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Pseudoentanglement Ain’t Cheap

Sabee Grewal∗ Vishnu Iyer† William Kretschmer‡ Daniel Liang§

Abstract

We show that any pseudoentangled state ensemble with a gap of t bits of entropy requires
Ω(t) non-Clifford gates to prepare. This bound is tight up to polylogarithmic factors if linear-
time quantum-secure pseudorandom functions exist. Our result follows from a polynomial-time
algorithm to estimate the entanglement entropy of a quantum state across any cut of qubits.
When run on an n-qubit state that is stabilized by at least 2n−t Pauli operators, our algorithm
produces an estimate that is within an additive factor of t

2
bits of the true entanglement entropy.

1 Introduction

Recent work [ABF+24] introduced the notion of pseudoentangled quantum states, in analogy with
pseudorandomness in classical computation. An ensemble of quantum states is said to be pseu-
doentangled if states in the ensemble have low entanglement across every bipartition, but they are
difficult to distinguish from states with much larger entanglement. A more formal definition is the
following:

Definition 1.1. A pseudoentangled ensemble with gap f(n) vs. g(n) (where f(n) > g(n)) consists
of two ensembles of n-qubit states {|Ψk〉 , |Φk〉}k indexed by a key k ∈ {0, 1}poly(n) such that

• |Ψk〉 and |Φk〉 are preparable in quantum polynomial time.

• With probability at least 1 − poly(n) over the choice of k, the entanglement entropy across
every cut of size Ω(f(n)) of |Ψk〉 (respectively, |Φk〉) is Θ(f(n)) (respectively, Θ(g(n))).

• For any polynomial p(n), no polynomial-time quantum adversary can distinguish

ρ := E
k

î

|Ψk〉〈Ψk|
⊗p(n)

ó

and σ = E
k

î

|Φk〉〈Φk|
⊗p(n)

ó

with better than negligible success probability.

[ABF+24] showed that pseudoentangled states can be instantiated in polynomial time and
logarithmic depth, assuming the existence of quantum-secure one-way functions. So, under a
standard cryptographic assumption, there exists an efficient construction of pseudoentanglement.
Nevertheless, in applications, we sometimes need constructions that are even simpler and more
efficient, due to constraints beyond total gate complexity. For example, [ABF+24] suggested that
a construction of “holographic” pseudoentangled states might imply that the AdS/CFT dictionary
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is hard to compute. However, it remains open to build such pseudoentangled states that are
compatible with the laws of AdS/CFT. There are also various other measures of quantum state
complexity, beyond circuit depth. For example, a counting argument shows that stabilizer states
and free-fermionic states can require super-logarithmic depth, but these states are also “easy” in the
sense that their evolutions are efficiently classically simulable [AG04, Val02] and they are efficiently
learnable [AG08, Mon17, AG23].

In this work, we study the relationship between pseudoentanglement and non-Clifford com-
plexity. The Clifford group is a remarkably useful object in quantum information that consists of
all quantum circuits generated by Hadamard, Phase, and CNOT gates. Clifford gates are almost
universal for quantum computing: the addition of any single-qubit non-Clifford gate gives rise to
a universal gate set, as shown by Shi [Shi02]. Generally speaking, Clifford gates are “cheaper”
than non-Clifford gates, in a sense that can be formalized in a variety of applications. Examples
where the cost of a quantum operation is dominated by non-Clifford gates include quantum fault
tolerance based on magic state distillation [BK05], near-Clifford classical simulation algorithms
[AG04, BG16, RLCK19, BBC+19], and quantum learning algorithms based on the stabilizer for-
malism [LC22, GIKL23a, GIKL23b, GIKL23c, GIKL23d, LOLH22, LOH23, HG23, CLL23].

A related work by Grewal, Iyer, Kretschmer, and Liang [GIKL23d, GIKL23c] investigated
the stabilizer complexity of a different cryptographic object called pseudorandom quantum states.
These are ensembles of quantum states that cannot be distinguished from Haar-random by any
polynomial-time adversary. The main result of [GIKL23c], improving upon earlier work by the
same authors, shows that n-qubit pseudorandom states require at least Ω(n) non-Clifford gates.
The present work asks whether a similar lower bound on non-Clifford resources holds for quantum
pseudoentanglement.

As it happens, several of the known pseudoentangled state ensembles are also pseudorandom
states ensembles, including the only known instantiations of pseudoentanglement that achieve an
optimal gap of Θ(n) vs. ω(log n) [ABF+24, GTB23]. However, [ABF+24] further observed that a
pseudoentangled ensemble need not be pseudorandom, nor vice-versa. Hence, it is not clear that the
computational resources needed to construct pseudoentangled states mirror those for pseudorandom
states.

On the other hand, existing work has made clear that that some amount of non-Cliffordness
is needed to generate pseudoentangled states. Fattal, Cubitt, Yamamoto, Bravyi, and Chuang
[FCY+04] gave an efficient algorithm for computing the entanglement entropy across any bipar-
tition of a stabilizer state (i.e., a state preparable using Clifford gates only). Combined with
Montanaro’s algorithm for learning an unknown stabilizer state [Mon17], this implies that any
ensemble {|Ψk〉 , |Φk〉}k of stabilizer states cannot be pseudoentangled.

Our main result is an algorithm with a much stronger guarantee than the combination of
[FCY+04, Mon17]. In short, our algorithm estimates the entanglement entropy of an unknown
quantum state across any cut of qubits, where the accuracy of the estimate scales with the number
of Pauli operators that stabilize the state (i.e., the number of Pauli operators for which the state
is a +1-eigenvector).

Theorem 1.2 (Informal version of Corollary 4.4). There is a polynomial-time quantum algorithm
that takes as input

1. O(n3) copies of an n-qubit quantum state |ψ〉 that is stabilized by at least 2n−t Pauli operators,
and

2. A bipartition A ⊔B = [n] of qubits,
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and outputs an estimate of the entanglement entropy of |ψ〉 across the partition. The estimate is
within an additive factor of t

2 bits of the true entanglement entropy, with high probability.

We remark that the set of states for which this is applicable is rather large and includes states
prepared by a Clifford circuit with up to ⌊ t2⌋ auxiliary single-qubit non-Clifford gates (such as the
T -gate). When the algorithm is run on a stabilizer state (i.e., when t = 0), then our algorithm
outputs the entanglement entropy across any cut of qubits exactly, recovering the aforementioned
result of [FCY+04, Mon17]. On the other hand, the bounds degrade as t becomes too close to n.

As a straightforward consequence, we show that pseudoentangled state ensembles require a
number of non-Clifford gates that scales linearly in the pseudoentanglement gap.

Theorem 1.3 (Restatement of Corollary 4.5). Any family of Clifford circuits that produces a
pseudoentangled ensemble {|Ψk〉 , |Φk〉}k with entropy gap f(n) vs. g(n) satisfying f(n)− g(n) ≥ t
must use Ω(t) auxiliary non-Clifford single-qubit gates.

So, pseudoentangled ensembles with the optimal Θ(n) vs. ω(log n) gap require a linear number
of non-Clifford gates. Interestingly, this matches the lower bound on non-Clifford gates needed for
pseudorandom states [GIKL23c].

Corollary 4.5 is optimal up to polylogarithmic factors under plausible computational assump-
tions. In particular, Ma [Ma24] constructs pseudoentangled state ensembles in O(n polylog(n))
time under the assumption that linear-time quantum-secure pseudorandom functions exist.1 This
is to say that under this assumption, pseudoentangled state ensembles on n qubits require at most
O(n polylog(n)) non-Clifford gates in total. It is widely conjectured that linear-time classically-
secure pseudorandom functions exist [IKOS08, FLY22], and it is plausible that these (or other)
constructions are also secure against quantum adversaries.

Prior to this work, it was unknown if even O(1) non-Clifford gates sufficed to construct pseu-
doentangled states. While one can efficiently learn states prepared by O(log n) non-Clifford gates
[GIKL23a, GIKL23b], it is unclear how to leverage those algorithms to estimate entanglement
entropy. Following intuition from simulation algorithms for near-Clifford circuits, whose running
times scale exponentially in the number of non-Clifford gates, it was also conceivable that a super-
logarithmic number of non-Clifford gates would be sufficient to construct pseudoentangled states.

Concurrent Work While finalizing this work, we became aware of independent and concurrent
work by Gu, Oliveiro, and Leone [GOL24]. Their [GOL24, Lemma 7] resembles our Theorem 3.1.
However, we only prove bounds for the von Neumann entropy, whereas [GOL24] prove similar
bounds for any α-Rényi entanglement entropy, which captures the von Neumann entropy as a
special case.

1.1 Main Ideas

For an n-qubit quantum state |ψ〉, let Weyl(|ψ〉) denote the Pauli operators P for which P |ψ〉 = 1.2

Let A ⊔ B = [n] be a bipartition of qubits. Denote Weyl(|ψ〉)A as the subset of Pauli operators
in Weyl(|ψ〉) that act only the qubits indexed by A, and define Weyl(|ψ〉)B analogously. We use
dim(G) to refer to the minimum number of generators of a group G. It is easy to verify that
Weyl(|ψ〉), Weyl(|ψ〉)A, and Weyl(|ψ〉)B are abelian subgroups of the Pauli group. We prove the
following bounds on the entanglement entropy across (A,B), which hold for any quantum state.

1The details will be included in a forthcoming work due to Ma [Ma24].
2See Definition 2.10 for a formal definition. We find it convenient to work with Weyl operators, a subset of Pauli

operators that form a basis of C2
n
×2

n

. One can think of Weyl(|ψ〉) as the stabilizer group of |ψ〉 with all of the phase
information removed. For example, for any computational basis state |x〉, Weyl(|x〉) ≡ {I, Z}⊗n.
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Theorem 1.4 (Restatement of Theorem 3.1). Let ρ = |ψ〉〈ψ| be an n-qubit quantum state and let
A ⊔B = [n] be a partition of qubits. Then

dim (Weyl(|ψ〉))− dim (Weyl(|ψ〉)B)− |A| ≤ S(ρA) ≤ |A| − dim (Weyl(|ψ〉)A) ,

where ρA = trB(ρ) is the reduced density matrix of ρ after tracing out the qubits in B and S(ρA) is
the entanglement entropy across (A,B).

Crucially, the quantities in Theorem 1.4 can be (approximately) computed efficiently, given a
polynomial number of copies of |ψ〉. First, we learn generators for Weyl(|ψ〉) with Bell difference
sampling, a quantum measurement that consumes four copies of a state and produces a Pauli
operator (see the end of Section 2.1 for further detail). Bell difference sampling many times, along
with some classical post-processing, suffices to (approximately) learn generators of Weyl(|ψ〉), as
proven in prior work [GIKL23c, GIKL23a]. Then, using these generators of Weyl(|ψ〉), we can
compute (approximations of) Weyl(|ψ〉)A and Weyl(|ψ〉)B in polynomial time by solving a system of
linear constraints. We note that these approximations suffice, due to a result of Audenaert [Aud07,
Theorem 1], which relates the entanglement entropy of states that are close in trace distance.

Let us now explain how the upper and lower bounds in Theorem 1.4 are proved, and then
explain some applications. At a high level, we argue that there exist Clifford circuits acting locally
on either A or B that exhibit entanglement (or the lack thereof) in the system. Because the Clifford
circuits are local, we conclude that the original state must have the same entanglement (or lack
thereof). The formal proofs are given in Section 3.

We begin with the upper bound. Trivially, the entanglement entropy is at most |A|. To simplify
the presentation, define a := dim(Weyl(|ψ〉)A). By known techniques, one can construct a Clifford
circuit acting only on A that maps Weyl(|ψ〉)A to Pauli-Z strings on a subset of a qubits.3 This
has the effect of mapping the state |ψ〉 to a product state where a subset of a qubits in A are in
a computational basis state and the remaining qubits are in some arbitrary state. The a qubits
cannot be entangled with the rest of the system, and our upper bound follows.

For the lower bound, we argue that there exist Clifford circuits acting locally on A and B,
respectively, that distill EPR pairs across qubits of A and B. Observe that the EPR state is
stabilized by the Pauli operators generated by X ⊗X and Z ⊗Z. While these two Pauli operators
commute with one another, they locally anticommute (i.e., X and Z do not commute). Clifford
circuits acting locally on A (or B, respectively) do not affect the global or local commutation
relations. As such, any pair of locally anticommuting Pauli operators in Weyl(ψ) can be mapped,
via local Clifford circuits on A and B, respectively, to X ⊗X and Z ⊗Z, creating an EPR pair on
one qubit of A and B each. Our lower bound follows from counting the number of EPR pairs we
can produce in this way.

For both the upper and lower bounds, the Clifford circuits can be found efficiently. Indeed, a
similar approach played a crucial role in the tomography algorithms given in [GIKL23a, GIKL23b].
Additionally, one can view our lower bound as an efficient algorithm for entanglement distillation
of quantum states with large stabilizer dimension (Definition 2.11), which may be of independent
interest.

We conclude by explaining how to apply Theorem 1.4 to get our entanglement estimation
algorithm (Theorem 1.2) and the pseudoentanglement lower bound (Theorem 1.3). Our algo-
rithm outputs upper and lower bounds (u, ℓ), essentially by computing the quantities appearing in
Theorem 1.4. When run on a quantum state |ψ〉 that is stabilized by least 2n−k Pauli operators,
we prove that u − ℓ ≤ k. Therefore, u+ℓ

2 will always be within an additive factor of k
2 bits of the

3It is well known that Clifford unitaries map Pauli operators to Pauli operators, see Section 2.1 for more detail.
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true entanglement entropy. As a corollary, we obtain a lower bound on preparing pseudoentan-
gled states. Suppose we have two state ensembles {|Ψk〉}k and {|Φk〉}k that are prepared with
at most t non-Clifford gates. If we run our entropy estimation algorithm on copies drawn from
either ensemble, we will recover upper and lower bounds (u, ℓ) such that u− ℓ ≤ 2t. Therefore, the
pseudoentanglment gap between these ensembles is at most 2t.

2 Preliminaries

For a positive integer n, [n] := {1, 2, . . . , n}. For x = (a, b) ∈ F
2n
2 , a and b always denote the first

and last n coordinates of x, respectively. For vectors v1, . . . , vk, 〈v1, . . . , vk〉 denotes their span. For
matrix X ∈ C

d×d, ‖X‖1 denotes the sum of the absolute values of its singular values (known as the
trace norm, nuclear norm, or Schatten 1-norm). For quantum mixed states ρ, σ, disttr :=

1
2‖ρ−σ‖1

is the trace distance. For us, log denotes the logarithm with base 2, and ln is the logarithm with
base e ≈ 2.718.

Let A ⊔ B be a partition of [n]. We refer to (A,B) as a cut of n qubits. Let ρ be an n-qubit
quantum state. The entanglement entropy across (A,B) is defined as

S(ρA) := −tr(ρA log ρA) = −tr(ρB log ρB),

where ρA = trB(ρ) and ρB = trA(ρ) are the states obtained by tracing out B and A, respectively.
Define the binary entropy function H(p) by

H(p) = −p log(p)− (1− p) log(1− p).

The following is a well-known upper bound on H(p).

Fact 2.1.

H(p) ≤ (4p(1− p))1/ ln 4 ≤ e · p1/ ln 4 ≤ e · p0.72.

If two states are close in trace distance, then so is their entanglement entropy.

Lemma 2.2 (Fannes-Audenaert inequality [Aud07, Theorem 1]). Let ρ = |ψ〉〈ψ| and σ = |φ〉〈φ| be
n-qubit states satisfying disttr(|ψ〉 , |φ〉) ≤ ε, and let A ⊔B = [n] be a partition. Then

|S(ρA)− S(σA)| ≤ εn+ H(ε)

2.1 Symplectic Vector Spaces and Weyl Operators

There is a deep connection between quantum information and symplectic vector spaces over F2 that
we leverage throughout this work. Many in the quantum information and theoretical computer
science communities may not be familiar with this connection, so we take care to review these
notions here.

To obtain a symplectic vector space, one must equip a vector space with a symplectic form.

Definition 2.3 (Symplectic form). Let V be a vector space over a field F. A symplectic form is a
mapping ω : V × V → F that satisfies the following conditions.

1. Bilinear: ω is linear in each argument separately.

2. Alternating: For all v ∈ V , ω(v, v) = 0.

3. Non-degenerate: If for all v ∈ V , ω(u, v) = 0, then u = 0.

5



A symplectic vector space is a pair (V, ω), where V is a vector space and ω is a symplectic form.
We will equip F

2n
2 with the standard symplectic form, which we refer to as the symplectic product.

Definition 2.4 (Symplectic product). For x, y ∈ F
2n
2 , we define the symplectic product as [x, y] =

x1 · yn+1 + x2 · yn+2 + · · ·+ xn · y2n + xn+1 · y1 + xn+2 · y2 + · · ·+ x2n · yn.

In this work, one should always view F
2n
2 as a symplectic vector space equipped with the

symplectic product.
The symplectic product allows us to define the symplectic complement.

Definition 2.5 (Symplectic complement). Let T ⊆ F 2n
2 be a subspace. The symplectic complement

of T , denoted by T⊥, is defined by

T⊥ := {a ∈ F
2n
2 : ∀x ∈ T, [x, a] = 0}.

We will also need the notion of isotropic and symplectic subspaces.

Definition 2.6 (Isotropic subspace). A subspace W ⊆ F
2n
2 is isotropic when W ⊆ W⊥. Equiva-

lently, W is isotropic if and only if [w1, w2] = 0 for all w1, w2 ∈W .

Definition 2.7 (Symplectic subspace). A subspace W ⊆ F
2n
2 is symplectic when W ∩W⊥ = {0}.

Every symplectic space has a standard basis, which we refer to as the symplectic basis.

Fact 2.8. Any 2d-dimensional symplectic space over F2 has a basis {x1, . . . , xd, z1, . . . , zd} such
that

[xi, zj ] = δij and [xi, xj ] = [zi, zj ] = 0.

Any basis with the above form is referred to as a symplectic basis.

The direct sum of two symplectic vector spaces is also symplectic. This is a basic fact, but we
include a proof for completeness.

Fact 2.9. If V,W are symplectic vector spaces over F2, so is their direct sum.

Proof. Denote the symplectic forms on V and W by ωV and ωW , respectively. Let A := V ⊕W ,
where V ⊕W = {(v,w) : v ∈ V,w ∈ W}. Define the form ωA on A by ωA(a1, a2) = ωV (v1, v2) +
ωW (w1, w2) where ai = vi + wi. We will prove that (A,ωA) is symplectic.

It is obvious that A is a vector space, so it remains to prove that ωA is a symplectic form. Recall
from Definition 2.3 that we must show that ωA is bilinear, alternating, and non-degenerate. It is
clear that ωA is bilinear because it is the sum of two bilinear forms. For a = (v,w) ∈ A, we have
ωA(a, a) = ωV (v, v) + ωW (w,w) = 0, so ωA is alternating.

Finally, we prove that ωA is non-degenerate. Suppose we have an element a = (v,w) such
that for all a′ ∈ A we have ωA(a, a

′) = ωV (v, v
′) + ωW (w,w′) = 0. Now choose a v′ ∈ V such

that [v, v′] = 0 (one must exist since V is symplectic). ωA(a, a
′) = ωV (v, v

′) + ωW (w,w′) = 0 by
assumption, and, because ωV (v, v

′) = 0, it follows that ωW (w,w′) = 0 for all w′ ∈W . Since ωW is
non-degenerate, w = 0. A similar argument shows that v = 0. Therefore, ωA is non-degenerate.

Each element of F2n
2 can be identified with a Weyl operator. For x = (a, b) ∈ F

2n
2 , let a′, b′ be

the embeddings of a, b into Z
n, respectively. Then the Weyl operator Wx is defined as

Wx := ia
′·b′(Xa1Za1)⊗ · · · ⊗ (XanZbn).
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The symplectic structure of F2n
2 respects the commutation relations of the Weyl operators. Specif-

ically, for x, y ∈ F
2n
2 , [x, y] = 0 iff WxWy = WyWx. Therefore, working with symplectic vector

spaces lets us discard cruft while retaining relevant algebraic structure. We also note that Weyl
operators form an orthogonal basis of C2n×2n with respect to the Hilbert-Schmidt inner product,
so every quantum state and unitary transformation can be written as a linear combination of Weyl
operators.

We define Z := 0n × F
n
2 as the subset of F2n

2 corresponding to Pauli-Z strings. We define the
unsigned stabilizer group of a quantum state as the subspace of F2n

2 that stabilizes or anti-stabilizes
the state.

Definition 2.10 (Unsigned stabilizer group). Given an n-qubit quantum state |ψ〉, Weyl(|ψ〉) :=
{x ∈ F

2n
2 :Wx |ψ〉 = ± |ψ〉} is the unsigned stabilizer group of |ψ〉.

It is easy to verify that Weyl(|ψ〉) is an isotropic subspace. We define the stabilizer dimension,
which quantifies the size of the Pauli group stabilizing a given state.

Definition 2.11 (Stabilizer dimension). Let |ψ〉 be a n-qubit pure state. The stabilizer dimension
of |ψ〉 is the dimension of Weyl(|ψ〉) as a subspace of F2n

2 .

The stabilizer dimension of a state is closely related to the number of non-Clifford gates required
to prepare it.

Fact 2.12 ([GIKL23c, Lemma 4.2]). Let |ψ〉 be an n-qubit state which is the output of a Clifford
circuit with at most t single-qubit non-Clifford gates. Then |ψ〉 has stabilizer dimension at least
n− 2t.

For a Clifford circuit C and any x ∈ F
2n
2 , we define C(x) to be the y ∈ F

2n
2 such that Wy =

±CWxC
†. We can extend this notation to subsets S of F2n

2 by writing C(S) = {C(x) : x ∈ S}.
Conjugation by any Clifford circuit is an automorphism of the Pauli group. Furthermore, C(x)
preserves the symplectic form.

Fact 2.13. For any Clifford circuit C and x, y ∈ F
2n
2 , [C(x), C(y)] = [x, y].

Proof. Recall thatWC(x)WC(y) = (−1)[C(x),C(y)]WC(y)WC(x). Suppose thatWC(x) = (−1)c1CWxC
†

and WC(y) = (−1)c2CWyC
†. We have

WC(x)WC(y) = (−1)c1+c2CWxC
†CWyC

†

= (−1)c1+c2CWxWyC
†

= (−1)[x,y](−1)c1+c2CWyWxC
†

= (−1)[x,y](−1)c1+c2CWyC
†CWxC

†

= (−1)[x,y]WC(y)WC(x).

Thus [C(x), C(y)] = [x, y].

Since the inverse of any Clifford circuit is itself a Clifford circuit, we have the following as a
simple corollary:

Corollary 2.14. Given a subspace H ⊆ F
2n
2 and a Clifford circuit C, H is isotropic (resp. sym-

plectic) if and only if C(H) is isotropic (resp. symplectic).
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Finally, we remark on Bell difference sampling [Mon17, GNW21], an algorithmic primitive used
in this work. Define pψ(x) := 2−n 〈ψ|Wx|ψ〉

2. Bell difference sampling is a quantum measurement
that takes four copies of a state |ψ〉, and produces a sample x ∈ F

2n
2 drawn from the distribution

qψ which is defined as

qψ(x) :=
∑

a∈F2n

2

pψ(a)pψ(x+ a).

This process takes O(n) time. We refer readers to [GIKL23c, Section 2] for further detail.

3 Entanglement Entropy Bounds

We prove upper and lower bounds on the entanglement entropy across any cut of qubits for any
n-qubit quantum state |ψ〉. The quality of our bounds depends on Weyl(|ψ〉). For example, if
dim(Weyl(|ψ〉)) = 0, our bounds become trivial, and, if dim(Weyl(|ψ〉)) = n (i.e., |ψ〉 is a stabilizer
state), our bounds are tight, recovering the main result of [FCY+04].

To state our bounds, we must introduce some notation. Let A ⊆ [n] be a subset of qubits, and
let S be a subspace of F2n

2 . We denote by SA the intersection of S with operators that act only on
qubits indexed by A. In symbols, we can express this as follows:

SA := {(x, z) ∈ S : ∀i ∈ [n] \ A, xi = zi = 0}.

So, for example,
ZA := {(0n, z) ∈ F

2n
2 : ∀i ∈ [n] \ A, zi = 0}

are essentially the Pauli-Z strings that act on the qubits indexed by A.
Computationally speaking, one can compute SA efficiently, given a basis of S, by solving a

system of linear constraints to zero all coordinates corresponding to i ∈ [n] \ A.
In the remainder of this section, we prove the following theorem.

Theorem 3.1. Let ρ = |ψ〉〈ψ| be an n-qubit quantum state and let A ⊔ B = [n] be a partition of
qubits. Then

dim (Weyl(|ψ〉))− dim (Weyl(|ψ〉)B)− |A| ≤ S(ρA) ≤ |A| − dim (Weyl(|ψ〉)A) .

3.1 Proof of Upper Bound

Lemma 3.2. Let ρ = |ψ〉〈ψ| be an n-qubit quantum state and let A ⊆ [n] be a partition of qubits.
Then

S(ρA) ≤ |A| − dim (Weyl(|ψ〉)A) .

Proof. Let A′ ⊆ A be any set of size dim(Weyl(|ψ〉)A). By known techniques, one can find a
Clifford circuit C acting only on A that maps the Paulis in Weyl(|ψ〉)A to ZA′ .4 As a consequence,
this C behaves as C |ψ〉 = |x〉A′ |φ〉[n]\A′ , where |x〉A′ is a computational basis state on A′ and
|φ〉[n]\A′ is an arbitrary state on the remaining qubits. Because C is local to A, it does not affect
the entanglement entropy across the partition. Furthermore, it is clear that the qubits |x〉A′ are
unentangled from the rest of the system. As such, only the qubits in A\A′ can exhibit entanglement
across the partition, and there are |A| − |A′| = |A| − dim (Weyl(|ψ〉)A) many such qubits. So, the
entanglement entropy across the partition is bounded above by |A| − dim (Weyl(|ψ〉)A).

4An explicit algorithm for computing this C can be found in [GIKL23a, Section 3].
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3.2 Proof of Lower Bound

Lemma 3.3. Let V ⊆ F
2n
2 be a symplectic subspace of dimension 2v and have S ⊆ V be a subspace

of dimension v + k. There exists a symplectic subspace T ⊆ S with dimension at least 2k.

Proof. Take any nonzero e1 ∈ S. Because dim(S) > v, there exists some f1 ∈ S such that
[e1, f1] = 1. Let W1 be the span of e1 and f1. We will prove that S = W1 ⊕

(

W⊥
1 ∩ S

)

is a direct
sum. First, we argue that W1 ∩

(

W⊥
1 ∩ S

)

= {0}.5 Take z ∈W1. Since W is the span of e1 and f1,
we can write z = αe1 + βf1. If z is also in W⊥ ∩ S ⊆ W⊥, then 0 = [x, z] = β and 0 = [y, z] = α,
so z = 0. Next, we prove that any v ∈ S can be written as a sum of w1 ∈ W1 and wc1 ∈ W⊥

1 ∩ S.
Clearly w1 := [v, e1]f1 + [v, f1]e1 ∈W1, and define wc1 := v + [v, e1]f1 + [v, f1]e1. It is easy to check
[e1, w

c
1] = [f1, w

c
1] = 0, so wc1 ∈ W⊥

1 . Furthermore, if since e1, f1 ∈ W1 ⊂ S, wc1 ∈ S as well. It is
clear that v = w1 + wc1.

Repeat this process to collect pairs (e1, f1), . . . , (er, fr) until we have that S ∩rj=1 W
⊥
j doesn’t

contain an er+1 and fr+1 such that [er+1, fr+1] = 1. Observe by linearity that any object in
x ∈ ∩rj=1W

⊥
j must have [x, y] = 0 for all y ∈

⊕r
i=1Wi. Consequently, S ∩rj=1 W

⊥
j ⊕ 〈e1, . . . , er〉

is an isotropic subspace of dimension v + k − r. Since all isotropic subspaces within V must have
dimension at most v,

v + k − r ≤ v =⇒ r ≥ k.

Hence,
⊕r

i=1Wi has dimension at least 2k. Since each Wi is symplectic, their direct sum is sym-
plectic by Fact 2.9.

Lemma 3.4. Let ρ = |ψ〉〈ψ| be an n-qubit quantum state and let A ⊔ B = [n] be a partition of
qubits. Then

S(ρA) ≥ dim (Weyl(|ψ〉))− dim (Weyl(|ψ〉)B)− |A|.

Proof. Let {bi}i be a basis for Weyl(|ψ〉)B , and let {ei}i be an extension such that, together,
they span Weyl(|ψ〉). Define the subspace S := 〈{ei}i〉. Clearly dim(S) = dim(Weyl(|ψ〉)) −
dim(Weyl(|ψ〉)B) and S ∩

(

F
2n
2

)

B
= {0}. Define eAi ∈

(

F
2n
2

)

A
to be ei except with the coordinates

not in A set to 0.
Define SA := 〈{eAi }i〉.

Claim 3.5. dim(SA) = dim(S) = dim(Weyl(|ψ〉))− dim(Weyl(|ψ〉)B)

Proof. dim(S) ≥ dim(SA) is trivial, so we just need to argue that the vectors {eAi }i are
linearly independent. For the sake of contradiction, assume they’re not, i.e., that there
exists some set of indices I ⊆ [dim(S)] such that

∑

i∈I e
A
i = 0. Note that

∑

i∈I ei 6= 0
because is {ei}i is a basis by construction. Therefore,

∑

i∈I ei will be zero on the
coordinates of A, but not B. That is,

∑

i∈I ei ∈ Weyl(|ψ〉)B , a contradiction. We
conclude that dim(SA) = dim(Weyl(|ψ〉))− dim(Weyl(|ψ〉)B).

(F2n
2 )A is a symplectic subspace, and each eAi ∈ (F2n

2 )A. Therefore, SA is a subspace of a
2|A|-dimensional symplectic subspace. By Lemma 3.3, there must exist some symplectic subspace
TA ⊆ SA of dimension at least 2

(

dim
(

SA
)

− |A|
)

= 2 (dim (Weyl(|ψ〉))− dim (Weyl(|ψ〉)B)− |A|).
Let {tAi }i be a symplectic basis of TA. We can express each basis element as tAi =

∑

j αje
A
j for

some setting of αj ∈ {0, 1}. Define ti :=
∑

j αjej , and observe that their span defines a subspace

T ⊆ F
2n
2 that shares the same dimension as T ′. We can then similarly define tBi ∈

(

F
2n
2

)

B
to be ti

5In fact, because W1 is symplectic, even W1 ∩W
⊥
1 = {0}.
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except with the coordinates not in B set to 0. Observe that ti = tAi + tBi . By the linearity of the
symplectic product and the fact that Weyl(|ψ〉) is isotropic,

0 = [ti, tj ] = [tAi , t
A
j ] + [tBi , t

B
j ] =⇒ [tAi , t

A
j ] = [tBi , t

B
j ].

Therefore, {tBi } is also a symplectic basis for a symplectic subspace of
(

F
2n
2

)

B
.

Using a Clifford circuit CA acting locally on the qubits in A, we can perform the symplectic
map that takes {tAi } to the symplectic basis of

(

F
2n
2

)

A′ where A
′ ⊂ A and |A′| = dim(T ).6 Note

that CA(tBi ) = tBi . Using a second Clifford circuit CB acting locally on the qubits in B, we can
take {tBi } to the symplectic basis of

(

F
2n
2

)

B′ where B′ ⊂ B and |B′| = |A′| = dim(T ). Note

CB(CA(tAi )) = CA(tAi ).

Claim 3.6. CB(CA(T )) is a Lagrangian subspace of
(

F
2n
2

)

A′⊔B′ .

Proof. It is clear from the actions of CA and CB that each CB(CA(ti)) is a member of
(

F
2n
2

)

A′⊔B′ . Furthermore, dim
(

CB(CA(T ))
)

= dim(T ), which is half the dimension of
(

F
2n
2

)

A′⊔B′ . Finally, since CB
(

CA (Weyl(|ψ〉))
)

is isotropic, so too must CB(CA(T ))

as a subset of CB
(

CA (Weyl(|ψ〉))
)

.

We conclude that the state of the qubits indexed by A′ ⊔B′ is a stabilizer state |φ〉 of 2 dim(T )
qubits that is unentangled from the rest of the system.

Our last step is to prove that CB(CA(T ))B′ = {0}, which will imply that the entanglement
across (A′, B′) is dim(T )/2 by [FCY+04, Eq. 1]. First recall that S∩

(

F
2n
2

)

B
= {0} by construction,

which implies T ∩
(

F
2n
2

)

B
= {0} because T ⊆ S. Next, we note that CA has no effect on

(

F
2n
2

)

B

since its action is local to A. Furthermore, CB simply permutes
(

F
2n
2

)

B
(and cannot map elements

into (F2n
2 )B). Hence,

CB(CA(T )) ∩
(

F
2n
2

)

B
= CB(CA(T )) ∩ CB(CA(

(

F
2n
2

)

B
) = T ∩

(

F
2n
2

)

B
= {0}.

Finally, since
(

F
2n
2

)

B′ ⊆
(

F
2n
2

)

B
,

CB(CA(T ))B′ = CB(CA(T )) ∩
(

F
2n
2

)

B′ = {0}.

Because CA and CB act locally on A and B respectively, they do not change the entanglement
between A and B, thus completing the proof.

4 The Algorithm

We present and analyze our algorithm for estimating the entanglement entropy across any bipar-
tition of qubits. At a high level, our algorithm computes the upper and lower bounds given in
Theorem 3.1. The details are presented below in Algorithm 1.

6Again, this mapping is described in detail in [GIKL23a, Section 3].
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Algorithm 1: Estimating Entanglement Entropy

Input:
8 ln(1/δ)+16n

ε2
copies of ρ = |ψ〉〈ψ|, A ⊔B = [n], ε ∈ (0, 3/8), and δ ∈ (0, 1]

Promise: |ψ〉 has stabilizer dimension at least n− k
Output: ℓ, u ∈ R such that ℓ ≤ S(ρA) ≤ u and 0 ≤ u− ℓ ≤ k +max{0, 2(εn + H(ε)) − 1},

with probability at least 1− δ
1 Perform Bell difference sampling to draw 2 ln(1/δ)+4n

ε2
samples from qψ.

2 Let S be the symplectic complement of the subspace spanned by the samples.

3 Let r :=

®

0 dim(S) = n− k,

εn+ H(ε) dim(S) > n− k.

4 Let u := min{|A| − dimSA, |B| − dimSB}+ r.
5 Let ℓ := max{dimS − dimSB − |A|,dimS − dimSA − |B|} − r.
6 return (ℓ, u)

Let us make a few remarks on Algorithm 1. Note that the bounds (u, ℓ) produced by our
algorithm are within a range of k + max{0, 2 (εn+ H(ε)) − 1} rather than k + 2 (εn+ H(ε)) as
one might näıvely expect. This comes from a subtle case in our analysis, the details of which are
contained in the proof of Theorem 4.3. We observe that in the case where our sampling procedure
happens to find the exact subspace Weyl(|ψ〉), we no longer need to apply Lemma 2.2. Conversely,
when our sampling procedure fails to find Weyl(|ψ〉) exactly, the distance between the bounds in
Lemmas 3.2 and 3.4 decreases by at least 1.

We also note that the Bell difference sampling procedure only needs to be performed once. After
that, one can compute entanglement entropy bounds across any cut of qubits with only classical
post-processing.

To prove the correctness of Algorithm 1, we use the following two statements. The first is about
the time complexity of computing symplectic complements. The second says that Bell difference
sampling suffices to approximately recover Weyl(|ψ〉).

Fact 4.1 ([GIKL23a, Lemma 3.1]). Given a set of m vectors whose span is a subspace H ⊆ F
2n
2 ,

there is an algorithm that outputs a basis for H⊥ in O (mn ·min(m,n)) time.

Lemma 4.2 ([GIKL23a, Proof of Theorem 5.1]). Let |ψ〉 have stabilizer dimension at least n− k,

and let S be the symplectic complement of the space spanned by 2 ln(1/δ)+4n
ε samples from qψ, for

some ε ∈ (0, 3/8). Then with probability at least 1 − δ, there exists a state |φ〉 such that S =
Weyl(|φ〉) ⊇ Weyl(|ψ〉) and |〈ψ|φ〉|2 ≥ 1− ε.

We now show our main result, namely that Algorithm 1 is correct as specified.

Theorem 4.3. Algorithm 1 is correct and runs in time O
(

n3+n2 log(1/δ)
ε2

)

.

Proof. Let S be the symplectic complement of the subspace spanned by our 2 ln(1/δ)+4n
ε2

samples
from qψ. We note that these samples take 4 copies of ρ and O(n) time each, and that S can be

computed in time O
(

n3+n2 log(1/δ)
ε2

)

by Fact 4.1.

By Lemma 4.2, with probability at least 1−δ, there exists a state |φ〉 such that S = Weyl(|φ〉) ⊇
Weyl(|ψ〉) and |〈ψ|φ〉|2 ≥ 1− ε2, and therefore disttr(|ψ〉 , |φ〉) ≤ ε. Assume henceforth that S and
|φ〉 satisfy these criteria. In fact, we can further assume disttr(|ψ〉 , |φ〉) ≤ d, where

d :=

®

0 dim(S) = n− k,

ε dim(S) > n− k,

11



because if dim(S) = n− k, we must have S = Weyl(|ψ〉), and hence we can choose |φ〉 = |ψ〉.
Let σ = |φ〉〈φ|. By Lemma 3.2, we have

u′ := min{|A| − dimSA, |B| − dimSB} ≥ S(σA).

Similarly, Lemma 3.4 implies

ℓ′ := max{dimS − dimSB − |A|,dimS − dimSA − |B|} ≤ S(σA).

Note that r = dn + H(d), ℓ = ℓ′ − r, and u = u′ + r. Recalling that disttr(|ψ〉 , |φ〉) ≤ d,
Lemma 2.2 implies that ℓ ≤ S(ρA) ≤ u. So, this establishes that u and ℓ are upper and lower
bounds, respectively, on the entanglement entropy.

It remains to bound the difference between u and ℓ. Observe that

u− ℓ = (u′ + r)− (ℓ′ − r)

≤ (|A| − dimSA)− (dimS − dimSA − |B|) + 2r

= |A|+ |B| − dimS + 2r

= n− dimS + 2r.

In the case where dimS = n− k, we have u− ℓ ≤ k. Otherwise, when dim(S) > n− k, we have

n− dimS + 2r ≤ n− (n− k + 1) + 2r

= k + 2r − 1

= k + 2(εn + H(ε)) − 1.

In both cases, for all S ⊇ Weyl(|ψ〉), we have

u− ℓ ≤ k +max {0, 2r − 1} ,

which completes the proof.

If we take ε to be sufficiently small, we can disregard the additional additive error 2r − 1.

Corollary 4.4. By setting ε = 1
8n , Algorithm 1 outputs upper and lower bounds on the entan-

glement entropy (u, ℓ) such that u − ℓ ≤ k with probability at least 1 − δ. It now uses 1024n3 +
512n2 ln(1/δ) samples of |ψ〉 and runs in time O

(

n5 + n4 log(1/δ)
)

.

Proof. Assume n ≥ 2, because we don’t need to compute the entanglement of a single qubit state.
Fact 2.1 tells us that H(ε) < 0.37, and therefore 2(εn + H(ε)) − 1 < 2(1/8 + 0.37) − 1 < 0. So,
max {0, 2(εn +H(ε))− 1} = 0. We then appeal to Theorem 4.3.

As a corollary, we can show a lower bound on the number of non-Clifford gates necessary to
prepare pseudoentangled states.

Corollary 4.5. Any family of Clifford circuits that produces a pseudoentangled ensemble {|Ψk〉 , |Φk〉}k
with entropy gap f(n) vs. g(n) satisfying f(n) − g(n) ≥ t must use Ω(t) auxiliary non-Clifford
single-qubit gates.

12



Proof. Suppose t′ non-Clifford gates are used to construct {|Ψk〉}k and {|Φk〉}k. We argue that
if 2t′ < t, these state ensembles can be distinguished with non-negligible advantage in polynomial
time.

All such states |Ψk〉 and |Φk〉 have stabilizer dimension at least n − 2t′, by Fact 2.12. The
distinguisher, then, is the following: given copies of an unknown |ψ〉 belonging to one of the two
ensembles, run Algorithm 1 according to Corollary 4.4, assuming stabilizer dimension at least n−2t′

and δ = 1/3. This produces bounds (u, ℓ) on the entanglement entropy of |ψ〉 across some fixed
cut (A,B) of size n/2. Then, output that |ψ〉 ∈ {|Ψk〉}k if ℓ ≤ f(n) ≤ u, and output |ψ〉 ∈ {|Φk〉}k
otherwise. The algorithm guesses correctly with probability at least 2/3, because u− ℓ ≤ 2t′, so at
most one of f(n) and g(n) can lie between u and ℓ.
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