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Establishing limits of entanglement in open quantum systems is a problem of fundamental interest,
with strong implications for applications in quantum information science. Here, we study limits of
entanglement stabilization between remote qubits. We theoretically investigate the loss resilience of
driven-dissipative entanglement between remote qubits coupled to a chiral waveguide. We find that
by coupling a pair of storage qubits to the two driven qubits, the steady state can be tailored such
that the storage qubits show a degree of entanglement that is higher than what can be achieved with
only two driven qubits coupled to the waveguide. By reducing the degree of entanglement of the
driven qubits, we show that the entanglement between the storage qubits becomes more resilient to
waveguide loss. Our analytical and numerical results offer insights into how waveguide loss limits the
degree of entanglement in this driven-dissipative system, and offers important guidance for remote
entanglement stabilization in the laboratory, for example using superconducting circuits.

I. INTRODUCTION

Quantum reservoir engineering is a powerful paradigm
to make use of the environment of a system to engineer
or stabilize its quantum state [1]. With entanglement be-
ing one of the defining features of quantum mechanics,
it is particularly interesting to understand the conditions
under which spatially distributed entangled states can
be stabilized. Protocols for stabilizing entanglement are
typically based on engineering the coupling between the
qubits and a shared lossy environment such that the col-
lective dissipation of the qubits relaxes them into an en-
tangled state [2–7]. Entanglement stabilization has also
been experimentally demonstrated on multiple physical
platforms including atoms in cavities [8], trapped ions
[9], and superconducting circuits [7, 10–12].

Here, we are particularly interested in entanglement
stabilization between remote qubits: qubits that are not
coupled directly or even hybridized through a ‘bus’ mode.
Such a stabilization protocol—which is independent of
the distance between the qubits—is also interesting from
the perspective of quantum information processing. With
the recent surge of interest in quantum networks, it
has become important to be able to deterministically
distribute entangled states between spatially separated
qubits [13–15]. In this context, we are interested in sta-
bilizing and storing an entangled state distributed across
two nodes of a network. Our central aim is to under-
stand how residual, non-engineered dissipation that is
not a part of the stabilization scheme impacts stabiliza-
tion performance and how it may be possible to overcome
the resulting limitations.

We take as the starting point of our investigation a
well understood result: two qubits dissipatively coupled
to a 1D chiral waveguide can be driven into an entangled
steady state [5, 6]. Furthermore, it has been recently
shown in Ref. [16] that if we replace the two qubits cou-
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FIG. 1. (a) A schematic of two qubit chains with the bound-
ary qubits coupled to a unidirectional waveguide. The bound-
ary qubits are driven by a common Rabi drive with strength
Ω. Ji,i+1 is the rate at which neighboring qubits in a chain
exchange excitations. Wave guide loss is modeled using a fic-
titious beam-splitter which allows a photon to pass through
with probability η2. (b) Sketch of a possible circuit quan-
tum electrodynamics implementation of the schematic in (a)
with N = 1. (c) Steady state concurrence of the system with
N = 1 for different degrees of waveguide loss. See Section II B
for details. (d) Time evolution of the concurrence for the ra-
tios Ω/γ marked by circles in (c). The dotted vertical lines
show the effective onsite decay time on the upstream qubit
due to waveguide loss.

pled to the chiral waveguide with chains of N qubits, the
system can relax into a highly entangled state that ap-
proaches a product of Bell pairs, as illustrated in Fig. 1.
This serves as a basis for stabilizing remote entangle-
ment, and also storing the entangled state by preventing
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it from directly decaying into the waveguide.
Surprisingly, we find that by passively coupling a pair

of storage qubits to the original system of two qubits
coupled to the waveguide, not only do we stabilize en-
tanglement in the storage pair, but the entanglement of
the storage pair can exceed the maximum entanglement
achievable in the original protocol, given any degree of
photon loss in the waveguide. While the increase in the
degree of entanglement is not huge, it is intriguing in
itself to wonder why the storage qubits are more loss re-
silient compared to the driven qubits. We find that the
photon loss in the waveguide effectively acts as a relax-
ation process on the upstream driven qubit. Remark-
ably, the exact solution found in Ref. [16] has a param-
eter regime that minimizes the population of the driven
qubits, thus mitigating the effect of this induced relax-
ation process, and yet stabilizes a Bell pair on the stor-
age qubits. This results in an increase in the degree of
entanglement of the storage qubits (compared with the
original protocol) at the expense of the driven qubits.
Our findings are complemented by an analytical under-
standing of the system in this regime: by adiabatically
eliminating the driven qubits, we find that the effective
drives on the storage qubits have a ‘built-in’ asymme-
try that counters waveguide loss, making them more loss
resilient compared to the protocol with only two driven
qubits. Finally, we find that due to the interplay between
the driving, dissipation, and qubit-qubit couplings, there
is an experimentally feasible parameter regime in which
the storage qubit entanglement always exceeds the best
entanglement of the original two-qubit protocol.

This paper is organized as follows. In Section II, we
review how two qubits coupled to a 1D chiral waveguide
relax into an entangled state, and provide an explanation
for how waveguide loss limits the degree of entanglement
of the steady state. In Section III, we discuss how adding
a pair of storage qubits leads to a slightly improved re-
silience of the entangled state against waveguide loss.
We explain the mechanism behind this improvement and
quantify the gain in entanglement over the maximum en-
tanglement achievable with only two driven qubits. Sec-
tion IV discusses the prospects of adding more qubits to
each node and potential limits on how robust the steady
state can be against waveguide loss.

II. STABILIZING TWO-QUBIT REMOTE
ENTANGLEMENT

A. A driven cascaded network of qubits

We begin by considering a pair of qubit nodes con-
nected via a unidirectional waveguide. Each node con-
sists of a chain of qubits exchange-coupled with strength
Ji,i+1. The first qubit is radiatively coupled to the waveg-
uide with strength γ, and Rabi driven with strength Ω,
as illustrated in Fig. 1(a). The N = 1 limit of this sys-
tem, consisting of two driven qubits coupled to a uni-

directional waveguide, has been studied previously and
has been shown to have a steady state that can be highly
entangled [5, 6]. We briefly revisit this result for com-
pleteness, and then discuss how this system performs in
the presence of waveguide loss.
The cascaded network of qubits can be modeled by the

system Hamiltonian consisting of the qubits, the waveg-
uide, and their interaction. Using a Markov approxi-
mation and tracing out the waveguide modes, we can
obtain the equation of motion of the reduced two-qubit
system, as originally described in [17]. Alternatively, we
can employ SLH formalism [18] to identify an SLH triple
(scattering matrix, Lindbladian, Hamiltonian) for each
element in the network, and then use series composition
rules to obtain the effective SLH triple for the cascaded
system (see Appendix A for details). The master equa-
tion for a cascaded system of two driven qubits can then
be written as

ρ̂ = −i[Ĥ, ρ̂] + γD[ĉ]ρ̂ (1)

where γ is the coupling strength between the qubits and
the waveguide. The waveguide-coupled Hamiltonian is
given by

Ĥ =
Ω

2
(σ̂x

A+ σ̂x
B)+

∆

2
(σ̂z

A− σ̂z
B)+ i

γ

2
(σ̂+

A σ̂
−
B −h.c.), (2)

and the joint collapse operator is given by

ĉ = σ̂−
A + σ̂−

B . (3)

The Hamiltonian is written in the rotating frame of the
common Rabi drive which has strength Ω, and is detuned
by ∆ (−∆) from qubit A (B). The last term in Eq. (2) de-
scribes the waveguide-mediated interaction between the
qubits. The joint collapse operator ĉ arises from the in-
terference between photons emitted from the two qubits.
To find a pure state of this system, we look for a dark
state (a state that gives zero when the collapse operator
is applied to it), which describes a state of the system in
which no photons propagate beyond the two qubits. One
can see [5, 6, 19] that there is a dark state of this system
that is also an eigenstate of the Hamiltonian with a zero
eigenvalue, and therefore a steady state of the system,
given by

|ψ0⟩ = |00⟩+
√
2Ω

2∆− iγ
|S⟩, (4)

up to a normalization constant. |S⟩ = (|01⟩ − |10⟩)/
√
2

is the singlet state. For Ω2 ≫ ∆2 + γ2/4, the dark
steady state is entangled. The unidirectional nature of
the waveguide gives rise to steady-state entanglement
that is independent of the physical distance between the
qubits. From an application perspective, this protocol
is thus highly interesting for realizing on-demand entan-
glement between distant qubits. With superconducting
qubits, for example, one could envision distributing en-
tanglement across ‘modules’ of a quantum processor [20–
25](Fig. 1(b)). To assess the practical potential of this
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protocol, however, we must first understand how waveg-
uide loss affects the attainable degree of entanglement. In
the following, our goal is to gain an intuitive picture of
the effect of waveguide loss, as well as develop approaches
to improve resilience against this loss.

B. Understanding the effect of waveguide loss

We begin by deriving the collapse operators for our
system in the presence of waveguide loss. We again use
the SLH formalism for our cascaded system. A fictitious
beam splitter is introduced in between the two qubits, de-
scribed by the probability η2 that the photon gets trans-
mitted from A to B (see Appendix A for details). This
leads to a multiplicative factor of η in the waveguide-
mediated qubit-qubit coupling term in the Hamiltonian,
giving

Ĥ =
Ω

2
(σ̂x

A+σ̂x
B)+

∆

2
(σ̂z

A−σ̂z
B)+iη

γ

2
(σ̂+

A σ̂
−
B−h.c.). (5)

More interestingly, the collective loss operator becomes
asymmetric in qubit-waveguide coupling, and a second
loss operator on the upstream qubit is introduced, given
by

ĉ1 = ησ̂−
A + σ̂−

B

ĉ2 =
√
1− η2σ̂−

A . (6)

The asymmetry in the collective loss operator ĉ1 is not
automatically detrimental – in principle, it could be
countered simply by changing one of the qubit-waveguide
coupling rates to restore ‘matching’. That leaves ĉ2 as the
detrimental effect of waveguide loss on this system. The
loss operator ĉ2 describes losing a photon during propa-
gation from qubit A to qubit B, which can be interpreted
effectively as on-site loss on qubit A.

For the remainder of the paper, we assume for sim-
plicity that the drive detuning ∆ = 0; nothing essential
is lost by making this assumption. The effect of this
effective on-site loss manifests as a reduction of the max-
imum concurrence, as shown in Figure 1(c). For each
value of waveguide loss, we simulate the Lindblad mas-
ter equation as a function of the ratio Ω/γ and compute
the concurrence of the steady state. We see that for each
η2, the concurrence initially increases with Ω/γ up to a
maximum, after which it begins to fall. To understand
why increasing Ω/γ beyond this point causes a reduc-
tion in the concurrence, we consider the rates involved
in this dissipative system. For each value of η2, we ex-
tract Ω/γ at the maximum and plot the time evolution of
the concurrence for those parameters in Fig. 1(d). First,
the system has a characteristic relaxation time which in-
creases with Ω/γ. This can be explained by the Liou-
villian gap of the system which characterizes the slowest
relaxation rate in the Liouvillian spectrum, and thus its
inverse characterizes the relaxation timescale τrel. In this
system, the relaxation times scales as τrel ∼ (Ω/γ)2, i.e.,

the relaxation timescale grows quadratically with drive
strength [2, 7]. As a result, there is a trade-off between
the relaxation time and the degree of stabilized entangle-
ment. Second, we can see from Eq. 6 that the effective
on-site loss on the upstream qubit introduces a decay
rate given by γloss = γ

√
(1− η2), thus limiting the T1 of

qubit A1 to T1 < 1/γloss.
Heuristically, when the relaxation time exceeds this in-

duced decay, τrel > T1, the system cannot effectively sta-
bilize greater entanglement because the upstream qubit
decays too quickly. For each η2 in Fig. 1(d), the dot-
ted lines mark the time 1/γloss(η), which is the timescale
associated with loss-induced decay. We see that these
times qualitatively predict the onset of the concurrence
plateau. The effect of waveguide loss on this stabilization
protocol can thus clearly not be cancelled entirely by ad-
justing coupling rates. We discuss in Section III how the
steady state can be made more loss resilient by adding
additional qubits.

C. Possible circuit QED implementation

With an understanding of how loss affects the steady
state concurrence of this system, we turn to a discussion
of implementation using superconducting circuits. The
most straightforward circuit implementation consists of
transmon qubit modules connected through a unidirec-
tional waveguide as illustrated in Fig. 1(b). A microwave
circulator in the waveguide connecting the qubits ensures
unidirectional photon propagation. The qubit-waveguide
coupling γ is determined by the strength of the capaci-
tive coupling shown in Fig. 1(b). Similar circuits have
been previously implemented for remote entanglement
protocols that rely on the first qubit emitting a photon
that propagates through a unidirectional waveguide and
gets captured by the second qubit [23–25]. Based on the
transmission loss reported in these papers, and more re-
cent qubit module interconnect designs [20], we estimate
that waveguide loss corresponding to η2 = 0.9 is well
within reach. Fig. 1(c) shows the steady state concur-
rence achievable with this amount of waveguide loss and
the required ratio of drive strength and qubit-waveguide
coupling.

III. PROTECTING STEADY-STATE
ENTANGLEMENT FROM WAVEGUIDE LOSS

A. Coupling to storage qubits

One possible idea for improving resilience is to add an
additional pair of qubits: For one, it is useful in general to
be able to able to store the entangled state as a resource
for further processing. Therefore it would make sense to
transfer the entanglement to a pair of qubits that is not
directly coupled to a loss channel. Further, envisioning
the scheme as a resource for entanglement generation,
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one could further imagine that many storage qubits could
be added to each node. In that direction it could be of
interest to stabilize large entangled states using a single
dissipative channel. This could be achieved, for example,
by propagating entanglement among qubits in a node
using gates.

As a practical matter, particularly in the context of
circuit QED, it is also important to consider the possi-
ble difficulty with reading out the qubits. In the case
of this driven-dissipative protocol, one would turn off
the Rabi drive before performing dispersive readout of
the qubits, as is typically practiced in protocols involv-
ing driven transmons [26, 27]. Since the qubits are cou-
pled to the waveguide, the state would decay during the
readout process. For ideal qubits that have no intrin-
sic relaxation, decay during the readout process could be
minimized by reducing γ while maintaining the required
Ω/γ ratio. In an experiment, however, the qubits will
have finite relaxation times which would compete with
the decay rate into the waveguide given by γ. We show
in Appendix B that for qubits with a T1 = 100 µs cou-
pled to a chiral waveguide with η2 = 0.9, the coupling
to the waveguide γ must be greater than 1 MHz in order
to achieve a concurrence of 0.56. This would mean that
when the drives are turned off, the qubit would decay
in approximately 160 ns. We note that recently demon-
strated fast high-fidelity readout times are comparable to
this decay time [28, 29], hence preventing high-fidelity,
single-shot readout of the quantum state. It is therefore
also practically useful to be able to measure the entan-
gled state in a pair of storage qubits that are decoupled
from the waveguide.

Ref. [16] has shown that a system of two identical
chains of coupled qubits coupled to the first pair has a
pure steady state that stabilizes entanglement between
the chains for any nonzero driving. Therefore, by cou-
pling storage qubits to the waveguide-coupled pair, the
system automatically stabilizes entanglement in the stor-
age qubits. Remarkably, we find that when there is loss in
the waveguide, adding a pair of storage qubits increases
the system’s resilience against waveguide loss. While
the improvement is modest, it is of fundamental interest
to understand why there should be any increase in re-
silience. To that end, we give first a heuristic argument
as to why we might expect an improvement, then we
analytically show (in part) how the increased resilience
arises, and we quantify the performance improvement.
We also find, as a practical matter, that the regime of
maximally increased performance is reasonably achiev-
able experimentally; the dissipation, driving, and hop-
ping strengths should be similar in magnitude, and the
region of improvement does not require fine tuning.

We start from the two-qubit entanglement stabilization
protocol outlined in Sec. II, with the ideal (i.e., lossless
waveguide, η = 1) Hamiltonian Eq. (2) and collective
jump operator Eq. (3). At each node A (B), we add
a second qubit that is exchange-coupled with strength
J12,A(B) to the first qubit (see Fig. 1a). The Hamiltonian

of the full four-qubit system is

Ĥ4qb = Ĥ2qb +
∑

s=A,B

J12,s
(
σ̂+
s,1σ̂

−
s,2 + h.c.

)
, (7)

where Ĥ2qb is the entanglement stabilization Hamilto-
nian Eq. (2) (acting on qubits A1 and B1). As mentioned
earlier in the text, we assume for simplicity that the drive
detuning ∆ = 0. The first pair of qubits, A1 and B1, re-
main coupled to the waveguide through the collective loss
dissipation Eq. (3) (in the ideal waveguide limit).

B. Steady state entanglement

The four-qubit system is the N = 2 case of the gen-
eral N+N -qubit double chain studied in Ref. [16]. In
that work, it was shown that if the exchange couplings
have a mirror symmetry, Ji,i+1;A = Ji,i+1;B , then the
entire double chain has a pure steady state for arbitrary
parameters, with entanglement between the two chains
for any driving Ω ̸= 0. Following this, we assume that
the exchange couplings are equal, J12,A = J12,B ≡ J12.
Therefore, the 2+2-qubit system has the pure entangled
steady state (up to normalization)

|ψ2⟩ =
2Ω2

γJ12
|S1T2⟩+

Ω√
2J12

|01T2⟩ − |0102⟩. (8)

Here the states are: the singlet |S1⟩ = (|0A,11B,1⟩ −
|1A,10B,1⟩)/

√
2 of qubits on site 1, the triplet |T2⟩ =

(|0A,21B,2⟩+ |1A,20B,2⟩)/
√
2 on site 2, and the two-qubit

vacuum |0j⟩ = |0A,j0B,j⟩ on either site j.
The steady state approaches a maximally entangled

state |ψ2⟩ = |S1T2⟩ when Ω2 ≫ γJ12, which can be
achieved even if Ω < γ [16]. For the purpose of stabi-
lizing and protecting entanglement, however, there is a
related but different parameter regime of interest,

J12 ≪ Ω. (9)

In this regime, the vacuum component |0102⟩ of the
steady state is negligible so the state nearly factorizes as
|ψ2⟩ ≈ (2Ω/γ|S1⟩+ |01⟩)⊗ |T2⟩. Thus, the second qubit
pair can be arbitrarily close to a perfect Bell pair, irre-
spective of the entanglement of the first pair. By taking
Ω ≪ γ as well, with the hierarchy of scales J12 ≪ Ω ≪ γ
and the driving strength satisfying Ω2 ≪ γJ12, entangle-
ment is stabilized only on the second pair, |ψ2⟩ ≈ |01T2⟩.
Note that this is the N = 2 case of the single “charge-
density-wave” predicted to exist in these chains [16].

The ability to parametrically control the amount of en-
tanglement stabilized on the second qubit pair indepen-
dently of the entanglement on the first pair plays a crucial
role in the increased resilience of the four-qubit system
against loss in the waveguide. By using the first pair of
qubits as a “sacrificial” pair whose entanglement is inten-
tionally made worse, we can improve the entanglement
of the second pair beyond that which can be achieved for
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the two-qubit scheme for any waveguide transmission η2

for which the two-qubit protocol can stabilize entangle-
ment.

C. Inherent resilience to waveguide loss

We account for waveguide loss in the four qubit sys-
tem exactly following Sec. II B. The collective loss dissi-
pator Eq. (3) is replaced by the two dissipators of Eq. (6),
where η is the waveguide transmission amplitude, and the
dissipation-induced exchange term in Ĥ2qb (cf. Eq. (5)) is
modified as in Sec. II B. Just as in the two-qubit system,
there is no pure steady state for any η < 1 due to the sin-
gle qubit loss induced on qubit A1. However, notice that
if the first pair of qubits is in vacuum, then the effective
single qubit loss cannot disrupt the steady state; such a
steady state would remain a dark state of the dissipation
[30].

Guided by this insight, and recalling that the exact
solution Eq. (8) approaches such a state with near zero
population on the first qubit pair in the parameter regime
set by J12 ≪ Ω and Ω2 ≪ γJ12, we are lead to the strat-
egy of using the first pair of qubits as a sacrificial pair in
order to stabilize entanglement on the second pair. The
utility of this strategy is verified numerically in Fig. 2(a),
which shows that, as J12,Ω → 0 (while holding J12/Ω
fixed), the concurrence on the second pair of qubits is
non-vanishing, approaching a constant value dependent
on the ratio J12/Ω. Moreover, there is a regime of con-
stant J12/Ω (with Ω > J12) for which the 2 + 2 scheme
yields higher concurrence for the η2 used in the figure. A
heuristic argument for the constant, non-vanishing con-
currence with J12,Ω → 0 is discussed in Appendix C. We
find numerically that for all transmission probabilities η2

for which the 1+1 system stabilizes entanglement, there
is a parameter regime in which the 2 + 2 system yields
better concurrence than the 1 + 1 system.

To better understand why the 2 + 2 is more robust to
waveguide loss than the 1 + 1 system, we first consider
the regime of weak hopping and driving, J12,Ω ≪ γ. In
this regime, the first pair of qubits is almost completely
in vacuum. Thus, we can adiabatically eliminate these
qubits to find an effective master equation for the reduced
density matrix of the second pair, ρ̂2 = TrA1,B1[ρ̂], given
by

∂tρ̂2 = −i[Ĥeff , ρ̂2] +

2∑
j=1

D[L̂j,eff ]ρ̂2, (10)

Ĥeff =
Ωeff

2

[
σ̂x
A,2 + (2η − 1)σ̂x

B,2

]
(11)

+
iηγeff
2

(
σ̂+
A,2σ̂

−
B,2 − h.c.

)
,

L̂1,eff =
√
γeff

(
ησ̂−

A,2 + σ̂−
B,2

)
, (12)

L̂2,eff =
√
γeff
√
1− η2σ̂−

A,2. (13)
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FIG. 2. (a) Steady state concurrence of the outer pair
of qubits in the 2 + 2 system as a function of both driving
Ω/γ and hopping J12/Ω. Waveguide transmission probability
is η2 = 90%. The color scale is centered at the maximum
concurrence of the 1+1 system (with symmetric driving ΩA =
ΩB = Ω). The red region indicates the range of Ω and J12 for
which the 2+2 system stabilizes more entanglement than the
1+1 system, Cmax

1 ≈ 0.57, which is achieved for η2 = 0.9 with
a driving strength Ω/γ ≈ 1.16. Note that the color scale is not
symmetric about Cmax

1 ; the minimum is at zero concurrence
and the maximum is at the maximum concurrence of the 2+2
system for this waveguide loss, which is found numerically to
be Cmax

2 ≈ 0.61. (b) Comparison of maximum concurrence
for the 1 + 1 system, optimizing over Ω, and the maximum
concurrence for the outer pair of the 2+2 system in the weak
Ω, weak J12 limit, optimizing over J12/Ω, and optimized over
Ω and J12.

See Appendix D for details. The effective master equa-
tion is precisely of the form of the two-qubit scheme with
waveguide loss, but with asymmetric driving strengths on
the two qubits. The renormalized drive strength is Ωeff =
2ΩJ12/γ, and dissipation strength is γeff = 4J2

12/γ. No-
tice that the waveguide transmission amplitude η is not
renormalized.

The driving asymmetry of the effective master equa-
tion is η-dependent and recovers the ideal symmetric
driving strengths for η → 1. Because η is not renor-
malized, any improvement of the stabilized concurrence
of the 2+2 system in the J12,Ω ≪ γ regime must be due
to the asymmetry in the driving strength. Indeed, we
find in Fig. 2(b) that over a wide range of η, the effective
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asymmetric driving of the effective theory (in the weak
Ω, J12 limit) yields higher concurrence than the symmet-
ric driving (the 1+1 system with optimal Ω in Fig. 2(b)).
Intuitively, we expect that some degree of drive asymme-
try should improve the stabilized entanglement because
the waveguide loss induces additional single qubit loss on
the upstream qubit, thus a stronger drive – relative to the
drive on the downstream qubit – is needed to compensate
for the greater loss.

We also find that the effective master equation recov-
ers the numerically observed result that as J12,Ω → 0,
the concurrence on the second qubit pair depends only
on Ω/J12 (see Fig. 2(a)). Since the concurrence of the
1 + 1 system is controlled only by Ωeff/γeff , we find that
in terms of the original system parameter, Ωeff/γeff =
Ω/2J12, thus the concurrence is dependent only on the
ratio Ω/J12 and not on their strengths relative to γ.
A heuristic explanation for this behavior is given in
Appendix C. Finally, we observe numerically that for
J12 ∼ Ω ≲ γ, there is a regime for which the concur-
rence is even higher compared to the 1 + 1 concurrence.
This effect is shown in Fig. 2(a) as the head of the red
matchstick region. A full analytic understanding of this
“bump” in concurrence remains an open question, but
we speculate that it may be due to a kind of “impedance
matching” among the driving, hopping, and dissipation
dynamics. The improvement of the “bump” region over
the weak driving regime is shown as the dashed curve in
Fig. 2(b).

D. Universal improvement over two-qubit protocol

As we have shown, the higher stabilized entanglement
of the 2 + 2 system compared with the 1 + 1 system can
be partially explained by the asymmetry of the effective
Rabi drive strengths in the weak driving and weak hop-
ping regime. One may naturally wonder whether the 1+1
system could achieve the same entanglement as the 2+2
system if we optimized over the driven qubits’ drives, ΩA

and ΩB , separately. We find numerically that when al-
lowing the applied driving strengths to have asymmetry,
the 2 + 2 system always has better concurrence on the
outer pair of qubits than the 1 + 1 system for a given
η2. In Fig. 3(a) we show the maximum achievable con-
currence of the 1 + 1-qubit protocol, optimized over the
driving strengths ΩA,ΩB , and the 2 + 2-qubit protocol,
optimized over ΩA, ΩB , and J12, as a function of waveg-
uide transmission probability η2. We find that the 2 + 2
system stabilizes at least as much concurrence as the 1+1
system for any η2 > 0, including for η2 not shown in the
figure. We also show the numerically optimized param-
eters J12, ΩA, and ΩB vs. waveguide transmission η2 in
Fig. 3(b), and we find that except when the waveguide
loss is very small (η2 ≈ 1), the optimal parameters are
J12 ≈ Ω < γ. Furthermore, note that the asymmetry of
the 2+ 2 drives is relatively much smaller than the 1+ 1
drives, suggesting that effective renormalization contin-
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FIG. 3. (a) Optimized concurrence of the 1 + 1 system and
the outer pair of the 2 + 2 system as a function of trans-
mission probability η2. For each system we optimize over the
upstream (downstream) Rabi drive ΩA (ΩB) and for the 2+2
system we optimize over J12. For comparison, we also plot
the best concurrence of the 2+2 system with equal ΩA = ΩB

(cf. Fig. 2(b)). Inset: the difference in concurrence between
the optimized 2 + 2 system and the optimized 1 + 1 system
is plotted as a function of transmission probability. (b) The
optimized drive strengths ΩA / ΩB of the upstream / down-
stream qubits and J12 for the two systems plotted as functions
of the transmission probability.

ues into the optimal parameter regime. We emphasize
that the improvement in stabilized concurrence of the
2+2 system over the 1+1 system is maximized for param-
eters ΩA,B ≈ J12 ≈ γ, and does not require one param-
eter to be much larger or much smaller than the others.
As a practical matter, this implies that the best perfor-
mance can be obtained without either precisely tuning
one rate to be much smaller that the others, or engineer-
ing of one rate to be much stronger. (E.g., we do not
need to work in the ΩA/B , J12 ≪ γ regime.)

IV. ADDING MORE QUBITS TO EACH CHAIN

We have shown that by adding a second pair of qubits
and sacrificing the driven pair, we can obtain greater sta-
bilized entanglement in the face of waveguide loss. Given
the exact solution for arbitrarily long chains found in
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Ref. [16], a natural question might be whether there are
advantages to coupling more qubits to the end of each
chain. For example, does the resilience against waveg-
uide loss improve by further isolating the entangled pair
from the waveguide, e.g. by sacrificing the first N − 1
pairs of an N+N -qubit system? Or, can we stabilize en-
tanglement between many pairs of qubits within longer
chains by sacrificing just the first pair, or a few pairs near
the waveguide? Here we show that in principle, the in-
tuition that guides us to sacrifice the first pair for N = 2
can apply to longer chains. We also discuss the inherent
challenges with adding more qubits to each chain.

A. Stabilizing entanglement in longer chains

We can add pairs of qubits to the ends of the chains
exactly in the same manner as we added the second pair
in Sec. III. We couple a qubit onto the end of each chain,
maintaining equal hopping rates Jj,j+1;A = Jj,j+1;B =
Jj,j+1. If this mirror symmetry is maintained, the ex-
act solution of the ideal case found in Ref. [16] applies.
The general form of the exact steady state is of a so-
called “hole pair condensate” in which the maximally
entangled state |STST · · · ⟩ is doped with pairs of ad-
jacent holes (a hole on site j being a two-qubit vacuum
on qubits Aj and Bj) placed along the chain. For any
finite driving, 0 < Ω < ∞, the chain is populated with
all possible numbers of hole pairs. The disorder in the
hopping rates Jj,j+1 affects the spatial distribution of the
hole pair wavefunctions. Specifically, the amplitude for
a hole pair to span a strong bond is greater than aver-
age and the amplitude for a hole pair to span a weak
bond is smaller. We can exploit this property of the hop-
ping rates to keep the first pair of qubits near vacuum to
counteract the effects of waveguide loss, as we did for the
N = 2 system in Sec. III.

Guided by the heuristic argument of Sec. III, we first
show that in principle, large entanglement can be stabi-
lized on qubit pairs 3 through N in a N+N qubit system,
while keeping the first pair near vacuum, by operating in
a weak driving and weak hopping regime. The general
form of the exact steady state for chains of length N is

|ψN ⟩ =
(
1 +

iγ

2Ω
τ̂1

)
× (14)

exp

 iγ

2Ω2

∑
j

(−1)jJj,j+1τ̂j τ̂j+1

 |STST · · · ⟩,

where the operator τ̂j removes the Bell pair from the

two qubits on site j: τ̂j |(S/T )j⟩ =
√
2|0j⟩ (see Ref. [16]

for details). The exponential term describes the hole
pair condensate and there is a boundary correction that
removes a single Bell pair from the dissipative qubit
pair. We find that if we work in the weak driving
regime Ω ≪ γ, the Bell state occupation of the first
pair of qubits is always suppressed by the boundary

correction term. Then if we let the hopping rates be
J12 ≫ J23 ≈ J3,4 ≈ · · · ≈ JN−1,N , the hole pairs are
most strongly weighted on the first two pairs of qubits,
leaving the rest of the chain relatively more entangled.
Finally, notice that if Ω ≫

√
γJj,j+1 for every j > 1,

then the hole pairs on those sites are suppressed. Thus
we arrive at the parameter regime that generalizes the
heuristic arguments from Sec. III,

γ ≫ Ω ≈ J12 ≫ J23 ≈ J34 ≈ · · · , (15)

Ω, J12 ≫
√
γJ23 ≈

√
γJ34 ≈ · · · . (16)

We expect that this regime provides a starting point to
optimize the entanglement in the rest of the chain in the
presence of waveguide loss. As an example, the ideal
exact steady state of the N = 3 system is given by

|ψ3⟩ =
[
|00S⟩ − Ω√

2J12
|0TS⟩

]
(17)

− i
Ω2

γJ12
|STS⟩ − J23

J12
|S00⟩ − i

J23/J12
Ω/γ

|000⟩,

up to normalization. In the parameter regime Eq. (14),
the bracketed terms are dominant. Thus, we find that
the third pair of qubits is highly entangled, while the
second pair can be somewhat entangled depending on
the ratio Ω/J12. All other terms are suppressed by the
weak drive Ω ≪ γ or the weak hopping J23 ≪ J12. Note
that the requirement for Ω, J12 ≫

√
γJj,j+1 becomes

apparent in e.g., the coefficient of the vacuum state |000⟩.
For longer chains in the weak driving and weak hopping
regime, one finds that there is a pair of terms equivalent
to the bracketed pair above, given by |00STST · · · ⟩ and
|0TSTST · · · ⟩. Thus by sacrificing the first pair, and to
an extend the second pair, large entanglement can be
stabilized along the rest of the chains.

B. Potential limits on resilience against waveguide
loss

We found in Sec. III that the optimal concurrence of
the second pair of qubits in the N = 2 system occurs not
deep in the weak driving limit but when Ω ≈ J12 ≲ γ.
We expect a similar result for longer chains, where the
weak driving limit guides our intuition for choosing the
relative strength of parameters, but ultimately, numeri-
cal optimization yields the best performance. It remains
an open question, however, whether longer chains would
continue to show improved resilience against waveguide
loss compared to shorter chains.
One practical limiting factor is the relaxation time of

the system. As discussed in Ref. [16], there is numerical
evidence to suggest the relaxation time of longer chains is
consistent with the typical boundary driven free-fermion
scaling with system size of τrel ∼ N3. Even for an ideal
lossless waveguide, this poses an experimental challenge
for longer chains due to the intrinsic loss and dephasing
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of the qubits. If the relaxation time becomes comparable
to the typical qubit T1 or T2, these unwanted sources of
dissipation will disrupt the entanglement stabilization.
To counteract that, one must engineer stronger qubit-
waveguide coupling γ as well as stronger driving Ω and
hopping rates Jj,j+1. The limits on the strength of the
coupling and driving rates compared to intrinsic qubit
dissipation rates thus limits the length of experimentally
feasible chains. It remains an open question what the
ultimate performance of a N + N system can be under
waveguide loss and realistic intrinsic qubit dissipation.

V. CONCLUSION

We have proposed a driven-dissipative remote entan-
glement protocol and studied its resilience to waveguide
loss. By understanding the loss mechanism that lim-
its entanglement in the originally proposed scheme [5],
and taking advantage of the pure steady state of the
four-qubit system consisting of a driven pair and a stor-
age pair, we propose a protocol that is more resilient to
waveguide loss. Based on the intuition that waveguide
loss can be countered by limiting the population on the
driven qubits, we have identified an advantageous pa-
rameter regime characterized by weak drives and weak
hopping between the driven and storage qubits. We find
numerically that the degree of entanglement of the stor-
age qubits in this regime is higher than the maximum
possible entanglement that can be achieved with only two
driven qubits. We explain this observation analytically
by adiabatically eliminating the driven qubits to obtain
an effective master equation for the storage qubits.

While the driven-dissipative dynamics of the two-qubit
system are well understood for a lossless waveguide [5, 6],
our work provides an additional understanding of the dy-
namics in the presence of inevitable loss, and provides
guidance on how to tailor operation parameters that yield
better performance with photon loss. Our result is also
interesting from a practical perspective, particularly in
the context of circuit QED, where it may be difficult to
faithfully measure qubits that are strongly coupled to a
waveguide. Our work gives thus important guidance for
practical implementation of driven-dissipative entangle-
ment in the laboratory.
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Appendix A: Using the SLH formalism to derive the
master equation

The SLH formalism provides a method to derive the
Hamiltonian and collapse operators for a quantum net-
work using simple algebraic manipulations [18]. Each
component is specified by a triple (S,L,H) that describes
how it interacts with input and output fields. S is the
scattering matrix for the component, L contains its cou-
pling to external fields, and H is the Hamiltonian. The
cascaded network of two qubits coupled to a unidirec-
tional waveguide can be modeled using three components
in series configuration: qubit A, followed by a fictitious
beam splitter, followed by qubit B. The beam splitter
has a probability η2 of allowing a photon to propagate
through from qubit A to qubit B. This allows us to model
photon loss in the wave guide. The SLH triple for the i-th
qubit is given by

S = I

L =
√
γ

(
σ̂−
i
0

)
Ĥ =

∆

2
σ̂z
i +

Ω

2
σ̂x
i .

The Hamiltonian is in the frame of the drive which is
detuned from the qubit frequency by ∆. The SLH triple
for the beam splitter is given by

S =

(
η −

√
1− η2√

1− η2 η

)
L = 0

Ĥ = 0

where η2 is the probability that a photon propagates
through from qubit A to qubit B. For two components
connected in series, the product rule used to calculate
the SLH triple for the network is

(S2, L2, H2) ◁ (S1, L1, H1) = (A1)(
S2S1, L2 + S2L1, H1 +H2 +

1

2i
(L†

2S2L1 − L†
1S

†
2L2)

)
.

Using Eq. A1, we obtain the following SLH triple for our
cascaded system:

(( √
η

√
1− η

−
√
1− η

√
η

)
,
√
γ

(√
1− η2σ̂−

A

ησ̂−
A + σ̂−

B

)
, Ĥ

)
(A2)

where the Hamiltonian is given by

Ĥ =
(∆A

2
σ̂z
A +

ΩA

2
σ̂x
A

)
+
(∆B

2
σ̂z
B +

ΩB

2
σ̂x
B

)
(A3)

− i
η γ

2

(
σ̂−
A σ̂

+
B − σ̂+

A σ̂
−
B

)
and the collapse operators are

ĉ1 = ησ̂−
A + σ̂−

B

ĉ2 =
√

1− η2σ̂−
A . (A4)
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Finally, taking ΩB = ΩA and ∆B = −∆A, we obtain
Eqs. (5) and (6).

Appendix B: Minimum required qubit-waveguide
coupling due to finite qubit lifetime

We show in Fig. 1(c) that the ratio Ω/γ determines
the maximal achievable concurrence for given waveguide
loss. However, finite qubit relaxation times require the
magnitudes of Ω and γ to be above certain minimum
values. This occurs because the intrinsic loss rate of the
qubit competes with the decay rate into the waveguide
γ. As an example, we simulate the system with η2 = 0.9,
and qubit lifetimes of 100 µs. Fig. 4(a) shows how the
high concurrence region is pushed towards larger drive
and coupling strengths, relative to the ideal case of zero
intrinsic relaxation, shown in Fig. 4(b). The dotted con-
tour lines are at C = 0.56. To achieve this concurrence,
the coupling strength to the wave guide γ should be at
least 1 MHz. This corresponds to a wave guide induced
qubit relaxation time of around 160 ns.
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FIG. 4. The figure shows the steady state concurrence of the
two-qubit system for (a) qubits with T1 = 100 µs and (b)
qubits with no intrinsic relaxation. The dashed contour lines
are at concurrence C = 0.56; η2 = 0.9. Notice in (a) that the
high concurrence region is pushed towards higher drive and
coupling strengths due to intrinsic qubit relaxation. In (b),
the concurrence depends only on the ratio Ω/γ as discussed
in the main text.

Appendix C: Constant concurrence in the weak
driving regime

In Fig. 2(a), we find that for fixed Ω/J12 ∼ 1, in the
weak driving limit Ω ≪ γ, the concurrence of the second
qubit pair appears to saturate at a fixed value instead
of falling to zero as one might expect when the driving
becomes extremely weak. This turns out to be a generic
feature of the system in the weak driving limit: for any
nonzero waveguide transmission η2 > 0 and in the limit
Ω → 0, the concurrence of the second pair limits to a
constant nonzero value that depends only on η2 and the
constant ratio Ω/J12, not on Ω/γ. Here we provide a

heuristic argument for why the concurrence does not van-
ish in this limit.
Because the primary effect of waveguide loss is to in-

duce unwanted single qubit T1 decay on the upstream
qubit (see Appendix A), this is the primary mechanism
by which the stabilization of entanglement is disrupted.
We can gain insight into how much of an effect the in-
duced T1 decay has by comparing the relaxation rate of
the ideal system to the rate at which excitations are lost
due to the induced T1. If the system relaxes quickly com-
pared to the loss rate, then we expect a greater amount
of stabilized entanglement. As we discuss in Sec. III, the
weak driving and weak hopping regime, J12 ≲ Ω ≪ γ,
yields an ideal steady state with very little population on
the first pair of qubits (cf. Eq. (8)). We also expect that
due to the weak driving, the population on the first pair
of qubits remains very little throughout the entire stabi-
lization, and we approximate the population on the first
pair at all times by the steady state population, given by

⟨n̂1⟩ =
2(Ω/γ)4

2(Ω/γ)4 + (Ω/γ)2 + 2(J12/γ)2
, (C1)

where n̂1 = |S1⟩⟨S1| measures the singlet excitation,
which is twice the excitation population on the lossy
qubit. We estimate the rate at which excitations are
lost due to the induced T1 for J12 ≲ Ω ≪ γ by

Γloss = ⟨n̂1⟩(1− η2)γ ≈ (Ω/γ)2(1− η2)γ, (C2)

where (1− η2)γ is the induced loss rate (cf. (6)).
To estimate the relaxation rate of the ideal system, we

first assume the weak driving and weak hopping regime
J12 ≲ Ω ≪ γ. In this regime, the stabilization of entan-
glement on the second pair of qubits is well-described
by the effective two-qubit master equation derived in
Appendix D. Moreover, we can numerically verify that
the relaxation rate of the full 2 + 2 system is well-
approximated (up to a ∼ 1 prefactor) by the relaxation
rate of the effective theory. In particular the parameter
dependence of the relaxation rate is correctly predicted.
Using the result from Ref. [2] that for Ω/γ ≫ 1, the re-
laxation rate of the 1+1 system is Γrel ∼ γ3/Ω2, for drive
strength Ω and dissipation rate γ. We find numerically
that this scaling holds for Ω ≳ γ. Thus, applying this
result to the effective master equation, and noting that
Ωeff/γeff = Ω/2J12 ≳ 1 we find

Γrel ≈
γ3eff
Ω2

eff

≃ J4
12

Ω2γ2
γ. (C3)

In the weak driving limit, holding Ω/J12 fixed, the re-
laxation rate thus scales with driving strength as Γrel ∼
(Ω/γ)2. Comparing with the induced T1 loss rate Γloss ∼
(Ω/γ)2, we find that as Ω → 0

Γrel

Γloss
→ const. (C4)

Therefore, irrespective of the amount of stabilized con-
currence on the second pair, we find that in the weak
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driving and weak hopping limit, the stabilized concur-
rence saturates to a fixed value.

Appendix D: Adiabatic elimination and effective
two-qubit theory

Here we derive the effective 2-qubit master equation
(cf. Eq. (10)) for the 2 + 2 system in the weak driving
limit Ω/γ ≪ 1. We thus treat the driving as a perturba-
tion. We also assume the hopping is weak, J12/γ ≪ 1,
and treat it as perturbation. Starting from the master
equation with waveguide loss,

∂tρ̂ = −i[Ĥ, ρ̂] + γD[ĉ1]ρ̂+ γD[ĉ2]ρ̂, (D1)

with the Hamiltonian and jump terms given by Eqs. (7)
and (6), respectively. We take the drive detuning ∆ = 0
here for simplicity (nothing essential is lost). Following
the operator formalism of Ref. [31], we take the “ground
state manifold” to be all states with the first pair of
qubits (A1 and B1) in vacuum |(00)1⟩ and the “excited
state manifold” to be the rest of the Hilbert space. The
excited state manifold thus includes the three sets of
states with |01⟩, |10⟩, and |11⟩ on the first pair. Note that
doubly exciting the first pair from the ground state man-
ifold to |11⟩ is second order in the perturbations (driving
and hopping) we thus make a simplifying approximation
and exclude the doubly-excited state from the excited
state manifold. Thus, we define the ground state mani-
fold and excited state manifold projection operators as

P̂g = (|00⟩⟨00|)1 ⊗ 1̂2, (D2)

P̂e = (|10⟩⟨10|+ |01⟩⟨01|)1 ⊗ Î2 − P̂g, (D3)

where 1̂2 is the identity acting on the second pair of
qubits A2 and B2.

We decompose the Hamiltonian into four terms Ĥ =
Ĥg+Ĥe+V̂++V̂−. The first two terms are the projections
into the two manifold and the latter two terms are the off-
diagonal elements connecting the manifolds; V̂+ describes
excitation from the ground state manifold to the excited

state manifold and V̂− = V̂ †
+ describes de-excitation:

Ĥg = P̂gĤP̂g = 0, (D4)

Ĥe = P̂eĤP̂e =
iηγ

2

(
σ̂+
A,1σ̂

−
B,1 − h.c.

)
(D5)

V̂+ = P̂eĤP̂g (D6)

= J12

(
|0⟩⟨0|B,1σ̂

+
A,1σ̂

−
A,2 + |0⟩⟨0|A,1σ̂

+
B,1σ̂

−
B,2

)
+

Ω

2

(
|0⟩⟨0|B,1σ̂

+
A,1 + |0⟩⟨0|A,1σ̂

+
B,1

)
V̂− = P̂gĤP̂e (D7)

= J12

(
|0⟩⟨0|B,1σ̂

+
A,2σ̂

−
A,1 + |0⟩⟨0|A,1σ̂

+
B,2σ̂

−
B,1

)
+

Ω

2

(
|0⟩⟨0|B,1σ̂

−
A,1 + |0⟩⟨0|A,1σ̂

−
B,1

)

Note that if we retained the doubly-excited states, Ĥe

would have terms ∝ Ω, J12, but those terms always in-
volve transitions into or out of the doubly-excited state
on the first pair of qubits.
We seek an effective theory of the system in the ground

state manifold, which takes the form

∂tρ̂eff = −i[Ĥeff , ρ̂eff ] +D[L̂1,eff ]ρ̂eff +D[L̂2,eff ]ρ̂eff ,
(D8)

where the effective Hamiltonian and effective jump oper-
ators are given by

Ĥeff = Ĥg −
1

2
V̂−
[
Ĥ−1

NH + (Ĥ−1
NH)

†
]
V̂+ (D9)

L̂k,eff =
√
γĉkĤ

−1
NHV̂+. (D10)

Here the non-hermitian Hamiltonian ĤNH describes evo-
lution in the excited state manifold due to the Hamilto-
nian and dissipation:

ĤNH = Ĥe −
iγ

2

(
ĉ†1ĉ1 + ĉ†2ĉ2

)
(D11)

= − iγ
2

(
σ̂+
A,1σ̂

−
A,1 + σ̂+

B,1σ̂
−
B,1 + 2ησ̂+

B,1σ̂
−
A,1

)
.

Notice that ĤNH only acts on the first pair of qubits.
To compute the effective theory, we must invert the

non-hermitian Hamiltonian. This task is made easy by
the fact that it acts only on the first pair of qubits,
as we only need to evaluate its matrix elements within
the excited state manifold on the first pair spanned by
{|01⟩1, |10⟩1}. Within this manifold,

Ĥ−1
NH =

2i

γ

(
σ̂−
A,1σ̂

+
A,1σ̂

+
B,1σ̂

−
B,1 + σ̂+

A,1σ̂
−
A,1σ̂

−
B,1σ̂

+
B,1

− 2ησ̂−
A,1σ̂

+
B,1

)
(D12)

is the inverse. We are thus ready to directly evaluate
Eqs. (D9) and (D10). Up to irrelevant global phases, the
jump operators evaluate to

L̂′
1,eff =

2J12√
γ

(
σ̂−
B,2 − ησ̂−

A,2

)
+

Ω
√
γ
(1− η) , (D13)

L̂′
2,eff =

√
1− η2

2J12√
γ
σ̂−
A,2 +

√
1− η2

Ω
√
γ
, (D14)

and the effective Hamiltonian evaluates to

Ĥ ′
eff = − i

2
η
4J2

12

γ

(
σ̂+
A,2σ̂

−
B,2 − σ̂+

B,2σ̂
−
A,2

)
(D15)

+ iη
ΩJ12
γ

(
σ̂−
A,2 − σ̂−

B,2 − h.c.
)
.

Note that the jump operators have constant, non-
operator terms ∝ Ω. Lindblad dissipators with jump
terms of the form L̂ = X̂ + a can always be decomposed
into a dissipator of only the operator X̂ and a Hamilto-
nian term via D[X̂ + a]ρ̂ = D[X̂]ρ̂− i[(ia∗X̂/2+h.c.), ρ̂].
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Applying this to L̂′
j,eff , we arrive at a new set of jump operators and effective Hamiltonian

L̂1,eff =
2J12√
γ

(
ησ̂−

A,2 − σ̂−
B,2

)
, (D16)

L̂2,eff =
√
1− η2

2J12√
γ
σ̂−
A,2, (D17)

Ĥeff =
1

2

2ΩJ12
γ

(
σ̂y
A,2 − (2η − 1) σ̂y

B,2

)
(D18)

− i

2
η
4J2

12

γ

(
σ̂+
A,2σ̂

−
B,2 − h.c.

)
.

Here we immediately identify the effective parameters
γeff = 4J2

12/γ and Ωeff = 2ΩJ12/γ As a final step, we
make local ±π/2 rotations about Z on the A2 and B2

qubits, respectively. This flips the relative sign between
ησ̂−

A,2 and σ̂
−
B,2 in L̂1,eff and the sign of the exchange term

in the Hamiltonian, and rotates the Rabi drives from σ̂y

to σ̂x (and flips the relative sign), thus we arrive at the
effective master equation quoted in the main text.
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