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We present a theoretical description of charged particles with nonzero projection of the orbital
angular momentum (OAM) in a uniform magnetic field with broken symmetry of the vector poten-
tial. The wave functions we find naturally account for the asymmetry through the continuous gauge
parameter and are a generalization of the commonly used Laguerre-Gauss states. We analyze the
asymmetric Hamiltonian from an algebraic point of view and show how the OAM projection of the
twisted state is modified by symmetry breaking. We provide analytical frameworks for properties
of the asymmetric states, such as energy, RMS size, and Cazimir invariant, and discuss advantages
of the proposed description.

The symmetry group of a system is the fundamen-
tal element that completely defines the properties of the
problem under consideration. Since the Noether’s dis-
covery [1], symmetry arguments have been widely used in
theoretical analyses of physical problems. The main idea
is, the generators of the system’s symmetry group that
are closely related to the conserved properties of this sys-
tem. For example, the projection of the orbital angular
momentum (OAM) along the z-axis remains constant in
systems with cylindrical symmetry. Recent theoretical
[2–6] and experimental studies [7–11] reveal that elec-
trons in free space or in a constant magnetic field can
carry a non-zero OAM projection. Such quantum states
are called twisted electrons. The OAM projection is con-
served only and only if the system is axially symmetric
and, according to the Noether’s theorem ,may vanish
once this symmetry is broken. In free space, the symme-
try can be guaranteed with a high degree of accuracy, but
in a constant magnetic field, the situation is different.

The first solution of this problem was derived by
Landau [12, 13] in a fully asymmetric (Landau) gauge,
widely known as Landau states. At first sight, Landau
states have nothing to do with twisted electrons. How-
ever, recently it has been revealed that once the gauge
is chosen differently [3], Landau states can have a singu-
larity in the phase of their wave function, which signifies
a twisted particle [3, 14]. The latter highlights an inter-
esting but simple fact that the solution of the Landau
problem depends on the gauge. A less trivial fact is
that while most of the observable properties in the Lan-
dau problem are gauge-independent, there are some that
explicitly depend on the gauge. The projection of the
OAM onto the propagation axis is one of them. In the
Landau gauge, a single electron state has a zero OAM
projection, while the equivalent state in the symmetric
gauge can have a well-defined OAM at the same energy
[3]. There is a simple explanation for this difference. In
the symmetric gauge, the problem is axially symmetric,
and hence, the operator of the z-component of the an-
gular momentum L̂z commutes with the Hamiltonian.
In the Landau gauge, however, this symmetry is broken,
and L̂z is no longer a conserved quantity. Although the

∗ s.s.baturin@gmail.com

magnetic field is uniform in all cases, the wave functions
and the probability density differ significantly and pro-
vide information about the degree of symmetry breaking.
Furthermore, the solution of the Landau problem in the
Landau gauge can be continuously transformed to the
solution in the symmetric gauge by means of a unitary
single-parameter map. We describe such a transforma-
tion, present the solution in a general asymmetric gauge,
and study some of its properties.

Throughout the paper, we use relativistic units (ℏ =
c = 1, e < 0).

We start our analysis with a possible source of the
asymmetry in the Landau Hamiltonian and follow the
steps of Ref.[15]. We consider the Biot-Savart law for
the vector potential:

A(r) =

∫
j(r′)

|r − r′|
dV. (1)

Next, we consider a long solenoid and ignore all the ef-
fects originating from the boundaries. This immediately
implies translational symmetry along the z axis and,
consequently, ∂zA(r) = 0. Together with A(x, y, z) =
A(x, y,−z), we get Az = 0. Combined with the assump-
tions above, from Eq.(1), we immediately conclude that
the transverse part of the vector potential is completely
defined by the transverse shape of the solenoid given by
a contour Γ, and Eq.(1) is modified to

A(x, y) = I
∮
Γ

dl

L/2∫
−L/2

dz√
ρ2 + z2

. (2)

Here, I is the surface current density, ρ2 = (x−ξ)2+(y−
η)2, [ξ(x, y); η(x, y)] are the coordinates of the point on
the contour Γ, and dl = (dξ; dη; 0)T . Assuming a long

magnet L≫
√
(x− ξ)2 + (y − η)2, we obtain

L/2∫
−L/2

dz√
ρ2 + z2

≈ 2 lnL− 2 ln ρ. (3)

After integrating along the closed contour, the first term
vanishes.
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Figure 1. Schematic diagram of elliptic solenoid

Finally, we linearize the vector potential near the ori-
gin. Assuming x, y ≪ ξ, η, we get

A(x, y) = −I
∮
dl ln

[
ξ2 + η2

]
+ I

∮
2xξ + 2yη

ξ2 + η2
dl (4)

If the contour Γ has reflection symmetry with respect
to the x axis and the y axis, A reduces to

AT = 2I
(
y

∮
ηdξ

ξ2 + η2
; x

∮
ξdη

ξ2 + η2
; 0

)
. (5)

One can check that for the vector potential given by
Eq.(5), ∇×A = B = (0; 0;B) regardless of the shape of
the contour. However, the integrals that define the am-
plitudes of the Ax and Ay components are generally not
equal. Thus, the following parameterization of the vec-
tor potential is valid for a magnet with a general mirror
symmetry

AT = B (−βy; (1− β)x; 0) , (6)

where B = 4πI.
In the case of an elliptical cross-section, the explicit

form of the vector potential near the center is expressed
by the semi-major and semi-minor axes (see Fig.1) ] [15]:

Ax = − Bya

a+ b
, Ay =

Bxb

a+ b
. (7)

We reiterate that the symmetry of the vector potential
is uniquely defined by the symmetry of the current dis-
tribution.

Next, we analyze the transverse part of the nonrela-
tivistic Schrödinger equation for a massive charged par-
ticle in a magnetic field, which has the form

i∂tψ = Ĥ⊥ψ, Ĥ⊥ =
[p̂⊥ − eA]

2

2m
. (8)

It can be shown that the evolution of the transverse
part of the wave function of a non-relativistic point par-
ticle reduces to Eq.(8) [16]. Moreover, the same type
of equation appears in the Foldy-Wouthuysen represen-
tation under the paraxial approximation after a proper
substitution of t→ z and dropping the spin [17]. We ad-
here to the formulation of the problem given in Eq.(8),
but note that the analysis and results apply directly to
the relativistic case with minor modifications.

Inserting the asymmetric vector potential given by
Eq.(6) into Eq.(8), we get

Ĥ⊥ =
p̂2
⊥

2me
− sign(e)2ω [−βp̂xŷ + (1− β)p̂yx̂]

+ 2meω
2
[
β2ŷ2 + (1− β)2x̂2

]
, (9)

where we have introduced the Larmor frequency:

ω =
|e|B
2me

. (10)

To separate the symmetric and antisymmetric parts of
Ĥ⊥, we make a canonical transformation:

ˆ̃x =
√
2(1− β)x̂ ˆ̃y =

√
2βŷ

ˆ̃px =
p̂x√

2(1− β)
ˆ̃py =

p̂y√
2β

(11)

Then, we rearrange the terms, and the Hamiltonian takes
the form (here, we omit the waves for brevity of nota-
tion):

Ĥ⊥ =

[(
p̂2x
2me

+
p̂2y
2me

)
+
meω

2(x̂2 + ŷ2)

2

]

+ (1− 2β)

[(
p̂2x
2me

−
p̂2y
2me

)
+
meω

2(x̂2 − ŷ2)

2

]
− sign(e)2ω

√
β(1− β)L̂z (12)

For convenience, we introduce the following operators

Ĥs = − 1

2me

(
∂2

∂x2
+

∂2

∂y2

)
+
meω

2(x2 + y2)

2
,

Ĥ1 = − 1

2me

(
∂2

∂x2
− ∂2

∂y2

)
+
meω

2(x2 − y2)

2
,

Ĥ2 = − 1

me

∂2

∂x∂y
+meω

2xy, (13)

Ĥ3 = ωL̂z = −iω
(
x
∂

∂y
− y

∂

∂x

)
.

In the new notations, the Hamiltonian (12) can be
expressed as

Ĥ⊥ = Ĥs + Ĥas, (14)

Ĥas(α) = −sign(e)
[
cos(2α)Ĥ1 + sin(2α)Ĥ3

]
,

where we have introduced a new symmetry parameter
β = sin2 α̃ and α̃ = π

4 + sign(e)
(
π
4 − α

)
.

For the stationary problem, when the Schrödinger
equation Eq.(8) is reduced to[

Ĥs + Ĥas(α)
]
ψ = ϵψ, (15)

Eq.(15) can be solved exactly, and the corresponding so-
lutions generalize the known Hermite-Gauss (HG) and
Laguerre-Gauss (LG) states to the asymmetric Landau
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states (ALS), i.e. states corresponding to an intermedi-
ate symmetry defined by the parameter α in the Hamil-
tonian (14).

The complete set of orthogonal eigenfunctions of Ĥ⊥ is
given by Hermite-Laguerre-Gauss (HLG) functions [18]
and reads (see the Supplementary Information)

ψn,m(x, y, α) = GN
n,m (x̃, ỹ|α) , (16)

x̃ =
x

ρH
, ỹ =

y

ρH
.

with the transverse energy of a state given by

ϵ− = 2ω

(
n+

1

2

)
, sign(e) < 0,

ϵ+ = 2ω

(
m+

1

2

)
, sign(e) > 0. (17)

Above, we have introduced the Landau radius as

ρH =

√
2

meω
. (18)

HLG functions were first discovered in quantum optics
as a special class of solutions to the paraxial wave equa-
tion that are invariant under astigmatic influence. It is
not surprising, though, that the same functions naturally
appear in the Landau problem, as the Schrödinger equa-
tion is very similar to the paraxial wave equation [17, 19].
However, for charged particles, the astigmatism can stem
not only from the asymmetry of the magnetic field, but
also from general symmetry breaking of the problem,
which can be manifested in the asymmetry of the vector
potential. For instance (see Eq.(7)), the ellipticity of a
solenoid is directly connected to the corresponding value
of the α parameter.

An HLG function has two natural limiting cases α = 0
and α = π/4. The former corresponds to the Landau
gauge and completely asymmetric HG eigenstates given
by Hermite polynomials with zero projection of the OAM
on the z axis.

ψn,m(x, y, 0) = (19)

(−i)me
− x2+y2

ρ2
H Hn

(√
2 x
ρH

)
Hm

(√
2 y
ρH

)
ρH

√
π2n+m−1n!m!

.

Here, Hn(x) is a Hermite polynomial of order n.
The opposite case of α = π/4 corresponds to the sym-

metric gauge and eigenfunctions commonly known as
twisted states, or the LG states with a defined projection
of the OAM. For n ≤ m, we have (the case of n ≥ m
looks similar except for the reversed sign of the OAM)

ψn,m (x, y, π/4) =
(−1)n2mn!

ρH
√
π2n+m−1n!m!

(√
x2 + y2

ρH

)|m−n|

L|m−n|
n

(
2
x2 + y2

ρ2H

)
e
− x2+y2

ρ2
H

−i(m−n) arctan(y/x)
, (20)

where L|m−n|
n (x) is a generalized Laguerre polynomial.

A detailed description of HLG functions and their

Figure 2. Probability density for asymmetric Landau states
for different values of the symmetry parameter α. Top row
corresponds to nr = 0 and l = 3, bottom row to nr = 2 and
l = 2.

properties can be found in numerous publications by
Abramochkin and coauthors [18, 20, 21]. It is conve-
nient to introduce another set of quantum numbers: the
radial quantum number nr and the eigenvalue of the z-
projection of the OAM l, which usually characterizes the
twisted state:

l = n−m,

nr =
n+m− |l|

2
. (21)

With Eq.(21) and Eq.(20), we obtain the familiar form
of an LG state in cylindrical coordinates

ψnr,l (r, ϕ, π/4) ∝
(
r

ρH

)|l|

L|l|
nr

(
2r2

ρ2H

)
e
− r2

ρ2
H

+ilϕ
. (22)

To illustrate the dependence of HLG modes (or ALS)
on the normalized transverse coordinates, we plot their
probability density distributions for different values of α
and fixed values of quantum numbers nr and l in Fig.2;
there, we can see that the ALS are highly sensitive to
the symmetry. From Fig.2, we can also conclude that
the asymmetry visually reveals the value of the OAM
projection.

To proceed, we compare various parameters of an ALS
with the corresponding values of a common twisted LG
state. The energy of an ALS is obtained from Eq.(17)
with Eq.(21) as follows

ϵ = ω [2nr + |l| − sign(e)l + 1] (23)

which is exactly the same as for an LG state.
We can evaluate different mean values using the recur-

rence relation for the functions GN
n,m(x/ρH , y/ρH |α) and

their orthogonality property. The mean square radius of
an ALS in terms of quantum numbers (21) is

⟨r2⟩ =
∫∫
R2

(x2 + y2)|GN
n,m(x/ρH , y/ρH |α)|2dxdy,

⟨r2⟩ = ρ2H
2

(2nr + |l|+ 1), (24)



4

which, once again, coincides with the same average cal-
culated for the LG states.

Obviously, the L̂z operator does not commute
[L̂z, Ĥ⊥] ̸= 0 with the Hamiltonian (14); consequently,

ALS are not eigenfunctions of L̂z, except for a fully sym-
metric case of α = π/4. However, the mean value of L̂z

for the ALS states has a simple form

⟨L̂z⟩ = −i
∫∫
R2

GN
n,m(x, y|α)x∂yGN

n,m(x, y|α)dxdy+

i

∫∫
R2

GN
n,m(x, y|α)y∂xGN

n,m(x, y|α)dxdy,

⟨L̂z⟩ = l sin 2α. (25)

As expected, the OAM projection on the z axis vanishes
in the fully asymmetric case of α = 0. In the limiting
case, Ĥas(π/4) = −sign(e)ωL̂z and [Ĥ⊥, L̂z] = 0. Thus,
it seems reasonable to assume that when α ̸= π/4, the

second integral of motion is equal to just Ĥas(α). It is
easy to check (see the Supplementary Information) that,
indeed,

∀α [Ĥ⊥, Ĥas(α)] = 0. (26)

Furthermore, using the properties of the
GN
n,m(x/ρH , y/ρH |α) function once again, we get

Ĥas(α)ψn,m(x, y, α) = −sign(e)ωlψn,m(x, y, α). (27)

Strikingly, we see that the OAM projection of an LG
state in the asymmetric case is actually an eigenvalue
of a more complex operator, which is conserved under
symmetry breaking.

To gain further insight, we first note the following
equivalence

Ĥ2ψ(x, y, α) = −iω∂αψ(x, y, α). (28)

and recall that Ĥ3 ∝ −i∂φ. Note that both operators
are generators of rotations, since φ and α are periodic.
Direct evaluation of the commutators[

Ĥi, Ĥj

]
= 2iωεijkĤk, i, j, k ∈ {1, 2, 3}, (29)

shows the exact equivalence of the operator algebra Ĥi

with the SO(3) algebra of pseudo angular momentum

operators L̂i = Ĥi/2ω. Here, εijk is a totally antisym-
metric Levi-Civita tensor.

The symmetric part of the Hamiltonian commutes
with all three pseudo angular momentum operators[

Ĥs, Ĥi

]
= 0, i ∈ {1, 2, 3}. (30)

and reminds of a general Schwinger model [22] of the two-
dimensional harmonic oscillator, where the full Hamilto-
nian consists of the isotropic part (in the present case,

Ĥs) and the sum of the three coupling pseudo angular

momentum operators ∝ Ĥ1,2,3.

Figure 3. Orbital Poincaré spheres of asymmetric Landau
states.

Indeed, under a clockwise rotation R̂(−φ) of the XY -
plane Hamiltonian, Eq.(14) is transformed as follows

R̂ĤsR̂
−1 = Ĥs, (31)

R̂ĤasR̂
−1 = −sign(e)2ωnL̂, (32)

where

nT = (cos 2φ cos 2α, sin 2φ cos 2α, sin 2α) (33)

is a unit vector in the space of three orthogonal
axis that correspond to the operators L̂1,2,3; (L̂)T ≡
1
2ω

(
Ĥ1, Ĥ2, Ĥ3

)
is the vector of pseudo angular momen-

tum operator (see Fig.3).
Thus, the most general Hamiltonian for a twisted

asymmetric state has the form

Ĥ = Ĥs − sign(e)2ωnL̂, (34)

and the generalized ALS ψsch, which is an eigenstate of
the Schwinger Hamiltonian, Eq.(34), can be expressed
as a simple rotation of the ALS ψ and has the following
form:

ψsch
n,m(x, y, α) = R̂ψn,m(x, y, α) = (35)

ψn,m(x cosφ+ y sinφ,−x sinφ+ y cosφ, α).

We recognize that the unit vector n has a meaning of
the spin axis for the ALS on the orbital Poincaré sphere
[23–25]. The spin axis can either be directly observed in
the case of LG states as the z-projection of the OAM,
or completely hidden from observation, as in the case of
HG states. The latter can also be seen from the mean
value of L̂z given by Eq.(25).

To proceed further, we note that under a similarity
transformation R̂(−φ), Eq.(27) is transformed to

nL̂ψsch
n,m(x, y, α) = mlψ

sch
n,m(x, y, α), (36)

and we can see that ψsch
n,m(x, y, α) is an eigenfunction

of the operator of the projection of the pseudo angular
momentum onto the spin axis with an eigenvalue equal
to half the OAM values:

ml =
l

2
. (37)
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We note that the coefficient 1/2 comes from the charge
of the algebra given by Eq.(58) and indicates that the

pseudo angular momentum operators L̂i are operators
of the three orthogonal projections of the pseudo spin.

Next, we recall that the SO(3) algebra has a Casimir
invariant, which can be calculated as the square of the
modulus of the pseudo angular momentum vector

K̂ = |L̂|2 =
1

4ω2

∑
i

Ĥ2
i . (38)

The Casimir operator commutes with the Hamiltonian
Eq.(34), so the functions ψsch

n,m(x, y, α) are eigenfunctions

of the operator K̂. Using the definitions of Eq.(51), we
derive the explicit form of the Casimir operator and get
(see the Supplementary Information)

K̂ =
Ĥ2

s

4ω2
− 1

4
. (39)

Note that eigenvalues of K̂ can be found by applying
this operator to any equivalent set of functions that are
eigenvectors of Ĥs. The simplest choice is the set of HG
states corresponding to a set of ψn,m(x, y, 0). Evaluating

the action of K̂ on ψn,m(x, y, 0), we have

K̂ψn,m(x, y, 0) = (40)

1

4

[
(n+m+ 1)2 − 1

]
ψn,m(x, y, 0).

On the other hand, the eigenvalue of the Casimir oper-
ator can be expressed through the pseudo total angular
momentum quantum number j and is equal to j(j + 1).
With Eq.(40), we obtain

j =
n+m

2
, (41)

or, if expressed through the quantum numbers of the
twisted state introduced in Eq.(21),

j = nr +
|l|
2
. (42)

Consequently, the eigenvalue of the Casimir operator can
be expressed as

j(j + 1) =

(
nr +

|l|
2

)(
nr +

|l|
2

+ 1

)
. (43)

As we have j given by Eq.(42) and ml given by
Eq.(37), we can express generalized ALS through HG

states with the help of Wigner functions Dj
m′

l,ml
[26] as

follows

ψsch
j+ml,j−ml

(x, y, α) = (44)

j∑
m′

l=−j

Dj
m′

l,ml
(A,B,C)ψj+m′

l,j−m′
l
(x, y, 0).

Here, A,B,C are the Euler angles defined by the Hamil-
tonian through the following relations [20]:

e(−iA+C
2 ) cos

B

2
= − sinφ cosα+ i cosφ sinα, (45)

e(i
A−C

2 ) sin
B

2
= sinφ sinα+ i cosφ cosα.

For example, in the case of an HLG state, φ = 0, A =
C = 0, B = π/2−2α, and vector nT = (cos 2α, 0, sin 2α).
Substituting these expressions into Eq.(35) and using the
general Hamiltonian Eq.(34), we recover the definition
of the function Gn,m(x, y|α) and the initial Hamiltonian
Eq.(14).

We note that the motion of an ALS state along the
orbital Poincare sphere is related not only to the change
in α and φ, but also to the phase.
According to the results of [23] for a similar optical

problem, ALS states should have a non-trivial Berry
phase [27], which is proportional to the OAM projection
of the ALS.

ΦB = i

∮
⟨ψsch

n,m|∇ϕ,θ|ψsch
n,m⟩dΓ = − l

2
Ω. (46)

Above, Ω is the solid angle enclosed by the path on the
orbital Poincaré sphere, ϕ = 2φ, and θ = π/2−2α. This
fact reveals the topological nature of the OAM [24, 28],
universal for both electrons and photons.

In conclusion, we should recall that the Hamiltonian
given by Eq.(12) is written in normalized coordinates.
Consequently, to return to the real coordinates, the in-
verse canonical transformation is required. This results
in a stretch of the corresponding probability density, but
preserves the topology and structure of the ALS.

The results reported in the present paper are directly
related to the transformation of modes in quantum optics
with mode converters [29, 30], but here, the underlying
physics is different. In optics, the asymmetry comes from
the astigmatism of the optical focusing channel and is re-
lated to the symmetry of the lenses, whereas in the Lan-
dau problem considered here, the symmetry is defined
by the symmetry of the vector potential. Consequently,
it is the structure of the vector potential that reveals it-
self in the visual pattern of the electron probability den-
sity. Moreover, if the symmetry of the vector potential
is completely broken, then the OAM disappears, but it
can always be recovered once the symmetry is restored.

The generalized ALS given by Eq.(35) and Eq.(44)
is the most general gauge-dependent stationary solution
that explicitly accounts for the symmetry of the Lan-
dau problem and continuously bridges two extreme cases
of the Landau gauge and the symmetric gauge. In full
analogy to the common Landau states in the symmetric
gauge, which give rise to the class of nonstationary Lan-
dau states [31], generalized ALS can be extended to a
class of non-stationary solutions once combined with the
Ermakov mapping [32] and ideas of the quantum Arnold
transformation [33].
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Supplementary materials for the
”Twisted charged particles in the uniform magnetic field with broken symmetry”.

I. DEFINITION OF THE HLG FUNCTIONS

By the definition [18, 20] HLG function Gn,m(x, y|α) reads

Gn,m(x, y|α) = e−x2−y2
n+m∑
k=0

ik cosn−k(α) sinm−k(α)P
(n−k,m−k)
k (− cos 2α)Hn+m−k(

√
2x)Hk(

√
2y). (47)

Here H - is the Hermite polynomial and P is the Jacobi polynomial. Normalization factor (square of the L2 norm)
for the Gn,m(x, y|α) reads

||Gn,m(x, y|α)||2 = π2n+m−1n!m!. (48)

Consequently, normalized HLG functions GN
n,m(x, y|α) are introduced as

GN
n,m(x, y|α) = Gn,m(x, y|α)√

π2n+m−1n!m!
. (49)

Normalised HLG functions can be defined through the Wigner Dj
m,m′ -functions [26]

GN
j+m,j−m(x, y|α) =

j∑
m′=−j

Dj
m′,m(0,

π

2
− 2α, 0)

(−i)me
− x2+y2

ρ2
H Hj+m′

(√
2 x
ρH

)
Hj−m′

(√
2 y
ρH

)
ρH
√
π22j−1(j +m′)!(j −m′)!

. (50)

II. EVALUATION OF THE COMMUTATORS

In the main text the following operators were introduced

Ĥs = − 1

2me

(
∂2

∂x2
+

∂2

∂y2

)
+
meω

2(x2 + y2)

2
,

Ĥ1 = − 1

2me

(
∂2

∂x2
− ∂2

∂y2

)
+
meω

2(x2 − y2)

2
,

Ĥ2 = − 1

me

∂2

∂x∂y
+meω

2xy, (51)

Ĥ3 = ωL̂z = −iω
(
x
∂

∂y
− y

∂

∂x

)
.

First, we evaluate commutators of the type
[
Ĥs, Ĥi

]
, with i ∈ {1, 2, 3}:

[
Ĥs, Ĥ1

]
= −ω

2

4

(
4x

∂

∂x
+ 2− 4y

∂

∂y
− 2

)
+
ω2

4

(
4x

∂

∂x
+ 2− 4y

∂

∂y
− 2

)
= 0, (52)

[
Ĥs, Ĥ2

]
= −ω

2

2

(
2y

∂

∂x
+ 2x

∂

∂y

)
+
ω2

2

(
2x

∂

∂y
+ 2y

∂

∂x

)
= 0 (53)

[
Ĥs, Ĥ3

]
=

iω

2me

(
2
∂2

∂x∂y
− 2

∂2

∂x∂y

)
− iω

meω
2

2
(−2xy + 2xy) = 0. (54)

Next, we evaluate commutators of the type
[
Ĥi, Ĥj

]
, with i, j ∈ {1, 2, 3}

[
Ĥ1, Ĥ2

]
=

iω

2me

(
2
∂2

∂x∂y
+ 2

∂2

∂x∂y

)
− iω

meω
2

2
(2xy + 2xy) = −2iωĤ2, (55)
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[
Ĥ3, Ĥ2

]
=

iω

me

(
∂2

∂x2
− ∂2

∂y2

)
− iωmeω

2
(
x2 − y2

)
= −2iωĤ1, (56)

[
Ĥ2, Ĥ1

]
= −ω

2

2

(
2x

∂

∂y
− 2y

∂

∂x

)
+
ω2

2

(
2y

∂

∂x
− 2x

∂

∂y

)
= −2iωĤ3. (57)

Combining Eq.(55), Eq.(56) and Eq.(57) we get[
Ĥi, Ĥj

]
= 2iωεijkĤk, i, j, k ∈ {1, 2, 3}. (58)

Where εijk is the totally antisymmetric Levi-Civita tensor.

III. CASIMIR INVARIANT

By the definition the Casimir invariant can be calculated as

K̂ = |L̂|2 =
1

4ω2

∑
i

Ĥ2
i . (59)

Below we evaluate explicitly Ĥ2
i :

Ĥ2
1 =

1

4m2
e

 ∂4

∂x4
− 2

∂4

∂x2∂y2
+

∂4

∂y4

+
m2

eω
4

4

(
x4 − 2x2y2 + y4

)
−

− ω2

4

(
2x2

∂2

∂x2
+ 4x

∂

∂x
+ 2 + 2y2

∂2

∂y2
+ 4y

∂

∂y
+ 2 − 2x2

∂2

∂y2
− 2y2

∂2

∂x2

)
, (60)

Ĥ2
2 =

1

m2
e

∂4

∂x2∂y2
+ m2

eω
4x2y2 − ω2

2xy
∂2

∂x∂y
+ y

∂

∂y
+ x

∂

∂x
::::::::::::::::::::

+ 1

 , (61)

Ĥ2
3 = − ω2

x2 ∂2
∂y2

+ y2
∂2

∂x2
− x

∂

∂x
− y

∂

∂y
− 2xy

∂2

∂x∂y
::::::::::::::::::::::

 . (62)

Finally, we add everything up and arrive at the final expression for the Casimir invariant

K̂ =
1

4ω2

[
1

4m2
e

(
∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4

)
+
m2

eω
4

4

(
x4 + 2x2y2 + y4

)
−

− ω2

4

(
2x2

∂2

∂x2
+ 4x

∂

∂x
+ 2 + 2y2

∂2

∂y2
+ 4y

∂

∂y
+ 2 + 2x2

∂2

∂y2
+ 2y2

∂2

∂x2

)
− ω2

]
=

=
1

4ω2

[
− 1

2me

(
∂2

∂x2
+

∂2

∂y2

)
+
meω

2(x2 + y2)

2

]2
− 1

4
=
Ĥ2

s

4ω2
− 1

4
. (63)
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