⟩ |A⟩ − ˙̇ι |g2, P 2

0 ⟩ |e3, P 3
−2⟩ |B⟩

− ˙̇ι |e2, P 2
−2⟩ |g3, P 3

0 ⟩ |C⟩ − |e2, P 2
−2⟩ |e3, P 3

−2⟩ |D⟩
]

⊗
∏

i=A,B

1√
2

(
|0i⟩+ |1i⟩

)
.

(21)

Here, atoms 1 and 4 will not interact with cavities A and
B; therefore, for simplicity, we have denoted the non-
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interactive atomic states by

|A⟩ =
∣∣g1, g4, P 1

0 , P
4
0

〉
|B⟩ =

∣∣g1, e4, P 1
0 , P

4
−2

〉
|C⟩ =

∣∣e1, g4, P 1
−2, P

4
0

〉
|D⟩ =

∣∣e1, e4, P 1
−2, P

4
−2

〉
According to our scheme, the undeflected arms of atoms 2
and 3,

∣∣g2, P 2
0

〉
and

∣∣g3, P 3
0

〉
, will now interact with cavity

A, while the deflected arms
∣∣e2, P 2

−2

〉
and

∣∣e3, P 3
−2

〉
inter-

act with cavity B; this is illustrated in Fig. (2). These
interactions are off-resonant Bragg diffractions, governed
by the Hamiltonian given in Eq. (1). States of atoms
in ground state interacting with cavity A obey similar
initial conditions as discussed in section II. For this case,
the governing equations are presented in Eq. (3), Eq.
(4) and Eq. (5), and the resulting probability ampli-
tudes are given in Eq. (13) and Eq. (14). However, the
governing equations corresponding to Eq. (3), Eq. (4)
and Eq. (5) for the split wavepackets of atoms 2 and 3
(
∣∣e2, P 2

−2

〉
and

∣∣e3, P 3
−2

〉
), in which the internal states of

the atoms are initially in the excited states, will follow
from Eq. (27), Eq. (28) and Eq. (49) in Appendix A.
In this case, the time-evolved probability amplitudes are
also given in Appendix A. This completes the interaction
of the respective states of atoms 2 and 3 with cavity A
and B, respectively, and the time-evolved state at this
stage becomes:

|ψ⟩ =1

4

[
|0A, 0B⟩

(
|g2, g3, P 2

0 , P
3
0 ⟩ |A⟩

− |g2, e3, P 2
0 , P

3
0 ⟩ |B⟩ − |e2, g3, P 2

0 , P
3
0 ⟩ |C⟩

+ |e2, e3, P 2
0 , P

3
0 ⟩ |D⟩

)
+ |0A, 1B⟩

(
|g2, g3, P 2

0 , P
3
0 ⟩ |A⟩

− ι̇ |g2, e3, P 2
0 , P

3
−2⟩ |B⟩+ ι̇ |e2, g3, P 2

−2, P
3
0 ⟩ |C⟩

− |e2, e3, P 2
−2, P

3
−2⟩ |D⟩

)
+ |1A, 0B⟩

(
− |g2, g3, P 2

−2, P
3
−2⟩ |A⟩

+ ι̇ |g2, e3, P 2
−2, P

3
0 ⟩ |B⟩ − ι̇ |e2, g3, P 2

0 , P
3
−2⟩ |C⟩

+ |e2, e3, P 2
0 , P

3
0 ⟩ |D⟩

)
+ |1A, 1B⟩

(
− |g2, g3, P 2

−2, P
3
−2⟩ |A⟩

− |g2, e3, P 2
−2, P

3
−2⟩ |B⟩ − |e2, g3, P 2

−2, P
3
−2⟩ |C⟩

− |e2, e3, P 2
−2, P

3
−2⟩ |D⟩

)]
.

(22)

This equation shows that cavities A and B and both
atoms 2 and 3 are mutually sharing information. To
swap the information of the cavities only to atoms 2
and 3, an auxiliary atom initially in the ground state
(|gs⟩ and |gt⟩) passes through each cavity in turn while

obeying the resonant interaction with the Hamiltonian
HR = ℏµ

(
σ+b+ σ−b

†) [27]. These auxiliary atoms are
detected in one of the possible combinations after passing
through the Ramsey zone and traced out from the whole
system. Here, we have detected them in their ground
states, but the other combinations also yield similar phys-
ical results. Now, we are only left with a state in which
atoms are correlated with each other, whereas all the cav-
ities are traced out from the state vector. The state of
the system becomes:

|ψ⟩ =1− ˙̇ι

8

[(
|g2, g3, P 2

0 , P
3
0 ⟩+ ˙̇ι |g2, g3, P 2

−2, P
3
−2⟩

)]
⊗ |A⟩

− 1

8

[(
|g2, e3, P 2

0 , P
3
0 ⟩+ |g2, e3, P 2

0 , P
3
−2⟩

− |g2, e3, P 2
−2, P

3
0 ⟩ − |g2, e3, P 2

−2, P
3
−2⟩

)]
⊗ |B⟩

− 1

8

[(
|e2, g3, P 2

0 , P
3
0 ⟩ − |e2, g3, P 2

0 , P
3
−2⟩

+ |e2, g3, P 2
−2, P

3
0 ⟩ − |e2, g3, P 2

−2, P
3
−2⟩

)]
⊗ |C⟩

+
1− ˙̇ι

8

[(
|e2, e3, P 2

0 , P
3
0 ⟩+ ι̇ |e2, e3, P 2

−2, P
3
−2⟩

)]
⊗ |D⟩ .

(23)

The final step of our scheme is to detect the internal and
external states of atoms 2 and 3 after they are passed
through a Ramsey zone. Depending on the result of our
detection, atoms 1 and 4 may share a different entangled
state. The following state represents all the possible en-
tangled states corresponding to the detections on atoms
2 and 3.

|ψ⟩ = 1

16

∑
b=1,3

∑
a=1,3[(

(1− ˙̇ι) |A⟩ − ιa |B⟩ − ιb |C⟩+ (1− ˙̇ι) |D⟩
)

|b2, a3, P 2
0 , P

3
0 ⟩

+
(
(1 + ˙̇ι) |A⟩+ ιa |B⟩+ ιb |C⟩+ ( ˙1 + ι̇) |D⟩

)
|b2, a3, P 2

−2, P
3
−2⟩

+
(
(−ιa |B⟩+ ιb |C⟩

)
|b2, a3, P 2

0 , P
3
−2⟩

+
(
(ιa |B⟩ − ιb |C⟩

)
|b2, a3, P 2

−2, P
3
0 ⟩

]
.

(24)

In Eq. 24, the internal states |1⟩ and |3⟩ refer to the
states |g⟩ and |e⟩ of both atoms, respectively. Similarly,
we have different possibilities of entangled states of atoms
1 and 4 according to the detections of atoms 2 and 3. For
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example, assume that detections on atoms 2 and 4 yields
|g2, g3, P 2

0 , P
3
−2⟩, then we are left with the following state:

|ψ⟩ = − |B⟩+ |C⟩ , (25)

which, after expanding the states |B⟩ and |C⟩, becomes:

|ψ⟩ = (|e1, g4, P 1
−2, P

4
0 ⟩ − |g1, e4, P 1

0 , P
4
−2⟩)/

√
2. (26)

Eq. 26 represents hyperentanglement among the internal
and external degrees of freedom of atoms 1 and 4. We
note that atoms 1 and 4 do not share a direct interaction
with each other in our scheme, and we have successfully
swapped hyper-entanglement from atoms 1 and 2 and
atoms 3 and 4 to atoms 1 and 4, eventually.

IV. DELAYED-CHOICE ENTANGLEMENT
SWAPPING

The idea of delayed choice entanglement swapping re-
volves around the manipulation of entangled particles in
a way that their observed properties are seemingly in-
fluenced by decisions made at a later time and even at
a distant location. Here, we will explore two key vari-
ants: bipartite entanglement swapping, which involves
the interaction of two entangled pairs, and n-partite en-
tanglement swapping, where the phenomenon extends to
multiple entangled particles. These variations shed light
on the interconnected nature of quantum systems and
the profound influence of observation on the behavior of
entangled particles.

A. Bipartite Entanglement

Entanglement swapping as described in Section III can
also be performed in a delayed-choice manner [41], which
is more interesting in the context of quantum informa-
tion, as it highlights the importance of information and
information eraser in various quantum protocols. It also
explicitly demonstrates the irrelevance of temporal or-
dering as quantum systems are being processed under
unitary dynamics [9]. In our context, we adopt the
same procedure as discussed in Section III to obtain two
states of entangled bipartite atomic external momenta,
provided for further manipulation as required for delay
choice swapping. This pair of entangled states may be
expressed in a single mathematical form as follows:

|ψ1,2(t)⟩ = 1√
2

[
|01, g1, g2, P 1

0 , P
2
0 ⟩

+ |11, g1, g2, P 1
−2, P

2
−2⟩

] (27)

and

|ψ3,4(t)⟩ = 1√
2

[
|02, g3, g4, P 3

0 , P
4
0 ⟩

+ |12, g3, g4, P 3
−2, P

4
−2⟩

]
.

(28)

Here cavity 1 and cavity 2 are still entangled with their
respective atoms via their quantized external momenta

states: |P (j)
0 ⟩ , |P (j)

−2 ⟩ with j = 1, 2, 3, 4. Also, all atoms
in free flight are still in their individual ground states gij ,
again with j = 1, 2, 3, 4. These control variables are kept
unchanged so they can be used in future delayed-choice
manipulation.
In this section, we only demonstrate the basic process

of delayed-choice swapping, and therefore we will not dis-
cuss the phases involved in various stages. For a symmet-
ric Ramsey Zone (RZ), we take the transformations:

|gA⟩ →
1√
2

(
|gAj ⟩+ |eAj ⟩

)
(29)

and

|eA⟩ =
1√
2

(
|gAj ⟩ − |eAj ⟩

)
. (30)

The subscript Aj designates the two-level atoms that will
be used later to erase the quantum information carried
by cavity 1 and cavity 2 (in this case, j = 1, 2). Sim-
ilarly, the symmetric Hadamard Transformations (HT)
for atomic quantized external momenta states (atomic
momenta beam splitter transformations) may also be ex-
pressed as:

|P (j)
0 ⟩ → 1√

2

(
|P (j)

0 + |P (j)
−2 ⟩⟩ (31)

and

|P (j)
−2 ⟩ →

1√
2

(
|P (j)

0 − |P (j)
−2 ⟩⟩ , (32)

evidently with j = 1, 2, 3, 4.
For the initial state, we tensor product expressions (Eq.
27) and (28) to get:

|ψ1,2,3,4⟩ = |ψ1,2⟩ ⊗ |ψ3,4⟩ =

1√
2
.
1√
2

[
|01, 02, g1, g2, g3, g4, P 1

0 , P
2
0 , P

3
0 , P

4
0 ⟩

+ |01, 02, g1, g2, g3, g4, P 1
0 , P

2
0 , P

3
−2, P

4
−2⟩

+ |01, 02, g1, g2, g3, g4, P 1
−2, P

2
−2, P

3
0 , P

4
0 ⟩

+ |01, 02, g1, g2, g3, g4, P 1
−2, P

2
−2, P

3
−2, P

4
−2⟩

]
.

(33)

For the intended entanglement swapping, we project both
cavity fields simultaneously over a symmetric beam split-
ter as shown in figure 3. As illustrated in Fig. 3, this
swapping procedure is inherently probabilistic because
no photon and two-photon detection events at either of
the detectors mark a failure case, which happens half of
the time (i.e. with 50 percent probability). Thus, the
initial state leading to successful entanglement swapping
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FIG. 3. Schematics for implementing Entanglement Swap-
ping: A delayed-choice scenario.

will be left with

|ψ1,2,3,4⟩ =

1√
2

[
|01, 12, g1, g2, g3, g4, P 1

0 , P
2
0 , P

3
−2, P

4
−2⟩

+ |11, 02, g1, g2, g3, g4, P 1
−2, P

2
−2, P

3
0 , P

4
0 ⟩

]
.

(34)

Projection over the beam splitter is, in fact, the Bell-
basis measurement and it effectively erases which-path or
which-cavity information carried a priori by the photons.
Furthermore, the photons have identical parameters and
are simultaneously subjected to the beam splitter and
detected at D1 or D2. Thus, after emerging from the
beam splitter, the photon subscripts 1 or 2, designating
the individual cavities, are no longer relevant to further
calculations as they are traced out of the system.

The symmetric beams splitter is one of the most sim-
ple quantum devices for the coupling of the inputs to the
outputs (optical in and out posts) and is mainly charac-
terised by the following transformations: [42],

â2 =
1√
2
(â0 + ι̇â1), â3 =

1√
2
(ι̇â0 + â1). (35)

Simply stated, an incident single atom, whenever de-
flected through a beam splitter, symmetric or otherwise,
emerges with the phase π/2, while on the other hand,
the transmitted component receives no phase as it passes
through without deflection.

Thus the state expressed in Eq. (34) after the applica-
tions of the above mentioned beam splitter transforma-
tion comes to be,

|ψ1,2,3,4⟩BS =

1√
2

[
1√
2

(
|g1, g2, g3, g4, P 1

0 , P
2
0 , P

3
−2, P

4
−2⟩

+ ι̇ |g1, g2, g3, g4, P 1
−2, P

2
−2, P

3
0 , P

4
0 ⟩

)
⊗ |1D1⟩

+
1√
2

(
ι̇ |g1, g2, g3, g4, P 1

0 , P
2
0 , P

3
−2, P

4
−2⟩

+ |g1, g2, g3, g4, P 1
−2, P

2
−2, P

3
0 , P

4
0 ⟩

)
⊗ |1D2

⟩

]
.

(36)

In Eq. (36), we traced out the common vacuum state.
This completes the simple entanglement swapping proto-
col in the external quantized momenta states.

At the receiver’s side, the receiver can locally trans-
form this four-partite entangled momenta state into a
hyperentangled state (i.e., state entangled in two degrees
of freedom: internal and external states) by exposing a
pair of momenta components of any of the two atom
pairs (atom 1, atom 2) or (atom 3, atom 4) to a clas-
sical Ramsey field in a delayed-choice manner. This type
of interaction is governed by the resonant semi-classical
interaction Hamiltonian ν = −hΩR(σ++σ−)/2 with ΩR

being the resonant Rabi frequency and σ + (σ−) is the
atomic raising/lowering operator [40].

From expression (36), the entangled state engineered
through the swapping when the photon is detected at the
detector D1, is given by:

|ψ1,2,3,4⟩ = 1√
2

[
|g1, g2, g3, g4, P 1

0 , P
2
0 , P

3
−2, P

4
−2⟩

+ ι̇ |g1, g2, g3, g4, P 1
−2, P

2
−2, P

3
0 , P

4
0 ⟩

]
,

(37)

Exposing the atomic momenta components |P 1
0 , P

2
0 ⟩ of

atom 1 and atom 2 as well as |P 3
−2, P

4
−2⟩ of atom 3 and

atom 4 to a classical laser field with interaction time cor-
responding to π Rabi pulse causes the transformations of
the internal state of the atom,

|g⟩ → ι̇ |e⟩ , |e⟩ → ι̇ |g⟩ . (38)

Hence, expression (37), under laser-atom interaction for
the specified time, transforms to the following four-
partite hyperentangled state, i.e. the state entangled in
the internal as well as the external momenta states in
accordance with the systematic depicted in figure (3).
Finally, we obtain the delayed-choice engineered hyper-
entangled state with the receiver opting for atom-laser
field interactions with appropriate later time. The de-
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sired state, will, therefore be:

|ψ1,2,3,4⟩hypent = 1√
2

[
|e1, e2, e3, e4, P 1

0 , P
2
0 , P

3
−2, P

4
−2⟩

+ ι̇ |g1, g2, g3, g4, P 1
−2, P

2
−2, P

3
0 , P

4
0 ⟩

]
.

(39)

This is because four atoms have successively gone
through atom-field interactions leading to the change of
the respective ground states into the corresponding ex-
cited state, each producing a local phase of ι̇ and collec-
tively ι̇4 = 1.

B. n-partite Entanglement

We can generalize bipartite entanglement swapping
and its delayed-choice based conversion into n-partite hy-
perentanglement swapping. Experimentally, it has been
well demonstrated that a stream of thousands of atoms
can interact with a cavity field consecutively before the
appreciable inset of decoherence [37, 39, 43]. This is
mainly due to the availability of high-Q superconduct-
ing cavities with useful life as high as a fraction of a
second [44, 45]. Thus, instead of Bragg diffracting only
a single pair of atoms from each cavity, we may diffract
n/2 atoms, where n ≥ 500, from each cavity [46]. Fol-
lowing the procedure described in section IVA, the pair
of the generated entangled states of the n/2-partite may
be expressed as follows.

|ψ⟩n/2C1
=

1√
2

[
|01⟩ ⊗

n/2∏
i=1

(
|gi, P (i)

0 ⟩
)

+ |11⟩ ⊗
n/2∏
i=1

(
|gi, P (i)

−2⟩
)] (40)

and,

|ψ⟩n/2C2
=

1√
2

[
|02⟩ ⊗Πn

j=n
2 +1

(
|gj , P (j)

0 ⟩
)

+ |12⟩ ⊗Πn
j=n

2 +1

(
|gj , P (j)

−2 ⟩
)]

.

(41)

Again, by employing the same procedure cited earlier, i.e.
by projecting cavity fields simultaneously over a symmet-
ric beam splitter, we can engineer an n-partite entangled
state through swapping. This procedure yields the state,

|ψ⟩n =

1√
2

[[
Π

n/2
j=1

(
|gj , P (j)

0 ⟩
)
⊗Πn

k=n
2 +1

(
|gk, P (k)

−2 ⟩
)]

+ ι̇

[
Π

n/2
j=1

(
|gj , P (j)

−2 ⟩
)
⊗Πn

k=n
2 +1

(
|gk, P (k)

0 ⟩
)]] (42)

This state, once in the access of the receiver, can be trans-
formed into the hyperentangled state in a delayed-choice
manner by passing the specifically selected momentum
components through classical Ramsey fields, where the
split wave packet of each atom is excited from its respec-
tive ground state following the procedure described at
length in the previous section. The procedure will duly
yield the following hyperentangled state,

|ψ⟩n−hypent
=

1√
2

[[
(ι̇nΠ

n/2
j=1

(
|ej , P (j)

0 ⟩
)
⊗Πn

k=n
2 +1

(
|ek, P (k)

−2 ⟩
)]

+ ι̇

[
Π

n/2
j=1

(
|gj , P (j)

−2 ⟩
)
⊗Πn

k=n
2 +1

(
|gk, P (k)

0 ⟩
)]]

(43)

or,

|ψ⟩n−hypent
=

1√
2

[[
ι̇n−1Π

n/2
j=1

(
|ej , P (j)

0 ⟩
)
⊗Πn

k=n
2 +1

(
|ek, P (k)

−2 ⟩
)]

+

[
Π

n/2
j=1

(
|gj , P (j)

−2 ⟩
)
⊗Πn

k=n
2 +1

(
|gk, P (k)

0 ⟩
)]]

.

(44)

The procedure adopted for the generation of entangle-
ment, swapping and the subsequent delayed-choice trans-
formation into the n-partite hyperentanglement engineer-
ing, is universal and hence can be utilized for diverse
entanglement morphology including cluster and graph
states [47, 48]. Thus, the protocol presented here may
contribute to the realization of complex quantum entan-
gled networks and other applications requiring informa-
tion distribution over complex quantum structures, such
as many-body systems, and simulation of biological sys-
tems. [49].

V. EXPERIMENTAL FEASIBILITY

Quantum entanglement, along with its characteristic
traits, is the most prominent resource in the field of
quantum information [50–55]. Similarly, entanglement
swapping is a central process that has been used to clar-
ify a foundational issue of entanglement engineering, i.e.
the demonstration of entanglement between two parties
without any direct temporal or spatial interaction of the
parties involved. This was carried out through Bell-
basis measurements on two independent but entangled
pairs, which consequently placed information (and in-
formation eraser) as the core theme in quantum infor-
mation theory [41]. The advent of hyperentanglement,
and its utilization in quantum information, further forti-
fied the quantum information domain, as it significantly
enhances the channel capacity without invoking any fur-
ther physical resources, which minimizes resource-related
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quantitative decoherence. Cavity QED-based atom-field
systems have been historically the pioneering gadgets for
efficient and meaningful demonstrations and experimen-
tal implementations of many quantum information pro-
posals. [21, 43]. However, the main problem with such
multi-partite quantum states is the decoherence. This is
because many quantum information experiments gener-
ally require precise interactions under a scenario that is
not ideally closed, eventually leading to decoherence.

Our proposed hyperentanglement swapping fundamen-
tally utilizes external momenta states of the neutral
atoms, and such states are well known to be resistant
to decoherence under what is generally termed quantum
Darwinism [56]. For state engineering, we rely on the
off-resonant Bragg diffraction of the neutral atoms from
the cavity fields. This subsequently generates the de-
sired states in momentum space without exchanging any
real photons between the atom and the field. Therefore,
in our work, the pathway for the decoherence emanat-
ing from spontaneous emission is also effectively closed.
Currently, we can engineer cavities with lifetimes close to
a fraction of a second [57, 58], which successfully tackles
decoherence. This means that several atoms can interact
with a quantized cavity field without raising substantial
threats to the coherence of the system [44]. It is also
reasonable to treat the system as closed because the av-
erage interaction time between an atom and a cavity field
is in the range of microseconds. Over the years, numer-
ous experimental validations for atomic Bragg diffraction
have been performed, with even 8th order atomic Bragg
diffraction generating experimentally fruitful results [59–
61]. Mach-Zehnder-Bragg interferometry has also been
applied experimentally with results involving splitting of
momenta of 102 photons [62]. Furthermore, the trans-
mission of the resulting momentum of around 112 ℏk has
also been experimentally observed with high visibility of
the fringes [63, 64]. Therefore, in light of these exper-
imental demonstrations, it may be safely assumed that
our proposed scheme can be realized experimentally.

Moreover, the proposed scheme holds practical
grounds due to the fact that high-fidelity systems have
previously been proposed and executed efficiently in the

microwave Bragg regime. In the optical regime, experi-
ments have also shown generally good and reliable Bragg
diffraction of atoms. In terms of experimental efficiency,
variational errors in interaction time can be avoided
by utilizing ultra-cold atoms trapped by magneto-optics
with a negligible spread in velocity [59, 61, 65, 66]. To be
more specific, the atomic Bragg diffraction of 85Rb atoms
by 780 nm optical laser beams [57, 58, 61] provides a
glaring experimental realization where atoms with mass
M = 85 amu are exploited with recoil frequency ωr = 2.4
x 104 rad/s and Rabi frequency Ω = 2π x 16.4 MHz.
The parameters related to the cavity include detuning
of 1 GHz and finesse 4.4 x 105. As an alternative, 4He
atoms with M = 4 amu, ωr = 1.06 MHz, λ = 543.5 nm,

∆ = 6.28 GHz and the effective Rabi frequency µ2

4∆ = 120
KHz can also be used for an interaction time of 13µs the
finesse of the cavities, i.e F = 7.85 x 106, leading to the
lifetimes up to milliseconds [37, 67]. Consequently, these
atomic and cavity parameters maintain the conditions
for off-resonant atomic Bragg diffraction, i.e ∆ >> ωr

and ωr +∆ = µ
√
n/2, where the interaction time is kept

far lower than the lifetime of the cavity (around 0.5µs)
[59, 68–70].

VI. CONCLUSION

In this paper, we proposed a framework for entangle-
ment swapping of hyperentanglement between two hy-
perentangled pairs. One atom from each pair is ma-
nipulated while we do not interfere with the two entan-
gled atoms. Passing the undeflected arms from Cavity A
and deflected arms from Cavity B, we produce a hyper-
correlation between the two atoms. Finally, detection
of these atom’s internal and external states after pass-
ing them through Ramsey zone, swaps the entanglement
on to the atoms which passed without interactions ini-
tially. Such a protocol, if implemented experimentally,
will ensure the safe decoherence-free and high-capacity
information transfer over two quantum nodes or quan-
tum information processing units that were independent
and uncorrelated initially.
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APPENDIX A:INTERACTION BETWEEN THE
ATOM IN EXCITED STATE AND THE CAVITY

IN SUPERPOSITION STATE

If the atom is in the excited state then the initial state
vector will be,

|ψ(t = 0)⟩ = |g, P0⟩ ⊗ (|0⟩+ |1⟩)/
√
2 (45)
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And the proposed state vector can be written as,

|ψ(t)⟩ =e
−ι̇

(
P2
0

2Mℏ−∆
2

)
t

∞∑
l=−∞

[
CPl

e,0(t) |e, 0, Pl⟩+

CPl
e,1(t) |e, 1, Pl⟩+ CPl

g,1(t) |g, 1, Pl⟩
]
.

(46)

Using the same governing Hamiltonian as presented
in Eq. (1), we solve the Schrodinger equation and after
taking projections of probability amplitudes, we arrive at
the following coupled differential equations,

ι̇
∂

∂t
CPl

e,0(t) =

(
l(l0 + l)ℏk2

2M

)
CPl

e,0(t)+

µ

2

[
C

Pl+1

g,1 (t) + C
Pl−1

g,1 (t)
]
,

(47)

ι̇
∂

∂t
CPl

e,1(t) =

(
l(l0 + l)ℏk2

2M

)
CPl

e,1(t), (48)

ι̇
∂

∂t
CPl

g,1(t) =∆CPl
g,1(t)+

µ

2

[
C

Pl+1

e,0 (t) + C
Pl−1

e,0 (t)
]
.

(49)

Putting in the values of l which runs from −3 to 1, we
get,

For l=1,

ι̇
∂

∂t
CP1

g,1(t) = ∆CP1
g,1(t) +

µ

2

(
CP2

e,0(t) + CP0
e,0(t)

)
, (50)

For l=0,

ι̇
∂

∂t
CP0

e,0(t) =
µ

2

(
CP1

g,1(t) + C
P−1

g,1 (t)
)
, (51)

For l=-1,

ι̇
∂

∂t
C

P−1

g,1 (t) = ∆C
P−1

g,1 (t)+
µ

2

(
CP0

e,0(t) + C
P−2

e,0 (t)
)
, (52)

For l=-2,

ι̇
∂

∂t
C

P−2
e,0 (t) =

µ

2

(
C

P−1

g,1 (t) + C
P−3

g,1 (t)
)
, (53)

For l=-3,

ι̇
∂

∂t
C

P−3

g,1 (t) = ∆C
P−3

g,1 (t) +
µ

2

(
C

P−2

e,0 (t) + C
P−4

e,0 (t)
)
.

(54)
Applying adiabatic approximation and back substitu-

tions, we reach,

∂

∂t
CP0

e,0(t) =
ι̇µ2

4∆

[
2CP0

e,0(t) + C
P−2
e,0 (t)

]
, (55)

∂

∂t
C

P−2

e,0 (t) =
ι̇µ2

4∆

[
C

P−2
e,0 (t) + CP0

e,0(t)
]
. (56)

Solving the above coupled differential equation, we fi-
nally arrive at the governing equations for this system,

CP0
e,0(t) =e

2ι̇µ2t
4∆

[
CP0

e,0(0) cos

(
µ2

4∆
t

)
+ι̇C

P−2
e,0 (0) sin

(
µ2

4∆
t

)]
,

(57)

C
P−2
e,0 (t) =e

2ι̇µ2t
4∆

[
C

P−2
e,0 (0) cos

(
µ2

4∆
t

)
+ι̇CP0

e,0(0) sin

(
µ2

4∆
t

)]
.

(58)

With initial condition, C
P−2

e,0 (0) = 1/
√
2 and setting

interaction time as t = 2π∆/µ2,

|ψ⟩1 =
1√
2
[|1, e, P−2⟩ − ι̇ |0, e, P0⟩] . (59)
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