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Abstract. Predicting the performance of various infrastructure design options
in complex federated infrastructures with computing sites distributed over a
wide area network that support a plethora of users and workflows, such as the
Worldwide LHC Computing Grid (WLCG), is not trivial. Due to the complex-
ity and size of these infrastructures, it is not feasible to deploy experimental
test-beds at large scales merely for the purpose of comparing and evaluating
alternate designs. An alternative is to study the behaviours of these systems us-
ing simulation. This approach has been used successfully in the past to identify
efficient and practical infrastructure designs for High Energy Physics (HEP).
A prominent example is the Monarc simulation framework, which was used
to study the initial structure of the WLCG. New simulation capabilities are
needed to simulate large-scale heterogeneous computing systems with complex
networks, data access and caching patterns. A modern tool to simulate HEP
workloads that execute on distributed computing infrastructures based on the
SimGrid and WRENCH simulation frameworks is outlined. Studies of its ac-
curacy and scalability are presented using HEP as a case-study. Hypothetical
adjustments to prevailing computing architectures in HEP are studied providing
insights into the dynamics of a part of the WLCG and candidates for improve-
ments.
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1 Introduction

The physics programs in high energy physics (HEP) at the Large Hadron Collider (LHC)
would not be conceivable without the computing infrastructure provided by the Worldwide
LHC Computing Grid (WLCG) [} 2]. This complex large-scale distributed computing sys-
tem is crucial for the processing and storage of the physics data produced by the collabora-
tions at the LHC, e.g., the Compact Muon Solenoid (CMS) [3]]. With the start of the second
phase of the LHC program by the end of the decade, the so-called high-luminosity LHC (HL-
LHC), an increase by a factor of ten in the data production rate and a proportional increase
of the related computing demands are expected. Such a dramatic increase of the storage and
compute requirements will not be met solely by traditional upgrades of the current WLCG
resources. Hence, the available resources will have to be utilized more efficiently. Identifying
changes in the design of an infrastructure as complex, heterogeneous and large as the WLCG,
so as to maximize performance and efficiency, is challenging.

To address the above challenge, we propose to study computing infrastructure designs in
simulation, which has proved useful in the past for determining the original structure of the
WLCG [4}15]. Simulation enables the comparison of the execution of HEP applications on
several candidate compute and storage infrastructures without the need to build testbeds and
without disrupting the execution of workflows on WLCG production systems. In this paper,
we present a novel simulation tool and illustrate its capacity to simulate HEP applications
executions on complex large-scale distributed computing systems accurately.

2 Simulation Tool

We have developed a simulator in C++ to enable the simulation and performance analysis
of HEP applications using two state-of-the-art discrete-event open-source simulation frame-
works: SimGrid [|6, 7] and WRENCH [18,|9]]. The simulation models in both frameworks have
been validated [10]] and make it possible to achieve sensible trade-offs between simulation ac-
curacy and simulation scalability (i.e., speed and memory footprint). Hereafter we describe
these frameworks, the simulator’s implementation, the simulators calibration and validation
procedure, and the computational complexity of the simulator.

2.1 Supporting Simulation Frameworks

SimGrid provides low-level simulation abstractions, implemented in C++, for the develop-
ment of simulators of distributed computing systems. Some of these abstractions are used
to describe hardware platforms, which comprise network, compute, and storage resources.
Network resources consist of network links, defined by latencies and bandwidths. Com-
pute resources consist of multicore processing units, defined by numbers of cores and core
compute speeds. Storage resources consist of disks, described by read and write bandwidths.
Routes can be defined between these resources, as vectors of network links, to define the plat-
form’s network topology. Other abstractions are then used to describe simulated processes,
or actors that execute on this platform. Each actor can execute arbitrary C++ code and spawn
activities (i.e., communication, computation, or I/O) that utilize hardware resources. A key
feature of SimGrid is that it formulates the problem of computing the rate of progress of
all simulated activities at a given time as a unified constrained optimization problem. The
constraints involve the activities’ rates of progress, scaling factors, and hardware resource
capacities. The objective function corresponds to Max-Min fairness, i.e., maximizing the
minimum rate of progress over all activities, where these rates of progress are considered to
be real numbers. This problem must be solved each time an activity starts or completes and



SimGrid implements a highly optimized solver that is invoked repeatedly throughout the sim-
ulation’s execution. This optimization problem formulation makes it possible to accurately
model complex real-world behaviors with low computational complexity [10].

WRENCH builds on SimGrid to ease simulator implementation [8]]. It comes with al-
ready implemented abstractions of commonplace components of such systems, which can
be used as building blocks for implementing simulators of complex systems, while benefit-
ing from the accurate and scalable simulation models provided by SimGrid. WRENCH pro-
vides implementations for several kinds of services such as compute services (e.g., bare-metal
servers, batch-scheduled clusters, HTCondor deployments, cloud infrastructures) and storage
services (e.g., simple file servers, proxy file services with caching capabilities, XRootD de-
ployments). The user defines a hardware platform and defines which services are deployed
on that platform and on which resources. The user also implements one or more simulation
controllers, i.e., processes that interact with the deployed services to execute some applica-
tion workload of interest. This interaction is implemented through each service’s API. For
instance, WRENCH provides the notion of a job that comprises tasks with arbitrary depen-
dencies, can be submitted to a compute service, and eventually succeeds or fails.

2.2 Simulator Implementation

At the onset of this project, WRENCH provided all abstractions necessary to simulate the ex-
ecution of batch computation, where each job simply consists of reading input files, perform-
ing computation, and writing output files. However, such batch jobs make up only a small
fraction of the workloads in HEP. Most jobs, instead, are streaming jobs that pipeline input
reading, computation, and output writing with a granularity defined, e.g., by the XRootD
block size. To support the simulation of streaming jobs, we implemented in WRENCH the
concept of a custom action that allows the user to define a job’s behavior, such as streaming,
based on an arbitrary C++ function.

Besides streaming jobs, other key behaviors of real-world executions that we wish to
simulate are data locality and caching. Specifically, when attempting to read input data, a
job checks a list of cache locations where the data may be available. If found, then the data
is obtained from that location. Otherwise, the data is obtained from authoritative remote
storage locations that hold input data at the onset of the execution. In this case, the data is
then copied to the caches, which will be able to answer future requests for access to this same
data. When a cache’s storage capacity would be exceeded, data is evicted based on some
classical eviction policy, such as Least Recently Used (LRU). We implemented this behavior
by using another custom action. Note that this caching feature is useful in general and, as
such, has been implemented in WRENCH as part of the storage service.

WRENCH provides features for monitoring of the simulation. To avoid a too large
amount of monitoring data from large-scale executions of our simulator, we implemented
our own lightweight simulation monitoring component to track relevant information for our
purpose: job identifiers, job execution times, data cache hit rates, and data transfer times.

As explained in the next section, we simulate the execution of multiple concurrent work-
loads. A distinct controller is in charge of the execution of each of these workloads. Each
controller interacts with storage services deployed on the platform including XRootD, and
with an HTCondor compute service that provides access to and schedules jobs on a set of
bare-metal compute services deployed on the platform’s compute resources.

2.3 Simulator Usage

The simulator takes as input: (i) a description of the compute platform; (ii) a specification
of the workloads that execute on this platform; and (iii) a specification of the data present



in caches at the onset of the execution. We configure a workload as a set of individual jobs,
each executing pipelined input reading and computation based on input file sizes and a data
transfer block size, and transferring an output file to a storage. Each workload is characterized
by various parameters, such as the number and type of jobs, the submission time, probability
distributions for the number and size of input files, the required CPU cores and memory, a
computational volume per byte of input data, and the size of the output file.

The above input fully characterizes the execution to be simulated, including the schedul-
ing of the jobs and the execution of their underlying activities, which trigger computations,
I/O operations, and network communications. Furthermore, input files are cached when a
cache storage location is available in a predefined vicinity of the machine that executes a job,
and LRU files are evicted from that cache when full. When a job completes, its output files
are written to the predefined storage locations. When all jobs have completed, the simulation
terminates, and all relevant information to study each individual job is provided.

2.4 Calibration & Validation

The simulation models implemented in the simulator are meant to mimic the empirically
observed behavior of application executions on real-world platforms. So as to capture a
range of possible execution scenarios, these models come with free parameters that have to be
tuned to best match real-world behaviors. Picking appropriate values for, or calibrating, these
parameters was performed based on ground-truth data. This data comprises a set of collected
execution traces of jobs executions on a controlled, dedicated, and distributed test platform,
where the jobs and the platforms have known characteristics. The calibration process consists
in quantitatively comparing these real-world traces to traces generated by the simulator, and
adjusting parameter values to achieve best possible match.

Once the simulator is calibrated it is validated against ground-truth data other than that
used for performing the calibration. When the simulated execution traces match those in the
ground-truth data, we conclude that the simulation models, and their calibration, are valid.
A key performance metric, that is computed from real-world or simulated execution traces,
is the job execution time, on each machine in the platform. This metric depends highly
on the fraction of input files that are initially in cache at the beginning of the execution
(which we call the hitrate). Fig.[I] shows job execution times vs. hitrate, in the real-world
and in simulation for a platform with three worker nodes. All worker nodes have the same
architecture but two of them have 12 cores and the third has 24 cores.

The calibrated simulation is able to reproduce the observed medians of the job execution
times in the validation data without any adjustments to the simulation parameters. However,
as hitrate values increase, the simulated spread in the execution times is increasingly under-
estimated. This is expected since the simulation does not capture all aspects of the real-world
system. In particular, the complex I/O access patterns for the hard disk drives that store cache
data are not simulated. These I/O accesses, due to seek times and random accesses, are non-
deterministic. The simulator, however, models I/O access times simply based on latencies and
read/write bandwidth rates of the storage resources, which leads to a much lower variance of
job execution times than in the real world. For flash drive storage the seek times would be
both smaller and more deterministic, which could be simulated with higher accuracy.

2.5 Computational Complexity

To assess the space- and time-complexity of the simulator the maximum memory consump-
tion and execution time of the simulation as functions of the size of the simulated platform
are studied. Fig. [2]shows the scaling of the simulation’s memory consumption and execution
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Figure 1: Job execution times per execution machine (worker node) vs. the hitrate in the real
world (left) and the simulation (right). Plots show medians and 2.5- and 97.5-percentiles of
all executed jobs on each execution machine.
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Figure 2: Simulation execution time and maximum memory consumption vs. the maximum
number of active job slots, a proxy for the platform size (left); and simulated job execution
times vs. hitrate with mitigated time complexity (right).

time. The simulation execution time is driven by the effective size of the platform, that is
the maximum number of jobs that can execute concurrently in active job slots. A superlinear
increase in execution time as platform size increases is observed.

Given the above, a mitigation procedure is needed to enable the simulation of large plat-
forms under a time budget. By scaling the number of cores on each simulated machine by a
constant factor the effective number of active job slots in the simulation of a large platform,
and therefore the simulation execution time, can be decreased superlinearly. To conserve the
dynamics of the simulation the relative proportions of all other platform parameters are scaled
by the same factor. The mitigation procedure is applied on the simulation of the validation
platform presented in Section [2:4 Comparing the simulation traces of the full simulation,
visualized in Fig. [T} and mitigated simulation, visualized in Fig. 2] no significant deviation
can be observed. Consequently, the mitigation procedure makes the simulation scalable while
conserving the validity of the original simulation.

3 Proof-of-Concept: Diskless Tier 2

To showcase the applicability of the presented simulator for modeling the performance of
such architectures, we study two aspects of a future candidate design for a subset of the
WLCG infrastructure proposed by the German HEP-computing community in [11].



3.1 Simulated Workload and Platform

The simulated workload characteristics for these studies are obtained from job monitoring
data gathered by the CMS collaboration of jobs executed at the WLCG Tier 1 site at KIT and
Tier 2 site at DESY in a time frame from February 24th to March 7th 2023. From this data,
and for each job, we extracted information about computational volume, amount of read and
written data, consumed memory, and number of CPU cores used.

The jobs are classified as Analysis, ReadoutSim, Processing, Merge, and Other jobs,
which make up approximately 49.7%, 39.5%, 7.6%, 3% and 0.2% of the workload, respec-
tively. Analysis jobs contain all jobs submitted by individual users and therefore shows a
large spread in the distributions of their job characteristics. ReadoutSim jobs process the
simulation of the readout electronics of the CMS detector [3]] and the digitization of the sim-
ulated signals. Processing jobs process the reconstruction from the raw digitized detector
signals to analysis objects usable in analyses. Merge jobs combine multiple data files created
in multiple jobs into single files simplifying subsequent data processing. Other jobs contain
all generation, simulation, reconstruction, cleanup, and logging executions that did not occur
often enough in the monitored time frame to result in a significant class.

From the individual characteristics of the jobs in each class we derived a one-dimensional
binned probability distribution for each characteristic quantity. Then, we sampled the char-
acteristics of the simulated workload from these probability distributions while keeping the
proportions relative to those observed in the monitoring data. We neglected the correlations
between the probability distributions of the individual characteristics.

The simulated platform consists of two hypothetical sites approximately representing the
real-world WLCG Tier 1 and Tier 2 sites at KIT and DESY. Each site is modeled as its own
local network of worker nodes and storage resources, and the two sites are interconnected via
WAN. The exact platform parameters are listed in Table[T]

Table 1: Characteristics of the platform input into the simulation for the PoC study.

Characteristic Tier 1 Tier?2'
Compute 42,000 cores 20,000 cores
Storage Bandwidth 80 Gbits~! n/a
Cache Bandwidth n/a 80 Gbits™!
LAN Bandwidth 2 x 100Gbits™' 40 Gbits™!
WAN Bandwidth 100 Gbit s~!

The two sites are considered to be isolated from the greater context of the WLCG, mean-
ing that there is no additional load on the WAN caused by workloads running on other sites.

3.2 Study 1: Grid Storage Replacement

The first simulation study evaluates the performance of a WLCG Tier2 site that is not a
full-fledged storage site (which would require maintenance and a personnel budget) but in-
stead serves only as a simple stand-alone cache with no availability or persistence guarantees
(Tier2"). All input files in the simulation are served by the grid storage at the Tier 1 site.
A defined fraction of input files are additionally staged at the cache at Tier2' at start of the
simulation. This makes it possible to evaluate the performance of the workload execution
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Figure 3: Job CPU efficiency vs. the hitrate for the scenarios in Section (left) and Sec-
tion [3.3] (right). Results shown as standard box plots with the median, 25- and 75-quartiles,
minimal and maximal single values within the interval spanned by the lower (upper) quartile
minus (plus) 1.5 times the interquartile range, and outliers.

dependent on the fraction of cached files (hitrate) with repeated simulations for multiple hi-
trate value between zero and one. A hitrate = 1 corresponds to the nominal case of a Tier 2
site following the WLCG definition. A hitrate < 1 corresponds to the hypothetical scenario
where the managed storage at the Tier2 is reduced to a cache with a performance of this
cache parameterized via the hitrate. At a hitrate = 0, there is no cache and all input files are
served by the Tier 1 storage.

To estimate the performance of each site we measure the distribution of the fraction of
time spent processing over the total job execution time (CPU efficiency) of the executed jobs.
The obtained distributions in simulation are visualized in Fig. [3a]

It can be observed in Fig. 32| that a replacement of the grid storage with a cache leads
to a decrease in the performance of both sites. For hitrates < 1 the bandwidth to the grid
storage at the Tier 1 is shared by the jobs on both sites which increases the idle time of the
CPUs due to the jobs waiting for data to process. For hitrates 2 0.5 the performance of the
Tier 2' stabilizes due to the internal network throttling the execution. The Tier 2 load on the
Tier 1 storage still limits the performance of the Tier 1. To overcome the performance drop,
an increase of the Tier 1 storage bandwidth needs to be considered.

3.3 Study 2: Cache Addition at High Latency Site

In this study we explore the impact of replacing a dedicated Tier2 site by a hypothetical
supercomputer. Hence, the study presented in Section[3.2]is repeated but the WAN bandwidth
between the sites is reduced by a factor of ten, which corresponds to a scenario in which the
supercomputer does not have a high WAN bandwidth. This drastic reduction in the WAN
bandwidth changes the dependence of the performance of both sites on the hitrate drastically.

The effect of the lower network bandwidth between the sites is that the execution time of
jobs at Tier2' is dominated by the time spent waiting for input data for hitrate < 0.7. Above
this value, job executions at Tier2' are once again throttled by the relatively low internal
network bandwidth at that site. This leads to less load introduced by these jobs on the grid
storage at Tier 1. As a consequence, job executions at Tier 1 are only marginally affected, but
the performance of job executions on Tier2' are significantly improved by high hitrates.



4 Conclusions

We have proposed using simulation to predict the performance of current and hypothetical
architectural designs for distributed computing platforms such as the WLCG. To this end
we have implemented, calibrated, and validated an open-source simulator [12] based on the
SimGrid and WRENCH simulation frameworks. The simulator’s flexible configuration and
its use of scalable simulation models make it possible to simulate and analyze the execu-
tion of a wide range of application workloads on large-scale computing platforms under an
acceptable time budget. These capabilities were demonstrated in two case studies, which in-
volve systems with collectively more than 60,000 cores and 10 PB of storage integrated into
a distributed network, and applications transferring and processing petabytes of HEP data.

A future direction is the simulation of larger distributed computing systems up to the size
of the WLCG and beyond. This will require reducing the computational complexity of the
underlying simulation models while preserving their accuracy.
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