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Abstract

In this paper, we study the saturation effect in the energy or mass spectra of three quantum models with
energy-dependent potentials: the harmonic oscillator, the hydrogen atom, and the heavy quarkonia. We used the
method proposed in [1], which is based on studying various canonical point and gauge transformations applied
to a function, g(x), multiplied by a given differential equation of known solutions as special orthogonal functions,
that convert it into a Schrödinger-like equation. The first two models stem from implementing the method on the
confluent hypergeometric differential of the well-known solutions 1F1, while the third model (heavy quarkonia)
stems possibly from the hypergeometric differential of the well-known solutions 2F1. In particular, the heavy
quarkonia mass spectra for both cc̄ and bb̄ are produced at different values of the saturation parameter λ and
compared with the available experimental data. It is found that these systems may exhibit saturation effect
when the energy-dependent effect is included.

Keywords: Energy-dependent potential, Schrödinger equation, Confluent hypergeometric equation, hyperge-
ometric equation, heavy quarkonia, mass spectra, saturation effect.

1 Introduction

In the quantum world, the quest for bound-state solutions to wave equations, whether relativistic or non-relativistic,
is of prime importance to investigate their spectroscopic as well as other possible properties. Many papers have been
written on this topic, using different methods and proposed phenomenological potential models. Examples of such
potential models are Coulomb, Martin, Woods-Saxon, Eckart, trigonometric Rosen-Morse, logarithmic, harmonic,
and Cornell potentials, each of which has properties that are applicable to use for the physical problem under
study. For instance, the Cornell potential is an ideal model for studying heavy quarkonia because it takes into
account the two unique features of the strong interaction, namely, confinement and asymptotic freedom. One of the
interesting properties that the confining potential model should take into consideration is the saturation effect, viz.
the quenching of indefinite growth in the energy spectra. Otherwise, the energy spectrum increases with increasing
the quantum number which then leads to unstable systems. The saturation effect could be achieved by considering
energy-dependent potentials. The wave equations with such energy-dependent potentials are already familiar in
physics. For instance, the relativistic description of a scalar particle in the presence of an external Coulomb field
through the Klein–Gordon equation leads to a wave equation with an energy-dependent potential [2], the Pauli -
Schrödinger equation describing a particle in an external electromagnetic field [3], and in non-relativistic quantum
mechanics, they arise from momentum-dependent interactions [4].

Formanek et al [5] have investigated wave equations that involve potentials that depend on the energy of the
system and a formal analysis to determine the conditions under which these wave equations can be treated as
evolution equations of quantum theory. In Ref [6], has been discussed a study on the DKP equation with energy-
dependent potentials, including the calculation of normalization and continuity equations, the determination of
eigenfunctions and eigenvalues, and the presentation of energy graphs. Also, have been generalized Schrödinger
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equations with energy-dependent potentials through formalism and applications [7]. Besides, have been studied of
heavy quarkonium with energy-dependent Potential [8].

Additionally, Ref [9] used the Nikiforov-Uvarov method to solve the radial Schrödinger equation for heavy
quarkonia confined within a potential that accounts for conformal symmetry, and found that a small perturbing
term in the potential achieves good agreement with experimental data. The formalism of quantum mechanics is
extended to a variety of systems that have energy-dependent potentials and position-dependent masses, resulting
in modifications to the scalar product and norm [7]. Furthermore, Point transformations were used to develop
energy-dependent potentials, with instances of boundary-value problems with a discrete spectrum and closed-form
solutions, and solutions in terms of exceptional orthogonal polynomials [10].

In the situation of energy-dependent potentials for bound states, the properties of the wave equation were
examined [11]. Besides, Within the framework of the path integral approach, the normalization problem of energy-
dependent potentials was analyzed and that was applied to the harmonic oscillator and the hydrogen atom (radial)
[12]. Moreover, in Ref [13], the focus was on how the energy-dependent barrier-type (rectangular, step, Hulthn,
Woods–Saxon) characteristic affects the transmission and reflection coefficients of the Klein–Gordon and Dirac
particles.

In ref [14], the wave equation with energy-dependent confining potentials admitting analytic solutions, namely
the linear and harmonic potentials has been studied. It is found that for linear energy dependence, the energy
spectrum exhibits a saturation effect. A toy model was also presented to produce the heavy quarkonia spectra. In
Ref [15], a system of N bosons with mutual two-particle confining harmonic interactions with energy-dependent
frequency has been investigated. Such a situation was found to produce noticeable properties of the many-body
system such as saturation behavior.

In this work, we investigate the saturation effects in the energy or mass spectra of confined systems in different
energy-dependent potential models. Rather than starting from the Schrödinger equation and substituting a proposed
potential, we follow a different approach developed in [1]. The approach is based on finding the set of energy-
dependent potentials for which the Schrödinger equation permits solutions in terms of known orthogonal polynomials
such as the hypergeometric functions, Hermit polynomials, and others. The method is based on studying various
canonical point and gauge transformations applied to a function, g(x), multiplied by a differential equation related
to a known special function, that converts it into a Schrödinger -like equation. We then search for the saturation
effects in the energy spectra obtained for these potentials. As an application, we search for saturation in mass
spectra of heavy quarkonia and compare our results with the available experimental results.

2 Theoretical Background

We briefly review here the method for constructing Schrödinger equations with energy-dependent potentials that
are exactly solvable; the full presentation is discussed in [1]. We consider the second-order differential equation with
variable coefficients of the form [1]:

Lxy(x) = 0, (1)

with the operator Lx

Lx = P (x)
d2

dx2
+Q(x)

d

dx
+R(x), (2)

such that for the coefficient functions P (x), Q(x), and R(x), the solution y(x) is known. We then consider the
influence of multiplying Eq. (1) by an arbitrary global multiplicative factor g(x), viz.,

g(x)[Lxy(x)] = 0, (3)

and using the change of variable
x = F(u). (4)

Here F(u) is an unknown function for the present. Following the procedure and steps in [1], u is given as

u = ±
∫ F(u) dF(u)

√

g(F(u))P (F(u))
= ±

∫ x dx
√

g(x)P (x)
, (5)

in terms of the coordinate (u) is
Luy(F(u)) = 0. (6)
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and using the similarity transformation:

y(x) = y(F(u)) = φ(u)e−
∫

u W (u)du, (7)

where

W (u) =
g(F(u))Q(F(u))−F ′′

(u)

2F ′(u)
, (8)

we obtain
φ(u) = e

∫
u W (u)duy(F(u)). (9)

Eq. (6) can be transformed into the next equation without the first derivative

−d2φ(u)

du2
+ [v(u)− g(F(u))R(F(u))]φ(u) = 0, (10)

where:
v(u) = W 2(u) +W

′

(u). (11)

It is fruition at this moment to note that Eq. (10) is of the form of Schrödinger equation with potential v(u), whose
solution is the known function φ(u) given in Eq. (9). Thus, the introduction of the function g(x) in Eq.(3), modifies
the potential in Eq. (10), via Eq.(8), which leads to a set of Schrödinger equations from Eq.(1). Every choice g(x)
generates a corresponding Schrödinger equation. Writing

~
2

2m
[v(u)− g(F(u))R(F(u))] ≡ V (u)− E, (12)

then Eq.(11) reduces to the Schrödinger equation

− ~
2

2m

d2φ(u)

du2
+ V (u)φ(u) = Eφ(u). (13)

We discuss three examples of interest in physics. The harmonic oscillator and the hydrogen atom, which stem from
the confluent hypergeometric equation, and the heavy quarkonia mass spectra which stems from The hypergeometric
equation (not confluent).

3 Results and discussion

Here, we present three ideal quantum systems of interest: the harmonic oscillator, the hydrogen atom, and the
heavy quarkonia. The saturation effect in the energy spectra of these systems with energy-dependent potential is
investigated in terms of the energy parameters. Following [1] and Tables therein, the harmonic oscillator and the
hydrogen atom eigen-solutions can be generated from the following confluent hypergeometric equation

xy
′′

+ (c− x)y
′

− ay = 0, (14)

which has first solution of the form:
y(x) = 1F1 (a; c;x) , c ∈ Z

−, (15)

where 1F1 (a; c;x) is the confluent hypergeometric function, which becomes a polynomial if a ∈ Z
−. Remember,

we’re searching for potentials and energies that can produce these solutions. We then implement the method
described in Sec. 2 to Eq. (14) with appropriate choices of g(x).

3.1 The harmonic oscillator

We calculate the energy spectrum of the harmonic oscillator using the confluent hypergeometric equation. Energy
spectrum En, and solutions φ(u) for several energy-dependent potentials V (En;u) obtained from the method of
chapter 2 when it is applied to the confluent hypergeometric equation of the harmonic oscillator: Following [1], the
choice

g(x) = k2, (16)
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where k is a constant, generates the eigen-solutions for the harmonic oscillator. Using Eq. (5), and the coordinate
change in Eq. (4), we have

u = ±
∫ x dx√

k2x
= ±2

√
x

k
.

Using the change of variable u = ± 2
√
x

k
, yields

F(u) = ±u2k2

4
. (17)

Then, with the help of Eq. (8), we have

W (u) =
2c− 1

2u
− uk2

4
, (18)

where F ′′

(u) = 1
2k

2, Q(F (u)) = c− u2k2

4 . Substituting this result in Eq. (11), we obtain

v(u) =
4c2 + 3− 8c

4u2
+

u2k4

16
− ck2

2
, (19)

and using Eq. (12), we have

~
2

2m

(

4c2 + 3− 8c

4u2
+

u2k4

16
− ck2

2
+ k2a

)

= V − E. (20)

Eq. (20) can be split up into two parts. The first part for the potential as

V (u) =
~
2

2m

(

4c2 + 3− 8c

4u2
+

u2k4

16

)

, (21)

= Au2 +
B

u2

where A = k4

16 , B = 4c2+3−8c
4 . In terms of the variable x, we have

V (x) = Ax2 +
B

x2
. (22)

The second part is

E =
~
2k2

4m
(c− 2a) . (23)

For the three-dimensional harmonic oscillator with energy dependent potential of the form V (r, E) = mω2f(En)r
2

2 ,
the Schrödinger equation reads

d2φ

dr2
+

2m

~2

[

E − mω2f(En)r
2

2
− ℓ(ℓ+ 1)~2

2mr2

]

φ = 0, (24)

where as usual Veff (r) =
mω2f(En)r

2

2 + ℓ(ℓ+1)~2

2mr2
is the effective potential. The solutions of Eq.(24) are

φ(u) = u
2c−1

2 e
−u2k2

8 1F1

(

a; c;
u2k2

4

)

. (25)

Comparing Veff (r) with Eq.(21), we obtain

k2 =
4mω

~
f(En)

1
2 , (26)

c =
1

2
(1− 2ℓ), c =

1

2
(3 + 2ℓ), c ∈ Z

−. (27)

In the third step, we study the saturation of energy for harmonic oscillator using

En = f(En)
1
2E(HO)

n , (28)
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where E
(HO)
n = ~ω

(

n+ 3
2

)

. Then, using Eq.(23), we have

~ω

(

n+
3

2

)

f(En)
1
2 =

~
2k2

4m
(c− 2a). (29)

Substituting for c and k2 from Eqs. (26-27), we obtain

(

n+
3

2

)

=
1

2
(3 + 2ℓ)− 2a. (30)

from which we deduce that a = ℓ−n
2 . Using Eq.(25) for u = r, the eigenfunctions read

φnℓ(r) = Cnℓr
ℓ+1e

−r2mωf(En)
1
2

2~ 1F1

(

ℓ − n

2
; ℓ+

3

2
;
r2k2

4

)

. (31)

In the fourth step, we should provide the functional form of f(En). By proposing that f(En) = (1 + λEn)q, the
energy can be calculated for different cases depending on the different values of q, using Eq. (28), as

En = (1 + λEn)
q
2E(HO)

n . (32)

For q = 0
En = E(HO)

n . (33)

For q = 1

En = E(HO)
n

λE
(HO)
n ±

√

λ2(E
(HO)
n )2 + 4

2
. (34)

For q = 2

En =
E

(HO)
n

1− λE
(HO)
n

. (35)

For q = 4

En =
1− 2λE

(HO)
n ±

√

1− 4λE
(HO)
n

2λ2E
(HO)
n

. (36)

We next discuss the results for different cases. In Figures (1-3), we plotted the energy as a function of the quantum
number n at different value of λ and for different values q. The saturation in this system could be approached with
negative choices of λ and more noticeably with decreasing (toward −∞). For positive choices of λ, the saturation
could not be reached with physically meaningful results. Also, the presence of the exponent q makes the quenching
of the curves faster and thus more profound saturation effect. According to result Eq. (53), as the quantum number
n → ∞, the energy E(HO) → ∞, and the energy En becomes saturated to the value − 1

λ
:

lim
n→∞

En = − 1

λ
, (37)

This coincides with the results found in other potential models; see for instance [16].
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Figure 1: En as function of n for the linear E-dependent harmonic oscillator, with q = 1 and different values of λ.
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Figure 2: En as function of n for the linear E-dependent harmonic oscillator, with q = 2 and different values of λ.
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Figure 3: En as function of n for the linear E-dependent harmonic oscillator, with q = 4 and different values of λ.
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3.2 The hydrogen Atom

The Hamiltonian for a particle in a Coulomb field (hydrogen atom) is:

H = − ~
2

2m

(

d2

dr2
+

2

r

d

dr
+

ℓ(ℓ+ 1)

r2

)

− a

r
, (38)

where a = e2

4πǫ0
. In the ground state, ℓ = 0 and the Hamiltonian becomes

H = − ~
2

2m

(

d2

dr2
+

2

r

d

dr
− a

r

)

. (39)

We calculate the energy spectrum of the Hydrogen atom using the confluent hypergeometric equation. Energy
spectrum En, and solutions φ(u) for several energy-dependent potentials V (En;u) obtained from Sec.2 when it is
applied to the confluent hypergeometric equation of the Hydrogen atom. For the hydrogen atom, the choice [1]

g(x) =
k2

x
(40)

can generate the eigen-solutions. Using Eq.(5), and the coordinate change in Eq. (4), we have

u = ±
∫ x dx

√

k2

x
x

= ±x

k
. (41)

Changing the variable u = ±x
k
then yields

F (u) = ±uk. (42)

Using Eq. (8) with F
′′

(u) = 0, Q(F (u)) = (c− uk), we obtain W (u) as

W (u) =
c

2u
− k

2
. (43)

Substituting this result in Eq. (11), we have

v(u) =
c2

4u2
+

k2

4
− c

2u
k − c

2u2
. (44)

Thus, using Eq. (12), we obtain

~
2

2m

(

c2 − 2c

4u2
−
(

ck2

2uk
+

ak2

uk

))

= V − E. (45)

The following separation of Eq.(45) into two parts is possible

~
2

2m

(

c(c− 2)

4u2
+

(2a− c)k

2u

)

= V, (46)

−~
2k2

8m
= E. (47)

In the second step, we use the solution of the Schrödinger equation obtained in Eq. (9), we obtain

φ(u) = uℓ−1e
−uf(u)

na0 1F1

(

ℓ+ 1− n; 2(ℓ+ 1);
2f(En)u

na0

)

. (48)

We also calculate the energy for different cases depending on the different values of q as

En = (1 + λEn)
q
2E(H)

n , (49)

where we have chosen f(En) = (1 + λEn)
q. For q = 0

En = E(HO)
n . (50)
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For q = 1

En = E(HO)
n

λE
(HO)
n ±

√

λ2(E
(HO)
n )2 + 4

2
. (51)

For q = 2

En =
E

(HO)
n

1− λE
(HO)
n

. (52)

For q = 4

En =
1− 2λE

(HO)
n ±

√

1− 4λE
(HO)
n

2λ2E
(HO)
n

. (53)

We next discuss the results for different cases. In Figures (6-4), we plotted the energy as a function of the quantum
number n at different values of λ and for different values q. The saturation in this system is reached with negative
choices of λ and faster with increasing its negativity. Also, the presence of the exponent q makes the saturation
faster to be achieved. According to result Eq. (53), as the quantum number n → ∞, the energy E(HO) → ∞, and
the energy En becomes saturated to the value − 1

λ
:

lim
n→∞

En = − 1

λ
, (54)

which also coincides with the results in other potential models; see for instance [16].
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Figure 4: En as function of n for the linear E-dependent Hydrogen atom, with q = 1 and different values of λ in
(GeV−1).
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Figure 5: En as function of n for the linear E-dependent Hydrogen atom, with q = 2 and different values of λ in
(GeV−1).
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Figure 6: En as function of n for the linear E-dependent Hydrogen atom, with q = 4 and different values of λ in
(GeV−1).

3.3 Heavy quarkonia

In this section, we study the mass of the spectrum, the potentials of heavy quarks dependent on energy through the
method, and apply it to the hypergeometric equation. According to Table 3. of [1], the hypergeometric equation,
not the confluent, with suitable choice of g(x) can generate potentials that are appropriate for confined two-particle
quantum systems such as heavy quarkonia. The hypergeometric equation is

x(1 − x)y
′′

+ [c− (a+ b + 1)x]y
′

− aby = 0. (55)

Its first solution is:
y(x) = 2F1 (a, b; c;x) . (56)

For our purposes, we select the third case of the energy spectrum presented in Table 3. of Ref [1], viz.,

En = −k2

16

[

(2n+ 1)2 +
p2

(2n+ 1)2

]

, n = 0, 1, 2, ... (57)

This result is in agreement with the result reported in [9] where the trigonometric Rosen-Morse potential for confined
systems is reduced to Nikiforov-Uvarov problem for solving hypergeometric differential equations. If the change
k2 → k2f(ǫn) is realized, the potential has an energy-dependent form. Suppose:

f(ǫn) = (1 + λEn)
q, (58)

we then have

En = −k2(1 + λEn)
q

16

[

(2n+ 1)2 +
p2

(2n+ 1)2

]

. (59)

To tidy up the notations, we define

β ≡ −k2
[

(2n+ 1)2 +
p2

(2n+ 1)2

]

, (60)

then we obtain

En =
(1 + λEn)

q

16
β. (61)

The assignment of numerical value for q determines the next steps. As an application, we study heavy quarkonia
mass spectra with q = 1. The energy spectrum from Eq. (58) is then

En =
β

16− λβ
. (62)

Rewriting Eq. (62) as En = 1
16
β
−λ

and taking the limit n → ∞, which by Eq. (60) means that β → ∞, we arrive at

lim
n→∞

En = − 1

λ
, (63)
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Figure 7: En as function of n for the Eckart potential, with q = 1 and different values of λ in (GeV−1).

as expected. We next discuss the results for different cases. In Figure (7), the energy is plotted as a function of the
quantum number n at different value of λ and for q = 1. The saturation in this system behaves the same as in the
hydrogen system and the harmonic oscillator as well.
As an application, we investigate the saturation effect in heavy quarkonia mass spectra. This system of bound
states is of great important tool in particle physics. Heavy quarkonia systems have a spin-averaged mass related to
the energy via the relation [16]:

Mqq̄ = mq +mq̄ + Enℓ, (64)

where Enℓ is given from Eq. (60), and mq is the mass of the constituent quark. We adopt the values mc = 1.209 GeV
and mb = 4.350 GeV. The free parameters k and p appeared in Eq. (60) were adjusted by fitting simultaneously,
for each value of λ, the mass splittings M2S −M1S and M4S −M3S for (cc̄), and M3S −M1S and M4S −M2S for
(bb̄). These choices were adopted in this work as they were found to generate more accurate values for the mass
spectra. Also, using the idea of the splitting reduces the dependency on the initial choice of the mass of the quarks
mq as can be seen from the Eq (64):

M2S −M1S = E2S − E1S , (65)

and so on. With these setups, we found different values for the parameters k and p for each bound state system
and for each value of the saturation parameter λ. After careful choices for the quark masses mq to obtain the
best fit, we adopted the values mc = 1.697 GeV and mb = 4.568 GeV, and we then generated the spectral mass
values of (cc̄) and (bb̄) for (ℓ = 0) and (n = 0, 1, 2, 3, 4, · · · ) using the Eqs. (62) and (59) at two different values of
λ. The results are summarized in Table 1 and 2 along with the corresponding available experimental values [17].
According to these results, it is found that the choice λ = −0.4 yields results that are in better agreement with
the experimental data than these for the choice λ = −0.2 for the charmonium, while the choice λ = −0.6 yields in
favor of λ = −0.2 for the bottomonium. It is also clear that both bound state systems are in favor of including the
energy-dependence effect as it produces saturated mass spectra and in better agreement with experimental data.

Table 1: The produced spin-averaged mass spectra of cc̄ in GeV at different values of λ in GeV−1. The value
mc = 1.697 GeV is adopted. Experimental data are taken from [17].

nL λ = 0 λ = −0.2 λ = −0.4 Experimental
1S 3.010 2.973 3.097 3.096
2S 3.563 3.526 3.650 3.649
3S 3.841 3.838 4.041 4.040
4S 4.216 4.213 4.416 4.415
5S 4.707 4.622 4.729 —
6S 5.318 5.032 4.972 —
...

...
...

...
...

9S 7.879 6.085 5.403 —
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Table 2: The produced spin-averaged mass spectra of bb̄ in GeV at different values of λ in GeV−1. The value
mb = 4.568 GeV is adopted. Experimental data are taken from [17].

nL λ = 0 λ = −0.3 λ = −0.6 Experimental
1S 8.500 8.878 9.471 9.460
2S 9.151 9.228 10.002 10.023
3S 9.395 9.489 10.383 10.355
4S 9.707 9.784 10.558 10.580
5S 10.112 10.092 10.645 10.579
6S 12.716 10.389 10.694 —
...

...
...

...
...

9S 12.716 11.103 10.753 —

4 Summary and conclusion

In this work, we investigated the saturation effect in the energy or mass spectra of three quantum models with
energy-dependent potentials: the harmonic oscillator, the hydrogen atom, and the heavy quarkonia. These potential
models were generated using the method proposed in [1], which is based on studying various canonical point and
gauge transformations applied to a function, called g(x), multiplied by a given differential equation of known
solutions as special orthogonal functions, which convert it into a Schrödinger-like equation. The first two models
are produced by implementing the method on the confluent hypergeometric differential of the well-known solutions

1F1, while the heavy quarkonia potential model is produced from the hypergeometric differential of the well-known
solutions 2F1. In all models, with energy dependence factor of the form f(En) = (1 + λEn)

q, we have found that
the saturation can be reached for negative values of the parameter λ for some values of q, and that in the limit
of infinite quantum number n → ∞, the energy tends to saturate to the value proportional to −1

λ
. In particular,

the heavy quarkonia mass spectra for both cc̄ and bb̄ were produced at different values of λ with the choice q = 1.
The mass spectra were compared with the available experimental data, and found that the choices λ = −0.4 and
λ = −0.6 produce the mass spectra for charmonium and bottomonium, respectively, with good agreement with the
available experimental data.
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