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QUANTUM TRANSITION PROBABILITIES

STAN GUDDER

Abstract. Transition probabilities are an important and useful tool in

quantum mechanics. However, in their present form, they are limited in

scope and only apply to pure quantum states. In this article we extend

their applicability to mixed states and to transitions between quantum

effects. We also present their dependence on a measured operation or

instrument. We begin by defining our concepts on a general quantum

effect algebra. These concepts are illustrated using Holevo operations

and instruments. We then present transition probabilities in the special

case of the Hilbert space formulation of quantum mechanics. We show

that for pure states and particular types of operations the transition

probabilities reduce to their usual form. We give examples in terms of

Lüders operations and instruments.

1. Introduction

In the usual Hilbert-space formulation of quantum mechanics, an impor-

tant and useful role is played by transition probabilities [6,10]. For example,

suppose a quantum system is described by a Hilbert space H and the sys-

tem is in a pure state given by a unit vector ψ ∈ H. We now measure

the energy of the system which is described by a self-adjoint operator A on

H. The energy values are given by eigenvalues λi of A with corresponding

unit eigenvectors φi so Aφi = λiφi, i = 1, 2, . . . . According to the axioms

of quantum mechanics, the probability that the energy of the system is λi
becomes P (ψ, φi) = |〈ψ, φi〉|

2 [6, 10]. We call P (ψ, φi) the transition proba-

bility of ψ to φi. This definition is appropriate because {φi : i = 1, 2, . . .} is

an orthonormal basis for H so we have
∑
i
|〈ψ, φi〉|

2 = 1. Also, another ax-

iom of quantum mechanics says that if the energy value observed is λi then

the state ψ updates to the state φi [6,10]. Thus, P (ψ, φi) is the probability

that this update occurs. In general, if ψ, φ ∈ H specify two states then call-

ing P (ψ, φ) = |〈ψ, φ〉|2 the transition probability of ψ to φ does not stress

the fact that this transition is caused by a measurement of an observable

A. Also, what about mixed states described by density operators on H?

Moreover, what about more general measurements such as operations and

instruments [1, 2, 8]?
1
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In Section 2, we study probabilistic models that generalize quantum me-

chanics. We begin by introducing an effect algebra E [1,2]. An effect a ∈ E

is a yes-no (true-false) experiment that either occurs (yes) or does not occur

(no) when measured. For a, b ∈ E there is a partial operation a ⊕ b that

describes a statistical sum of a, b (when it is defined). A substate on E is

function s : E → [0, 1] ⊆ R that satisfies s(a⊕ b) = s(a)+ s(b) when a⊕ b is

defined. There is a special effect 1 ∈ E that is always true and a substate

s is a state if s(1) = 1. We denote the set of states on E by S(E) and the

set of substates by Sub(E). If s ∈ S(E), then s(a) is the probability that a

occurs when the system is in state s. A convex map I : Sub(E) → Sub(E)

is called an operation [1,2]. An operation corresponds to an apparatus that

can be employed to measure an effect and we denote the set of operations

by O(E). If s ∈ S(E), I ∈ O(E) with I(s) 6= 0, a, b ∈ E we define the

transition probability of a to b relative to s,I by

Ps,I(a, b) =
s(a)

I(s)(1)
I(s)(b)

If I ∈ O(E), s1, s2 ∈ S(E) we define the transition probability of s1 to s2
relative to I by

PI(s1, s2) = I(s1)(1)I (I(s2)(1))

Section 2 derives properties of Ps,I(a, b) and PI(s1, s2). We also define

repeatable operations and discuss their properties. Moreover, Section 2

discusses generalizations of effects and operations called observables and

instruments, respectively. An observable is an effect-valued measure Ax ∈ E

where Ax is the effect that occurs when the observable has the outcome x

upon being measure [3, 4]. An instrument is an operation-valued measure

Ix ∈ O(E) where Ix is the operation that occurs when the instrument has

the outcome x upon being measured [3–5]. We then have the transition

probabilities PIx(s1, s2). If Ax, By are observables, we have the transition

probabilities Ps,Iz(Ax, By).

Section 2 ends with a discussion of Holevo operations and instruments

which are used to illustrate the previously introduced concepts [7]. If α ∈

S(E), a ∈ E, a pure Holevo operation has the form H(a,α)(s) = s(a)α. We

also define mixed Holevo operations and Holevo instruments in a natural

way [7]. Transition probabilities relative to these operations and instru-

ments are computed. We also find updated states after these operations

and instruments are measured.

Section 3 specializes the theory of effect algebras to the traditional Hilbert

space formulation of quantum mechanics. In this formulation, effects are

described by operators A satisfying 0 ≤ A ≤ I and states are described

by effects ρ with trace tr (ρ) = 1. We call ρ a density operator and the
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corresponding state satisfies s(A) = tr (ρA). In this formalism an opera-

tion is a completely positive trace nonincreasing linear map from the set

of density operators to the set of positive operators on the Hilbert space

H [1, 2, 6, 10]. We point out that every operation has a Kraus decom-

position I(ρ) =
∑
KiρK

∗
i where Ki are linear operators on H satisfying∑

K∗
iKi ≤ I. In particular, we study Lüders operations which have the

form I(ρ) = A1/2ρA1/2 where A is an effect [9]. Lüders instruments are de-

fined in the natural way. We then compute transition probabilities relative

to these operations and instruments.

2. Basic Concepts and Definitions

An effect algebra E = (E, 0, 1,⊕) [1, 3, 4, 6] is a set of effects E with two

special elements 0, 1 ∈ E and a partial binary operation ⊕ satisfying the

following conditions:

(EA1) if a⊕ b is defined, then b⊕ a is defined and b⊕ a = a⊕ b,

(EA2) if a⊕ (b⊕ c) is defined, then (a⊕ b)⊕ c is defined and

(a⊕ b)⊕ c = a⊕ (b⊕ c)

(EA3) for every a ∈ E, there exists a unique effect a′ ∈ E such that

a⊕ a′ = 1,

(EA4) if a⊕ 1 is defined, then a = 0.

An effect corresponds to a yes-no experiment that either occurs or does

not occur when it is measured. The effect 0 never occurs and the effect 1

always occurs when measured. The complement a′ of a occurs if and only if

a does not occur. The sum a ⊕ b corresponds to a statistical sum of a and

b when it is defined. A substate on E is a function s : E → [0, 1] ⊆ R that

satisfies s(a⊕ b) = s(a) + s(b) whenever a⊕ b is defined. A substate s that

satisfies s(1) = 1 is called a state. We denote the set of substates by Sub(E)

and the set of states by S(E). A state s describes the initial condition of a

physical system and s(a) is the probability that a occurs when the system

is in the state s. If s ∈ S(E), λ ∈ [0, 1], then λs defined by (λs)(a) = λs(a)

is a substate. Conversely, if s ∈ Sub(E) and s 6= 0, then s̃(a) = s(a)/s(1) is

a state.

A function J : Sub(E) → Sub(E) that satisfies J

(
n∑

i=1
λisi

)
=

n∑
i=1

λiJ(s)

when
n∑

i=1
λi ≤ 1 is called a convex function or an operation [1, 2, 8]. We

denote the set of operations on E by O(E) and it follows that if J ∈ O(E)

then J(λs) = λJ(s) for all λ ∈ [0, 1], s ∈ Sub(E). If J ∈ O(E) satisfies

J(s) ∈ S(E) for all s ∈ S(E), then J is a channel [1, 6, 10]. We say that

J ∈ O(E) measures a ∈ E if s(a) = J(s)(1) for all s ∈ S(E). We say that
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S(E) is separating if s(a) = s(b) for all s ∈ S(E) implies a = b. If S(E) is

separating, then J measures the unique effect Ĵ satisfying s(Ĵ ) = J(s)(1) for

all s ∈ S(E). We then consider J as an apparatus that measures the effect

Ĵ . As with effects, an operation is considered to be a yes-no measurement.

If s ∈ S(E), then J(s)(1) is the probability J occurs when the system is in

the state s. If J(s) 6= 0, we call J(s)∼ = J(s)/J(s)(1) ∈ S(E) the updated

state after J is measured where 0 ∈ Sub(E) means 0(a) = 0 for all a ∈ E.

If s ∈ S(E), J ∈ O(E) with J(s) 6= 0 and a, b ∈ E, the transition proba-

bility of a then b relative to s, J is

Ps,J(a, b) =
s(a)

J(s)(1)
J(s)(b) = s(a)J(s)∼(b)

Thus, Ps,J(a, b) is the probability that a occurs in the state s times the

probability that b occurs in the updated state J(s)∼ after J is measured.

If Î = a, then Ps,I(a, b) = I(s)(b). Notice that Ps,J(a, •) ∈ Sub(E) and

Ps,J(•, b) ∈ Sub(E). Moreover, Ps,J(a, 1) = s(a) for all a ∈ E, Ps,J(1, b) =

I(s)∼(b) for all b ∈ E and Ps,J(1, 1) = 1.

If f, g : S → S are functions, their composition f ◦ g : S → S is f ◦ g(t) =

f (g(t)). We say that J ∈ O(E) is repeatable if J ◦ J = J . If J ∈ O(E),

s1, s2 ∈ S(E), the transition probability of s1 to s2 relative to J is

PJ(s1, s2) = J(s1)(1)J ◦ J(s2)(1) = J [J(s1)(1)J(s2)] (1)

Thus, PJ (s1, s2) is the probability J occurs when the system is in state s1
times the probability the composition J ◦ J occurs when the system is in

state s2. We see that if J is repeatable, then

PJ(s1, s2) = J(s1)(1)J(s2)(1)

in which case PJ(s1, s2) = PJ(s2, s1) which does not happen in general.

Moreover, if J also measures a, then PJ(s1, s2) = s1(a)s2(a). The follow-

ing lemma shows the relationship between these two types of transition

probabilities. We denote the product of two real-valued functions f, g by

f • g(x) = f(x)g(x).

Lemma 2.1. If S(E) is separating, then PJ(s1, s2) = Ps1,J • PJ(s2),J(Ĵ , 1).

Proof. Since

s2
[
(J ◦ J)∧

]
= (J ◦ J)(s2)(1) = J [J(s2)] (1) = PJ(s2),J(Ĵ , 1)

we obtain

PJ(s1, s2) = s1(Ĵ )s2
[
(J ◦ J)∧

]
= Ps1,J(Ĵ , 1)PJ(s2),J(Ĵ , 1)

= Ps1,J • PJ(s2),J(Ĵ , 1) �
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An observable on E is a finite set of effects A = {Ax : x ∈ ΩA}, Ax ∈ E,

such that
∑

x∈ΩA

Ax = 1. We call ΩA the outcome space of A and Ax is the

effect that occurs when A has outcome x ∈ ΩA. For ∆ ⊆ ΩA we define

the effect-valued measure A(∆) =
∑
x∈∆

Ax [1, 6]. We see that A(ΩA) = 1

and A(∆1 ∪∆2) = A(∆1) + A(∆2) when ∆1 ∩∆2 = ∅. We denote the set

of observables on E by Ob (E). If s ∈ S(E), A ∈ Ob (E), the distribution

of A in the state s is the probability measure ΦA
s (∆) =

∑
x∈∆

s(Ax) on ΩA.

Let A,B ∈ Ob (E), s ∈ S(E), J ∈ O(E) with J(s) 6= 0 and consider the

transition probability

Pxy = Ps,J(Ax, By) =
s(Ax)

J(s)(1)
J(s)(By)

For ∆ ⊆ ΩA ×ΩB we define P (∆) =
∑

{Pxy : (x, y) ∈ ∆}.

Lemma 2.2. P is a probability measure on ΩA ×∆B with marginals

P 1(∆1) = P (∆1 × ΩB) = s [A(∆1)] = ΦA
s (∆1) where ∆1 ⊆ ΩA

P 2(∆2) = P (ΩA ×∆2) = J(s)∼ [B(∆2)] = ΦB
J(s)∼(∆2) where ∆2 ⊆ ΩB

Proof. We have that

P (ΩA × ΩB) =
∑

{Pxy : (x, y) ∈ ΩA × ΩB}

=
1

J(s)(1)

∑
{s(Ax)J(s)(By) : (x, y) ∈ ΩA × ΩB}

=
1

J(s)(1)

∑

x∈ΩA

s(Ax)
∑

y∈ΩB

J(s)(By) =
1

J(s)(1)
J(s)(1) = 1

If ∆1,∆2 ⊆ ΩA × ΩB with ∆1 ∩∆2 = ∅, then

P (∆1 ∪∆2) =
∑

{Pxy : (x, y) ∈ ∆1 ∪∆2}

=
∑

{Pxy : (x, y) ∈ ∆1}+
∑

{Pxy : (x, y) ∈ ∆2}

= P (∆1) + P (∆2)

Hence, P is a probability measure on ΩA×ΩB. The marginals of P become

P 1(∆1) = P (∆1×ΩB) =
∑

(x,y)∈∆1×ΩB

s(Ax)

J(s)(1)
J(s)(By) = s [A(∆1)] = ΦA

s (∆1)

where ∆1 ⊆ ΩA and

P 2(∆2) = P (ΩA ×∆2) =
∑

(x,y)∈ΩA×∆2

s(Ax)

J(s)(1)
J(s)(By)

= J(s)∼ [B(∆2)] = ΦB
J(s)∼(∆2)

where ∆2 ⊆ ΩB. �
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An instrument I on E is a finite set of operations I = {Ix : x ∈ ΩI},

Ix ∈ O(E) such that
∑

x∈ΩI

Ix is a channel [1,2,5,6]. We call ΩI the outcome

space of I. If s ∈ S(E), then Ix(s)(1) is the probability that the outcome

x occurs when I is measured and the system is in state s. Moreover, we

call ΦI
s (∆) =

∑
x∈∆

Ix(s)(1) the distribution of I in the state s. Since I =
∑

x∈ΩI
Ix is a channel we have

ΦI
s (ΩI) =

∑

x∈ΩI

Ix(s)(1) =


∑

x∈ΩI

Ix(s)


 (1) = 1

As in Lemma 2.2, if ∆1,∆2 ⊆ ΩI and ∆1 ∩∆2 = ∅, then

ΦI
s (∆1 ∪∆2) = ΦI

s (∆1) + ΦI
s (∆2)

so ΦI
s is a probability measure on ΩI . We denote the set of instruments on

E by In (E). If I ∈ In (E), we say that I measures an observable A ∈ Ob (E)

with ΩA = ΩI if Ix(s)(1) = s(Ax) for all s ∈ S(E) x ∈ ΩI . If E has a

separating set of states, A is unique and we write A = Î.

If I ∈ In (E) and A,B ∈ Ob (E) we obtain the transition probability

Ps,Iz(Ax, By) =
s(Ax)

Iz(s)(1)
Iz(s)(By)

Multiplying by Iz(s)(1), we have the function on ΩI × ΩA × ΩB given by

Qs,Iz(Ax, By) = I(s)(1)Ps,Iz(Ax, By) = s(Ax)Ix(s)(By)

Since
∑

{Qs,Iz(AxBy) : (z, x, y) ∈ ΩI × ΩA × ΩB} = s(1)I(s)(1) = 1

we conclude that Q determines a probability measure on ΩI × ΩA × ΩB.

The marginals of Q become

Q2(x) = s(Ax)
∑

{Iz(s)(By) : (z, y) ∈ ΩI × ΩB}

= s(Ax)I(s)(1) = s(Ax)

so Q2(∆) = ΦA
s (∆), ∆ ⊆ ΩA,

Q3(y) =
∑

{s(Ax)Iz(s)(By) : (z, x) ∈ ΩI × ΩA}

= I(s)(By)

so Q3(∆) = ΦB
I(s)

(∆), ∆ ⊆ ΩB,

Q1(z) =
∑

{s(Ax)Iz(s)(By) : (x, y) ∈ ΩA × ΩB}

= Iz(s)(1)
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so Q1(∆) = ΦI
s (∆), ∆ ⊆ ΩI . We conclude that Q1, Q2, Q3 give the

distributions of I in the state s, A in the state s and B in the state I(s).

If I ∈ In (E), we define the transition probability from s1 to s2 relative to

I and (x, y) ∈ ΩI × ΩI by

(PI)(x,y)(s1, s2) = Ix(s1)(1)Iy
(
I(s2)

)
(1)

We see that PI is a probability measure on ΩI × ΩI because
∑

x,y

(PI)(x,y)(s1, s2) = I(s1)(1)I
(
I(s2)

)
(1) = 1

The marginals of PI become
∑

y∈ΩI

(PI)(x,y)(s1, s2) = Ix(s1)(1)

which is the probability of outcome x when I is measured in the state s1∑

x∈ΩI

(PI)(x,y)(s1, s2) = IyI(s2)(1)

which is the probability of outcome y when I is measured in the state I(s2).

We now illustrate the previous theory with a particular type of operation

and instrument. If α ∈ S(E), a ∈ E, we call H(a,α) ∈ O(E) defined by

H(a,α)(s) = s(a)α a pure Holevo operation [7]. Since
[
H(a,α)(s)

]
(1) = s(a)

for all s ∈ S(E) we see that H(a,α) measures a. If A ∈ Ob (E) and αx ∈ S(E)

for x ∈ ΩA we call

H(A,{α})(s) =
∑

x∈ΩA

s(Ax)αx

a mixed Holevo operation [7]. For s ∈ S(E) we have

∑

x∈ΩA

s(Ax) = s


∑

x∈ΩA

Ax


 = s(1) = 1

so H(A,{α}) is a channel. We also call

H(A,{α})
x (s) = s(Ax)αx

a Holevo instrument [7]. Notice that H
(A,{α})
x is an instrument because

∑

x∈ΩA

[
H(A,{α})

x (s)
]
(1) =

∑

x∈ΩA

s(Ax) = 1

Also, H
(A,{α})
x measures A because

[
H

(A,{α})
x (s)

]
(1) = s(Ax) for all s ∈ S(E)

and x ∈ ΩA.

For a pure Holevo operation H(a,α) and b, c ∈ E, if s(a) 6= 0 we have

Ps,H(a,α)(b, c) =
s(b)[

H(a,α)(s)
]
(1)

[
H(a,α)(s)

]
(c) =

s(b)

s(a)
s(a)α(c) = s(b)α(c)
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We see that Ps,H(a,α) is independent of a if s(a) 6= 0. For a mixed Holevo

operation we have
[
H(A,{α})(s)

]
(c) =

∑

x∈ΩA

s(Ax)αx(c)

so that

Ps,H(A,{α})(b, c) = s(b)
∑

x∈ΩA

s(Ax)αx(c)

The state transition probability becomes

PH(a,α)(s1, s2) = H(a,α)(s1)(1)H
(a,α)

[
H(a,α)(s2)

]
(1)

= s1(a)H
(a,α) [s2(a)α] (1) = s1(a)s2(a)

[
H(a,α)(α)

]
(1)

= s1(a)s2(a)α(a)

Since a mixed Holevo operation is a channel, we have PH(A,{α})(s1, s2) = 1

for all s1, s2 ∈ S(E). For Holevo instruments we have

P
s,H

(A,{α})
x

(b, c) =
s(b)[

H
(A,{α})
x (s)

]
(1)

[
H(A,{α})

x (s)
]
(c) =

s(b)

s(Ax)
s(Ax)αx(c)

= s(b)αx(c)

and

P
H

(A,{x})
x

(s1, s2) = H(A,{α})
x (s1)(1)H

(A,{x})
x

[
H(A,{α})

x (s2)
]
(1)

= s1(Ax)H
(A,{α})
x [s2(Ax)αx] (1) = s1(Ax)s2(Ax)αx(Ax)

An operation I ∈ O(E) is repeatable if I (I(s)) = I(s) for all s ∈ S(E).

Thus, I ◦ I = I so we can repeat I without changing the state. If I is

repeatable, the transition probability satisfies

PI(s1, s2) = I(s1)(1)I (I(s2)) (1) = I(s1)(1)I(s2)(1) = PI(s2, s1)

We now show that the converse does not hold. We have seen that

PH(a,α)(s1, s2) = PH(a,α)(s2, s1)

However, if s(a) 6= 0, 1 we obtain

H(a,α)
(
H(a,α)(s)

)
= H(a, α) (s(a)α) = s(a)H(a,α)(α)

= s(a)α(a)α 6= s(a)α = H(a,α)(s)

Hence, if s(a) 6= 0, then H(a,α) is repeatable if and only if s(a) = 1.
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3. Hilbert Space Transition Probabilities

In this section we consider Hilbert space effects, operations, instruments,

states and their transition probabilities. These are the basic concepts for

the standard quantum probability theory. Let H be a complex Hilbert

space which for simplicity, we take to be finite dimensional. Letting L+(H)

be the set of positive linear operators on H, an effect is represented by

an operator a ∈ L+(H) satisfying 0 ≤ a ≤ I where 0, I are the zero and

identity operators respectively [1,2,6]. The set of effects is denoted by E(H).

A density operator ρ ∈ L+(H) satisfies tr (ρ) = 1 and we denote the set of

density operators on H by D(H). According to Born’s rule, every state

s ∈ S(H) has the form s(a) = tr (ρa) for a unique ρ ∈ D(H). This can

actually be proved using Gleason’s theorem [6] so we will identify S(H)

and D(H). In the Hilbert space formulation of quantum mechanics, an

operation is a completely positive linear map J : D(H) → L+(H) satisfying

tr [J(ρ)] ≤ tr (ρ) for all ρ ∈ D(H) [1,2,6,10]. We denote the set of operations

H by O(H). If tr [J(ρ)] = 1 for all ρ ∈ D(H), then J is a channel.

Denoting the set of linear operators on H by L(H), it can be shown

that every J ∈ O(H) has a Kraus decomposition J(ρ) =
n∑

i=1
KiρK

∗
i where

Ki ∈ L(H) with
n∑

i=1
K∗

iKi ≤ I [6, 8, 10]. Notice that J is a channel if and

only if
n∑

i=1
K∗

iKi = I. The operators Ki are called Kraus operators for J and

they are not unique. If J has the form J(ρ) = a1/2ρa1/2 where a ∈ E(H) we

call J a Lüders operation. If the Kraus operators are projections, it follows

that KiKj = 0 for i 6= j and hence, in this case, J is repeatable. Conversely,

if J(ρ) = a1/2ρa1/2 is a repeatable Lüders operation then

a1/2ρa1/2 = J(ρ) = J (J(ρ)) = aρa

for every ρ ∈ D(H). Letting ρ = 1
nI where n = dimH, we conclude that

a = a2 so a is a projection.

In the Hilbert space case, it is well-known that S(H) is separating. It

follows that an operation J ∈ O(H) measures a unique effect Ĵ ∈ E(H)

satisfying tr (ρĴ ) = tr [J(ρ)] for all ρ ∈ D(H). Notice that if J is a channel,

then Ĵ = I. Although an operation measures a unique effect, as we shall see,

every effect is measured by many operations. If J has Kraus decomposition

J(ρ) =
∑
KiρK

∗
i , since

tr [J(ρ)] = tr
(∑

KiρK
∗
i

)
=
∑

tr (KiρK
∗
i ) =

∑
tr (ρK∗

iKi)

= tr
(
ρ
∑

K∗
iKi

)
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for all ρ ∈ D(H), we conclude that Ĵ =
∑
K∗

iKi. In particular, if J(ρ) =

a1/2ρa1/2 is a Lüders operation, then Ĵ = a.

An observable is given by a finite sequence of effects A = {Ax : x ∈ ΩA}

where Ax ∈ E(H) with
∑
Ax = I [1–4, 6]. Then ΩA is the outcome space

of A and A determines an effect-valued measure A(∆) =
∑
x∈∆

Ax, ∆ ⊆ ΩA.

The probability that A has outcome x in the state ρ ∈ D(H) is tr (ρAx)

and the ρ-distribution of A is ΦA
ρ (∆) =

∑
x∈∆

tr (ρAx). The set of observables

on H is denoted by Ob (H). In a similar way, an instrument is given by a

finite sequence of operations I = {Jx : x ∈ ΩI}, Jx ∈ O(H) where
∑
Jx is

a channel [1–3, 5, 6]. Then ΩI is the outcome space of I and I defines an

operation-valued measure I(∆) =
∑
x∈∆

Jx, ∆ ∈ ΩI . The probability that I

has outcome x in the state ρ ∈ D(H) is tr [Jx(ρ)] and the ρ-distribution of I

is φIρ (∆) =
∑
x∈∆

tr [Jx(ρ)]. We denote the set of instruments on H by In (H).

An instrument I measures the unique observable Ĵx. If A ∈ Ob (H), the

corresponding Lüders instrument is LA
x (ρ) = A

1/2
x ρA

1/2
x , x ∈ ΩA. Since

tr
[
LA
x (ρ)

]
= tr (A1/2

x ρA1/2
x ) = tr (ρAx)

for all ρ ∈ D(H), we have (LA
x )

∧ = Ax so LA measures A.

We now consider transition probabilities in the Hilbert space formulation

of quantum mechanics. Let I ∈ O(H), ρ ∈ D(H), A,B ∈ E(H). If I has

Kraus decomposition I(ρ) =
∑
KiρK

∗
i with

∑
K∗

iKi ≤ I, then

tr [I(ρ)] = tr
(∑

KiρK
∗
i

)
=
∑

tr (KiρK
∗
i ) =

∑
tr (ρK∗

iKi)

= tr
(
ρ
∑

K∗
iKi

)

Assuming that tr [I(ρ)] 6= 0, we have the updated state

I(ρ)∼ =
I(ρ)

tr (ρ
∑
K∗

iKi)
=

∑
KiρK

∗
i

tr (ρ
∑
K∗

iK)

If I = LC , C ∈ E(H) is a Lüders operation LC(ρ) = C1/2ρC1/2, then

LC(ρ)∼ =
LC(ρ)

tr [LC(ρ)]
=
C1/2ρC1/2

tr (ρC)

For A,B ∈ E(H) and general I ∈ O(H), the transition probability of A

to B relative to ρ, I becomes

Pρ,I(A,B) = tr (ρA)tr [I(ρ)∼B] =
tr (ρA)

tr (ρ
∑
K∗

iKi)
tr
(∑

KiρK
∗
i B
)

=
tr (ρA)

tr (ρ
∑
K∗

iKi)
tr
(
ρ
∑

K∗
i BKi

)
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If I = LC is a L̈ıders operation, we obtain

Pρ,LC (A,B) =
tr (ρA)

tr (C1/2ρC1/2)
tr (ρC1/2BC1/2) =

tr (ρA)

tr (ρC)
tr (C1/2ρC1/2B)

When ψ is a unit vector in H, ρ = |ψ〉〈ψ| is a pure state and we have

Pρ,LC (A,B) =
tr (|ψ〉〈ψ|A)

tr (|ψ〉〈ψ|C)
tr
(
|ψ〉〈ψ|C1/2BC1/2

)

=
〈Aψ,ψ〉

〈Cψ,ψ〉

〈
C1/2BC1/2ψ,ψ

〉

Now let ρ1, ρ2 ∈ D(H) and I ∈ O(H). We then have the transition

probability

PI(ρ1, ρ2) = I(ρ1)(I)I (I(ρ2)) (I) = tr [I(ρ1)] tr [I (I(ρ2))]

If I has the above Kraus decomposition, then

PI(ρ1, ρ2) = tr

(
∑

i

Kiρ1K
∗
i

)
tr



∑

i,j

KjKiρ2K
∗
iK

∗
j




= tr

(
ρ1
∑

i

K∗
iKi

)
tr


ρ2

∑

i,j

K∗
iK

∗
jKjKi




In case of a Lüders operation I = LA we obtain

PLA(ρ1, ρ2) = tr (ρ1A)tr (ρ2A
2)

When ρ1 = |ψi〉〈ψ1|, ρ2 = |ψ2〉〈ψ2| are pure states, this becomes

PLA(ρ1, ρ2) = tr (|ψ1〉〈ψ1|A) tr
(
|ψ2〉〈ψ2|A

2
)
= 〈Aψ1, ψ1〉

〈
A2ψ2, ψ2

〉

If A is a projection, we have

PLA(ρ1, ρ2) = 〈Aψ1, ψ1〉〈Aψ2, ψ2〉

and when A = |ψ〉〈ψ| is a one-dimensional projection, this becomes

PLA(ρ1, ρ2) = |〈ψ,ψ1〉|
2 |〈ψ,ψ2〉|

2

Finally, if ψ = ψ1 we obtain PLA(ρ1, ρ2) = |〈ψ1, ψ2〉|
2 which is the usual

transition probability for pure states. We conclude that the usual transition

probability is a very special case.
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