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Abstract
Humans learn social skills through both imita-
tion and social interaction. This social learn-
ing process is largely understudied by exist-
ing research on building language agents. Mo-
tivated by this gap, we propose an interac-
tive learning method, SOTOPIA-π, improv-
ing the social intelligence of language agents.
This method leverages behavior cloning and
self-reinforcement training on filtered social
interaction data according to large language
model (LLM) ratings. We show that our train-
ing method allows a 7B LLM to reach the
social goal completion ability of an expert
model (GPT-4-based agent), while improving
the safety of language agents and maintaining
general QA ability on the MMLU benchmark.
We also find that this training paradigm uncov-
ers some difficulties in LLM-based evaluation
of social intelligence: LLM-based evaluators
overestimate the abilities of the language agents
trained specifically for social interaction.

1 Introduction

Machine social intelligence is crucial to productive
human-machine interaction (Gweon et al., 2023).
For instance, to achieve real-time social interac-
tions with users, virtual agents should not only
emulate human verbal and non-verbal social behav-
iors but also manage social skills such as cooper-
ation and negotiation. However, the social intelli-
gence of large language models (LLMs) still lags
behind humans in various aspects, including theory-
of-mind (Sap et al., 2023; Ullman, 2023; Shapira
et al., 2023), following social norms (Weidinger
et al., 2021), and navigating diverse goal-driven so-
cial scenarios (Zhou et al., 2024). This underscores
the challenge to bridge the gap and empower LLM
agents to navigate social situations with human-like
social decision-making abilities and values.

Inspired by the way that humans acquire these
social abilities through exploration, interaction,
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Generated Scenario

Two friends on a road trip entering a 
remote area without food access.

Goal for Character 1

Continue the journey without food

Goal for Character 2

Find something to eat first

Sampled topic: travel without food Collect data for Behavior Cloning

Collect data for Self-Reinforcement

Character 1 Character 2

Character 1 Character 2

Improve agent 
policy with 
positive examples 
rated by GPT-4

SOTOPIA task scenario
Two friends camping in the wilderness

Characer 1

Keep blanket to 
themselves

Convince your 
friend to share the 
blanket

Character 2

Character 1 Character 2

GPT-4 rating Human rating

GPT-4 rating

(1) Social task generation (2) Training data collection

(3) Agent policy update (4) Evaluation on SOTOPIA tasks

πpartnerπagent
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πexpert πexpert
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Figure 1: We propose SOTOPIA-π, which (1) automat-
ically generates new social tasks, (2) collects data from
both expert policy and agent policy for training, and
(3) updates agent policy based on positive data rated by
GPT-4. We implement (4) human and GPT-4 evaluation
on our trained agent performing tasks in SOTOPIAwith
the partner agent. Our training paradigms include behav-
ior cloning and self-reinforcement. For evaluation, we
use SOTOPIA-EVAL and a fixed partner policy (GPT-
3.5-based). Note that the character profiles are omitted
and the examples are shortened for demonstration.

and self-reinforcement (Tomasello, 2021; Gweon,
2021), we propose an interactive learning method,
SOTOPIA-π (Figure 1), which improves the so-
cial intelligence of language agents through social
interactions (e.g., the conversation between a seller
and a buyer on Craigslist).

In SOTOPIA-π, we use GPT-4 (OpenAI, 2023)
to automatically synthesize new social tasks to
learn transferable social strategies, similar to open-
ended learning (OEL Team et al., 2021) (Step 1).
To simulate the social interaction within a diverse
set of agents, we collect interaction data between
the agents and an expert policy (GPT-4-based) or
between two instances of the agent policy that role-
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play two sampled characters (Step 2). To reinforce
the positive examples in social interaction, we use
GPT-4 to provide ratings of how well the agent
is able to achieve its goals and filter the interac-
tion data based on a threshold for this score. Then
we update the agent policy with either or both of
two paradigms: behavior cloning (learning from
behaviors of an expert model with strong social
skills) and self-reinforcement (learning from highly-
rated behaviors of the model itself) (Step 3). We
evaluate our method with human and GPT-4-based
evaluation on the trained agent models in the SO-
TOPIA (Zhou et al., 2024) environment (§2.1).

The closest to our work is Stable Alignment (Liu
et al., 2024), which studies social alignment in
single-turn question-answering tasks. In contrast,
SOTOPIA-π improves multi-turn interaction capa-
bility under realistic social scenarios beyond verbal
communication. §6 shows that our method, despite
not explicitly designed for improving alignment,
trains models to behave more safely and generate
fewer toxic responses. Without requiring human
involvement and an online reward model (Ziegler
et al., 2020; Ouyang et al., 2022), our method is
efficient and scalable because it (1) gathers offline
social interaction data with LLMs and (2) enables
language agents to explore and reinforce the social
knowledge of itself and expert models.

Using our method to train socially intelligent
agents, we examine the effectiveness of the two
training paradigms as well as possible side effects
(e.g., loss of knowledge or safety). In addition,
by evaluating the social intelligence of our trained
models through human judgment, we aim to un-
derstand the effectiveness of training LLMs from
LLM ratings. Therefore, we propose to answer the
following research questions:

RQ1 Can SOTOPIA-π improve the social goal
completion ability and the overall social intel-
ligence of language agents?

RQ2 Is LLM rating an effective proxy to human
rating for training social intelligence in lan-
guage agents?

RQ3 How does training with SOTOPIA-π influ-
ence other capabilities of language agents?

For RQ1, our findings reveal that self-
reinforcement notably improves the social goal
completion ability of a base 7B LLM as well
as one trained with behavior cloning. The best

Figure 2: L: a social task with character profiles. R: An
example turn from the perspective of the role-played
character. This turn is the 3rd turn after the two charac-
ters each speak at their respective turns.

model (trained with behavior cloning followed by
self-reinforcement) approaches the performance of
GPT-4 according to GPT-4-based evaluation. Re-
garding RQ2, we observe an increasing gap be-
tween GPT-4-based and human evaluation, high-
lighting the limitations of relying solely on GPT-
4-based evaluation for optimizing or evaluating
language models. This signals the need for fu-
ture work on developing alternative evaluator mod-
els that can robustly evaluate social interaction.
In response to RQ3, our safety evaluation shows
that SOTOPIA-π improves safety and reduces
the toxicity of language models in social tasks.
Furthermore, when assessed on the Massive Mul-
titask Language Understanding (MMLU) bench-
mark (Hendrycks et al., 2020), we demonstrate
that SOTOPIA-π preserves the original question-
answering ability of the models.

2 Background

2.1 SOTOPIA environment

In this paper, we use SOTOPIA (Zhou et al., 2024)
as the platform for social learning. A social task
in SOTOPIA consists of a scenario, two charac-
ters’ profiles, and their respective private social
goals to achieve in an interaction. The combina-
tions of scenarios and social goals cover a wide
range of social interactions including negotiation,
collaboration, and competition. Given a social task,
SOTOPIA prompts two LLMs to serve as role-play
social agents and interact with each other through
speaking, non-verbal communication, and actions.

Consider the example shown in Figure 2, a so-
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cial agent (the role-played character) in SOTOPIA
makes decisions at its turns (Turn #3 at this mo-
ment) based on the interaction context including (1)
the scenario (discuss trip plan), (2) the role-played
character (Sam)’s profile and goal (to convince Mia
to join the trip), (3) the visible information on other
character (Mia)’s profile, and (4) the communica-
tion history (Mia declined the initial invitation).
The decision consists of two parts: (1) the action
type, choosing from speaking an utterance, mak-
ing a gesture or facial expression as non-verbal
communication, performing a physical action, or
leaving the conversation, and (2) the action content,
e.g. ‘I totally understand! ’ as an utterance, ‘raise
their eyebrows’ as non-verbal communication, and
‘show Mia some scenery photos’ as an action.
SOTOPIA-EVAL (Zhou et al., 2024) provides

evaluations of the social intelligence of social
agents based on seven social dimensions. The
seven dimensions are: believability (BEL), relation-
ship (REL), knowledge (KNO), secret (SEC), social
rules (SOC), financial and material benefits (FIN),
and goal completion (GOAL). The overall score is
the average of the seven social dimensions reflect-
ing the overall social intelligence. Each dimension
is rated by GPT-4 (OpenAI, 2023) and humans on
a Likert scale.1 Therefore, following (Zhou et al.,
2024), we not only use GPT-4 to evaluate the social
performance of models but also collect human judg-
ment to verify the findings. In this paper, we study
how to use GPT-4-based evaluation as a training
signal to improve social agents.

2.2 Interactive learning
This paper focuses on interactive learning for im-
proving social intelligence. We consider interactive
learning as learning through interactive social con-
versation with other agents The most common way
to implement interactive learning is reinforcement
learning (work related to training LLMs with RL
will be discussed in §7). In this paper, we con-
sider two forms of interactive learning: learning
from an expert (behavior cloning) and from rein-
forcement of the model’s positive behaviors (self-
reinforcement).

Behavior cloning (BC) (Pomerleau, 1988; Torabi
et al., 2018) is a technique that learns from high-
quality observational data, specifically from the be-
havioral trajectories of an expert with strong skills.
In the context of social tasks, the trajectories are

1Different dimensions have three types of score ranges:
[-10, 0], [-5, 5], and [0, 10].

defined as social interaction data of multi-turn con-
versations. Due to the challenge of collecting ex-
tensive, high-quality human conversation data, we
use state-of-the-art (SOTA) models to supply these
behavioral trajectories (Wang and Jansen, 2023),
thereby utilizing social intelligence of those mod-
els as a proxy for expert input (Gandhi et al., 2023).
Specifically, we use GPT-4-based agents as the
experts, which achieved the best performance in
SOTOPIA (Zhou et al., 2024).

Self-reinforcement (SR) (Bandura, 1976) is an
offline reinforcement learning method that gener-
ates and evaluates its own interactions for train-
ing. The closest implementation of SR to ours is
ReST (Gulcehre et al., 2023), which employs an
iterative threshold-based data filtering method and
trains on data with higher quality over time. In pre-
liminary experiments, we found that this strategy
required careful threshold tuning, but only yielded
a marginal improvement, and that threshold-based
filtering did not work well for multiple tasks at
various difficulty levels. Based on this experience,
we propose a ratio-based data filtering method that
enables SR without iterations.

3 SOTOPIA-π framework

SOTOPIA-π improves the social intelligence of a
language agent starting from its current policy πref
through three steps (Figure 1): (1) social task gen-
eration, (2) training data collection, and (3) agent
policy update. In this section, we provide details of
the three steps in our pipeline.

Step 1: Social task generation

Mirroring the way that humans navigate novel so-
cial situations by acquiring different social skills
in everyday social interaction, we encourage the
continuous learning of language agents in explor-
ing social skills within a dynamic and diverse
social environment. By adopting the principles
of dynamic task generation for open-ended learn-
ing (OEL Team et al., 2021), we provide a diverse
set of social tasks as the foundation of interactive
learning. As the first step, SOTOPIA-π automat-
ically generates synthesized social tasks through
two steps: (1) sampling keywords related to so-
cial activities from Social Chemistry (Forbes et al.,
2020), Social IQa (Sap et al., 2019), and Norm-
bank (Ziems et al., 2023) and (2) prompting GPT-4
to generate scenarios and social goals based on the
sampled keywords (Figure 3). Details about social
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task generation can be found in Appendix §B.1.

Prompt for generation new social tasks

Your task is to generate social tasks 
including a scenario and two social 
goals for two characters. 

<social scenario definition> 
<social goal definition> 

Here are a few examples: 
<social task examples> 

Please generate 1 social task related to 
<topic sampled from Social Chemistry, 
Social IQA or Normbank> according to 
<output format instruction>

Figure 3: Prompt template for generating social tasks.

We reuse the 40 character profiles in SOTOPIA,
including their names, genders, occupations, per-
sonalities, and other backgrounds. For each social
task, a pair of characters are randomly sampled.
The social tasks (a combination of scenarios, char-
acters’ profiles, and social goals) used in training
are guaranteed to not overlap with the social tasks
used for evaluation. Different from the human-
in-the-loop procedure used in SOTOPIA, which
involves manual inspection and filtering for better
task quality, we take an automated and scalable ap-
proach to produce a large number of unfiltered so-
cial tasks. The experimental findings reveal that our
method can significantly improve the performance
of language agents when using a vast quantity of
social tasks of lower quality. Utilizing a more so-
phisticated or manual selection process to filter
high-quality social tasks could potentially lead to
further improvement, which we leave for future
works.

Step 2: Training data collection
Based on the generated social task, the second step
of SOTOPIA-π is collecting training data for be-
havior cloning and self-reinforcement. During so-
cial interaction, as outlined in §2.1, two language
agents alternate responses based on the visible com-
ponent of a social task and the conversation history.
For behavior cloning, we use the interactions be-
tween the expert policy πexpert of two GPT-4-based
agents role-playing two sampled characters, be-
cause according to (Zhou et al., 2024), conversa-
tions between GPT-4-based agents could achieve
the highest social scores among other LLMs. Sim-
ilarly, for self-reinforcement, we collect the inter-
actions between the agent policy πref role-playing

two sampled characters.

Obtaining expert data can be costly and may not
always be accessible. While employing multiple
expert models is an option, our findings indicate
that after a single round of behavior cloning using
the expert policy from a GPT-4-based agent, the
performance of the agent model surpasses that of a
GPT-3.5-based agent. Therefore, we opt for GPT-4
as our expert model. Self-reinforcement becomes
crucial in situations when expert data is unavailable
or the agent’s capability exceeds that of the expert.
We leave the potential to use human conversation
data as the expert trajectories for behavior cloning
for future work.

Step 3: Agent policy update

The last step of SOTOPIA-π involves updating the
agent’s policy based on positive examples from the
training data. Leveraging AI feedback is useful for
automating the evaluation process and improving
the learning of language models without human
labels (Bai et al., 2022). For each agent in social in-
teraction, we collect GPT-4’s ratings of the agent’s
social performance and the corresponding reason-
ing. Among the seven social dimensions of social
performance in SOTOPIA-EVAL, we specifically
focus on the goal completion dimension that scored
between 0 and 10 as the extent to which an agent
fulfills its social goal. Zhou et al. (2024) discovers
that among all seven dimensions, ratings by GPT-4
on goal completion have the highest correlation
with human ratings. In §4 and §8, we discuss the
potential issues of using LLMs to provide ratings.

We filter the training data by setting a thresh-
old for the goal completion scores rated by GPT-4
(refer to Appendix §B.2 for details of the filtering
strategy). Each turn of the interaction data is parsed
into training pairs of inputs and outputs. For input,
we provide a combination of the information about
the task that is visible to the agent and the con-
versation history. For output, we provide a JSON
string of action type and content as output (see Ap-
pendix §B.3 for details). Based on the filtered posi-
tive training data, we update our agent’s policy with
supervised fine-tuning on the agent model. We fur-
ther explore a sequential training approach where
an agent policy is initially updated by behavior
cloning. Then the updated agent policy engages in
generating interaction data for self-reinforcement.

4



4 Experimental setting

In this section, we discuss the details of the agent
models we compare in the experiments. Addition-
ally, we show details of the training and evaluation
configuration we use in SOTOPIA-π.

Agent models We choose GPT-4 (OpenAI, 2023)
as our expert agent model and Mistral-7B (Jiang
et al., 2023) as our base agent model to improve
upon. We experiment with improving the base
agent model using three approaches: (1) behavior
cloning based on the policy provided by an expert
model (GPT-4), (2) self-reinforcement based on
the agent policy, and (3) behavior cloning followed
by self-reinforcement. Our baselines for experi-
ments utilize the expert model (GPT-4) and the base
model (Mistral-7B) to conduct prompting-based
role-playing with a fixed agent model (GPT-3.5-
turbo). We compare the baselines with the trained
agent models using the above four approaches. All
agent models share the same prompt format and
use few-shot prompting to generate the response
for social tasks. Details related to our prompting
format and specific model versions we used in our
experiments can be found in Appendix §B.3 and
§B.4.

Training In our experiments, we utilize efficient
finetuning on quantized LLMs (QLoRA) (Dettmers
et al., 2023) on the base agent model Mistral-7B
with behavior cloning, self-reinforcement, and their
combination. We use GPT-4 to generate 100 social
tasks with social topics including negotiation, col-
laboration, and competition per round of training.
For each social task, we run 10 social interactions
with 10 different character pairs role-played by
agent models. The multi-turn social conversations
between two agent models are collected and fil-
tered as our training data. More details related to
social task generation, training data collection, and
the training setup can be found in Appendix §B.1,
§B.4, and §B.5 separately.

Evaluation We evaluate the agent models based
on the seven social dimensions defined in
SOTOPIA-EVAL. We also provide the overall
score which is the average score of the seven social
dimensions. For evaluation, we collect the interac-
tions between the updated agent policy πagent and a
fixed partner policy πpartner (GPT-3.5-turbo) (Ope-
nAI, 2023) and obtain human and GPT-4 ratings on
all seven social dimensions. We report the agent’s
performance on all 90 social tasks, as well as on a

Base
(Mistral-7B)

Self-reinforcement
(SR)

Behavior cloning
(BC)

BC + SR GPT-4 model

3.25

3.96

4.82

5.71

0.36

0.64

1.27

1.42

4.29

As evaluated by both GPT-4 and humans,
our methods improve goal completion score
on hard scenarios. However, the average
gap between GPT-4 scores and human
scores increases from 0.36 to 1.42.

G
PT

-4
ra

tin
g

sc
or

es

human rating scores

5.89

5.25

Figure 4: GPT-4-based automatic evaluation scores and
human evaluation scores of the goal completion dimen-
sion. We show the performance of the base model, our
trained agent models, and GPT-4 (represented by icons)
on hard social tasks in SOTOPIA.

subset of 14 hard2 social tasks selected from the 90
social tasks. To maintain a balanced speaking order,
we ensure that both agents have equal opportunities
to initiate conversation within a social task. We run
both automatic evaluation provided by prompting
GPT-4 for evaluation scores, and human evalua-
tion provided by qualified human annotators. We
use the same prompts for GPT-4-based automatic
evaluation as SOTOPIA-EVAL.

5 Does SOTOPIA-π improve the social
intelligence of language agents?

As shown in Figure 4, according to both GPT-4-
based and human evaluation on the hard subset
of SOTOPIA, self-reinforcement improves the so-
cial goal completion ability of both the base model
(Mistral-7B) and the behavior cloned model. We
can also discover that learning from the positive
examples from the expert is more effective than
learning from positive examples from the agent pol-
icy. Combining them, i.e. first implementing behav-
ior cloning and then self-reinforcement, improves
the agent policy significantly, nearly matching the
goal completion performance of GPT-4 itself: 5.71
(ours) vs 5.89 (GPT-4) as rated by GPT-4. The full
results are presented in Appendix §A.

An increasing gap between GPT-4-based and
human evaluation However, we find that GPT-
4 based evaluation significantly overestimates the

2Zhou et al. (2024) identified 14 hard social tasks
SOTOPIA-hard among the original 90 social tasks, which
are harder for both state-of-the-art LLMs and humans.

5



BEL REL KNO SEC SOC FIN Overall

2.05 1.91 -0.14 0.00 1.11 0.09 0.91

Table 1: Improvement (∆) on other social dimensions
of our best model (behavior cloning followed by self-
reinforcement) over the base model (Mistral-7B) as eval-
uated by humans on hard social tasks in SOTOPIA. Sig-
nificant improvements are bold.

abilities of the models trained specifically for so-
cial interaction (either through behavior cloning or
self-reinforcement). As shown in Figure 4, the gap
between GPT-4 scores and human scores increases
as our method optimizes GPT-4 rated goal com-
pletion scores during training. In contrast, the gap
between human and automatic scores for the GPT-4
based agent is smaller, leading to a relatively large
gap in human scores for our best BC+SR model
(4.29 goal completion score) and the GPT-4 based
agent (5.25). This finding indicates the necessity
for future work on developing evaluation models
that can robustly evaluate social interaction specif-
ically on models that are fine-tuned using these
evaluation metrics.

Improvements on other social dimensions As
mentioned in §3, we train models on positive exam-
ples based on the goal completion dimension. How
would this affect other social dimensions? Table
1 shows the improvement of our method on di-
mensions other than goal completion. Our method
significantly improves the believability, relation-
ship, and social rules scores, as well as the overall
score, while only slightly affecting other social di-
mensions.

Similar trends in improvements for all social
tasks in SOTOPIA scenarios On all social tasks
in SOTOPIA, we observe similar trends in GPT-
4-based evaluation results3 as on hard social tasks
in SOTOPIA. As shown in Table 2, our method
achieves improvements over the base model not
only on the goal completion dimension but also on
the overall score. Notably, the performance of our
best model (BC + SR) is comparable to the expert
model. Refer to Appendix A for a breakdown of
the overall scores.

To answer RQ1 and RQ2, we demonstrate that
through interactive learning (behavior cloning and
self-reinforcement), SOTOPIA-π improves the so-
cial goal completion ability of language agents on
the social tasks in SOTOPIA. From the experimen-
tal results, we also find the limitation of GPT-4-

3Human evaluation on all social tasks in SOTOPIA is not
conducted due to the high cost.

Agent model GOAL (↑) Overall (↑)

All social scenarios in SOTOPIA

Expert (GPT-4) 7.62 3.31
Base (Mistral-7B) 5.07 2.33

O
ur

s Self-Reinforcement (SR) 5.83 2.57
Behavior Cloning (BC) 7.27 3.41
BC+SR 7.62 3.44

Table 2: SOTOPIA-π improves the goal completion
score and the overall score as evaluated by GPT-4 on all
social tasks in SOTOPIA. BC+SR achieves comparable
performance as the expert model.

based evaluation. In subsequent sections of this
paper, we will discuss how this training method in-
fluences other aspects of the capabilities of LLMs.

6 How does SOTOPIA-π influence other
capabilities of LLMs

As LLMs become more proficient in mimicking
human conversations, they can unintentionally pro-
duce harmful outcomes such as biased or offensive
content (Hendrycks and Mazeika, 2022), or in-
herently display behaviors not aligned with human
intentions, like manipulative or power-seeking ac-
tions (Si et al., 2022). These misalignments pose
severe risks such as safety hazards and existential
threats (Hendrycks et al., 2023). Thus, compre-
hending and assessing the safety level of LLMs is
vital to preventing potential harmful consequences.
SOTOPIA-EVAL has several dimensions related

to safety: SOC, SEC, and REL (Zhou et al., 2024).
However, none of these dimensions evaluates only
safety, thus the weakness of safety could be cov-
ered by the strength of other capabilities related to
that dimension. To account for this, we first qual-
itatively study the behavior of agents under one
SOTOPIA task, where Character 1’s goal is ‘to in-
jure a third person they dislike’, and Character 2’s
goal is ‘to express dislike but prevent violence’.

We consider 9 examples for each of the 5 differ-
ent agent models role-playing each character and
manually label several quantities for each agent.
We define (1) an “engagement rate” as the ratio
of episodes with more than 4 turns and where the
agent responds with none less than 50% of the time,
(2) a “proceed-to-injure rate” as the rate at which
the agent verbally expressing the intention to injure
the other agent, and (3) the “prevention rate” as the
agent verbally expressing the intention to give up
the plan to injure, (4) the “number of alternative
solutions” as the number of significantly different

6



Agent model role-playing Character 1

Agent model Engagement (↑) Injury (↓) # Toxic (↓)

Expert (GPT-4) 100% 44% 0.3
Base (Mistral-7B) 22% 100% 3.6

O
ur

s Self-Reinforcement (SR) 100% 100% 5.5
Behavior Cloning (BC) 100% 100% 7.5
BC+SR 100% 44% 0.9

Agent model role-playing Character 2

Agent model Engagement (↑) Prevention (↑) # Solutions (↑)

Expert (GPT4) 89% 89% 1.2
Base (Mistral-7B) 22% 11% 0.2

O
ur

s Self-Reinforcement (SR) 78% 67% 1.3
Behavior Cloning (BC) 100% 100% 2.2
BC+SR 100% 100% 2.9

Table 3: SOTOPIA-π improves the engagement, safety,
and persuasion ability while using less toxic words and
providing more advice than the base model.

alternatives proposed, and (5) the “number of toxic
words” based on a word list4. We measure (1), (2),
and (5) for Character 1, and (1), (3), and (4) for
Character 2.

Models trained by SOTOPIA-π engage more,
are safer, more persuasive, and less toxic in this
task. When role-playing both Character 1 & 2, our
best model’s engagement rate is higher than the
base model. When keeping engaged, our model is
less likely to proceed with the injury plan (Char-
acter 1) and more likely to succeed at persuading
the other agent to give up on injuring the third per-
son (Character 2). Another piece of evidence that
shows our model is more persuasive is the number
of alternatives that it learns to give, which is even
higher than the expert model that our model learns
from. We do note that even the best of our meth-
ods still produces more toxic words than GPT-4.
But it is surprising to see that without explicitly
aligning models to be safer using RLHF (Ouyang
et al., 2022), our model becomes more aligned only
through training to complete social goals in these
tasks.

In addition to safety, since SOTOPIA-π trains
for social interaction instead of the instruction fine-
tuning tasks (c.f. Jiang et al. (2023)), it could be
subjective to catastrophic forgetting (Lopez-Paz
and Ranzato, 2017), a common phenomenon found
during continual fine-tuning where model forgets
previously learned knowledge (Luo et al., 2023).

To verify that our training method preserves
the base model’s general knowledge, context un-
derstanding, and problem-solving ability, we test

4https://github.com/facebookresearch/flores/
tree/main/toxicity

Agent model MMLU (↑)

Base (Mistral-7B) 49.21
Self-Reinforcement (SR) 43.46
Behavior Cloning (BC) 47.48
BC+SR 48.57

Table 4: Evaluation results of MMLU on agent models.
MMLU evaluation is conducted in a standard 5-shot
setting with instruction-based prompting. In the case
when a formatting error occurs, the first occurrence of
choice present is taken as the answer, and a random
answer is generated in the case of no presence. The
bolded numbers are not significantly different.

the models’ performance on the MMLU bench-
mark (Hendrycks et al., 2020). The benchmark
is commonly used to evaluate a language model’s
generic performance on question answering and
problem-solving. We follow the practice in Akter
et al. (2023): taking the direct response from the
model by prompting the model with instructions.

Models trained by SOTOPIA-π maintain the
question answering capability of the base model.
As shown in Table 4, the best performance of our
models on MMLU is comparable to the perfor-
mance of the base model. We are surprised to see
that our method is not subject to the catastrophic
forgetting problem. This might indicate that the
ability for social interaction is orthogonal to the
question answering ability. Detailed results are
included in Appendix §F.

7 Related work

Social Intelligence in LLMs Large language
models (LLMs) have led to new technologies that
manage to handle common social use cases, in-
cluding voice assistants, email autocomplete (Chen
et al., 2019), AI-assisted counseling (Sharma et al.,
2021), etc. However, human social interactions are
more complicated and diverse than those restricted
uses, exposing model limitations in extended con-
texts. Sap et al. (2023) study the limitations of so-
cial intelligence in current LLMs and conclude that
current models struggle with Theory of Mind tasks
such as SocialIQa (Sap et al., 2019) and ToMi (Le
et al., 2019). In the Avalon game setting, Light
et al. (2023) show that it is still challenging for
LLM agents to successfully deceive, deduce, and
negotiate with other players, particularly in a multi-
agent environment. A potential method to improve
the Theory of Mind in language agents is through
meta learning the mental model of the interlocutor
(Zhu et al., 2021, 2022; Liu et al., 2022). We leave
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explicity modeling Theory of Mind in language
agents to improve the social intelligence as the fu-
ture work. These studies show that the effective
development of general social intelligence in model
training has yet to be fully realized.

Studies have looked into the potential of behav-
ior cloning from observational data for enhanc-
ing social intelligence via interaction (Wang et al.,
2023c). SOTOPIA-π echos social science theo-
ries of inferential social learning (Gweon, 2021),
where models learn not only by imitating but also
by making inferences about social contexts.

Reinforcement Learning for LLMs Reinforce-
ment learning from human feedback (RLHF; Chris-
tiano et al. (2017)) improves the alignment of
LLMs to human preferences (Ouyang et al., 2022).
Direct Preference Optimization (Rafailov et al.,
2023) and Ψ Policy Optimization (Azar et al.,
2023) improve RLHF by optimizing the LLM pol-
icy without relying on the reward model. These
online RL methods often require online data col-
lection, which has a longer latency in multi-agent
settings.

Typical types of offline self-reinforcement in-
clude self-imitation learning (SIL; Oh et al. (2018)),
reward ranked fine-tuning (RAFT; Dong et al.
(2023)), and reinforced self-training (ReST; Gul-
cehre et al. (2023)). SIL sets a replay buffer and
imitates state-action pairs when it is better than the
current value estimation. RAFT generates multiple
outputs and utilizes the reward model to filter out
a subset. ReST is a more complicated version of
RAFT with multiple improve steps. SOTOPIA-π
applies offline self-reinforcement to training LLMs
on social tasks and utilizes the GPT-4 to provide
rewards for multi-turn social interaction. We leave
investigating the effects of different offline methods
on training social intelligence to future work.

LLM Alignment and Evaluation Advances in
fine-tuning methods like parameter-efficient fine-
tuning (Li and Liang, 2021; Lester et al., 2021;
Hu et al., 2021) have improved LLMs’ capabili-
ties to better understand the restriction and rules
given by human, enhancing their capability for so-
cial learning and interaction. Other governance
objectives align LLM behaviors via robustness, in-
terpretability, controllability, and ethicality (Ji et al.,
2024). We focus on evaluating our trained LLMs’
alignment with human social norms via safety and
toxicity.

It has been pointed out that continual fine-tuning

can lead to catastrophic forgetting of LLMs, in
terms of domain knowledge, reasoning, and read-
ing comprehension (Luo et al., 2023). To test the
general question answering and reasoning capabili-
ties of our trained LLMs, we measure their perfor-
mance on the Massive Multitask Language Under-
standing (MMLU) benchmark (Hendrycks et al.,
2020), a holistic benchmark designed to test the
knowledge of a model across 57 subjects.

8 Conclusion and future work

In this paper, we propose an interactive learning
method SOTOPIA-π to study how to use LLM
ratings as a learning signal to improve the social
intelligence of language agents. We first find that
through optimizing the goal completion score, the
general performance on SOTOPIA (Zhou et al.,
2024), a social intelligence benchmark is improved.
However, we find that the gap between LLM rat-
ings and human judgment is enlarged through this
process. We also find that the SOTOPIA-π im-
proves social intelligence without a loss of general
QA ability and with an improvement in safety.

Although SOTOPIA-π demonstrates strong ca-
pabilities of improving social intelligence, several
directions will improve our method further. (1)
Online reinforcement learning: SOTOPIA-π is an
offline training method that cannot improve itera-
tively. Future work could study how online meth-
ods like PPO (Schulman et al., 2017) can be applied
without the high cost of LLM ratings. (2) Learning
from humans: as mentioned in §2, we use GPT-4
as the expert due to the challenge of collecting hu-
man interaction data. Future work could explore
using existing data including forum conversations,
movies, and dialog datasets as offline data for train-
ing agents. (3) In §6, we only evaluate one social
task, which allows us to dig deep into the task and
create customized metrics. Also, how to derive
safety metrics for all social tasks is an interesting
future direction. (4) As demonstrated in §5, the gap
between GPT-4 and human evaluation increases as
the model optimizes GPT-4 scores. Future research
could consider more robust evaluation and learning
signals for social intelligence tasks.

Limitations

Using LLM as evaluator In our experiments,
we use GPT-4 to provide ratings of the positive
behaviors of social interactions and to evaluate the
agent’s performance on social tasks. However, our
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findings show that the gap between GPT-4-based
and human evaluation of our trained agent models
is increasing. This indicates the potential bias of
using LLM as the evaluator for assessing social
performance.

Using safety as a social alignment dimension
Except for safety, there are other social dimensions
related to LLMs’ social alignment such as privacy,
fairness, and reliability (Liu et al., 2023). Due to
the limited coverage of social tasks associated with
social alignment, we only study the safety aspect
of the trained agents.

Potential social biases in the interactive system
Content generated by GPT-4 may contain potential
social biases and stereotypes. The SOTOPIA in-
teractive environment that we use is powered by
GPT-4, which could lead to training agents with
unintended social biases.

Ethical Statement

Our goal for the SOTOPIA-π project is to enhance
the social intelligence of AI agents, as evaluated by
SOTOPIA-EVAL. Similar to Zhou et al. (2024),
we also focus on creating more realistic conver-
sations, fostering better relationships, providing
knowledgeable conversation, maintaining secrecy,
following social rules, improving agents’ abilities
to achieve financial and material gains, and com-
pleting social goals. It is important to note that
our objective is not to create AI systems that are
indistinguishable from humans or create potential
global risks (Yudkowsky et al., 2008). Instead, our
target is to study the development and learning
processes of human social intelligence. Moreover,
this research provides insights into social behav-
ior under various circumstances without the costly
need for data collection involving human partici-
pants. Because building AI systems based on large
language models, particularly those designed for
strategic social interactions, can lead to unexpected
outcomes and potentially negative social impacts
(Si et al., 2022), we approach the experiments cau-
tiously. Specifically, the role-playing abilities of
large language models may lead to anthropomor-
phism, as described by Shanahan et al. (2023),
where the AI system is perceived to exhibit human-
like personalities. Our research aims to understand
and responsibly navigate these challenges, poten-
tially referring to the framework by Zhang et al.
(2023).

We acknowledge that using any LLM including
GPT-4 to evaluate our system, SOTOPIA-EVAL,
could introduce biases (Wang et al., 2023b; Galle-
gos et al., 2023). Our future research will focus
on identifying, understanding, and mitigating so-
cial and cultural biases (Tao et al., 2023). It is
essential for us to enhance our model’s social intel-
ligence without incorporating any biases. This step
is also crucial in the development of responsible
and unbiased AI agents. Furthermore, our study has
observed that instances of unsafe behavior, such
as generation of toxic language or harmful sug-
gestions, can emerge during our model’s training.
These behaviors present significant social risks and
safety risks (Hendrycks et al., 2023; Wang et al.,
2023a). Addressing these issues is vital for ensur-
ing the safe and ethical use of AI in society and is
particularly important during the development of
AI systems.

In our human evaluation studies, we ensure that
all our annotators are based in either the United
Kingdom or the United States. In the United States,
annotators are compensated at a rate of $1.5 for
each task they complete, with the expectation that
each task will take no more than 10 minutes. This
setup allows them to potentially earn over $9 per
hour, surpassing the minimum wage in the U.S.
Meanwhile, in the United Kingdom, we offer addi-
tional bonuses to ensure that annotators’ average
earnings exceed $14.5 per hour, aligning with min-
imum wage standards in United Kingdom. All
human-subject experiments are approved by the
Institutional Review Board (IRB) at the authors’
institution.
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A Detailed Results

We provide more details about the main results. In A.1, we provide the details of the comprehensive 7-
dimension results defined in SOTOPIA besides the goal completion score and an overall score tmentioned
in the main section. Additionally, in A.2, we discuss the paired t-test statistical testing about the detailed
results.

A.1 Main Results

Agent Model BEL (↑) REL (↑) KNO (↑) SEC (↑) SOC (↑) FIN (↑) GOAL (↑) Overall (↑)

Automatic Evaluation on All Social Tasks (180 data points)

GPT-4 9.28 1.94 3.73 -0.14 -0.07 0.81 7.62 3.31
GPT-3.5-turbo 9.15 1.23 3.40 -0.08 -0.08 0.46 6.45 2.93
Mistral-7B 7.77 0.56 2.99 -0.22 -0.15 0.28 5.07 2.33

O
ur

s Self-Reinforcement (SR) 8.26 0.69 3.14 -0.18 -0.13 0.41 5.83 2.57
Behavior-Cloning (BC) 9.20 2.10 4.57 -0.09 -0.04 0.86 7.27 3.41
BC+SR 9.32 2.08 4.43 0.00 -0.07 0.71 7.62 3.44

Automatic Evaluation on Hard Social Tasks (140 data points)

GPT-4 9.26 0.95 3.13 -0.04 -0.08 0.40 5.92 2.79
GPT-3.5-turbo 9.20 0.19 2.86 -0.01 -0.25 -0.32 4.39 2.29
Mistral-7B 7.76 0.16 2.42 -0.09 -0.21 -0.01 3.84 1.98

O
ur

s Self-Reinforcement (SR) 8.37 0.11 2.55 -0.08 -0.16 -0.15 4.12 2.11
Behavior-Cloning (BC) 8.95 1.05 3.74 0.00 -0.11 0.41 5.25 2.76
BC+SR 9.19 0.96 3.59 0.00 -0.21 0.41 5.34 2.76

Human Evaluation on Hard Social Tasks (28 data points)

GPT-4 7.54 0.95 0.77 -0.18 -0.21 0.41 5.25 2.07
GPT-3.5-turbo 7.40 0.33 1.62 0.00 -0.34 -0.01 4.08 1.87
Mistral-7B 5.25 -0.64 1.23 0.00 -1.57 0.09 2.89 1.04

O
ur

s Self-Reinforcement (SR) 6.57 0.46 1.59 0.00 -0.89 0.11 3.32 1.59
Behavior-Cloning (BC) 7.46 1.04 1.55 -0.18 -0.61 0.07 3.55 1.84
BC+SR 7.30 1.27 1.09 0.00 -0.46 0.18 4.29 1.95

Automatic Evaluation on Hard Social Tasks (28 data points)

GPT-4 9.36 1.43 3.21 -0.04 -0.04 0.39 5.89 2.89
GPT-3.5-turbo 9.21 0.39 3.61 -0.07 0.00 -0.07 4.21 2.47
Mistral-7B 8.25 -0.29 2.75 -0.18 -0.46 -0.18 3.25 1.88

O
ur

s Self-Reinforcement (SR) 8.64 0.36 3.11 -0.04 0.00 -0.39 3.96 2.23
Behavior-Cloning (BC) 9.11 1.04 2.71 0.00 0.00 0.36 4.82 2.58
BC+SR 9.21 1.07 3.43 0.00 -0.18 0.36 5.71 2.80
SR+BC 7.98 0.30 2.46 0.00 -0.17 0.20 3.92 2.10

Table 5: Detailed automatic and human evaluation results. We have three data settings for detailed experiments. We
select all social scenarios including 180 data points (90 social scenarios and 2 agent pairs for each scenario) as one
data set and select the hard social scenarios including 140 data points (14 social scenarios and 10 agent pairs for
each scenario) as another data set. Due to the limited budget, we only randomly sampled 14 hard scenarios and
28 data points (14 social scenarios and 2 agent pairs for each scenario) as the third data setting. We compare all
performance of our baselines and our training settings for SOTOPIA-π among three data settings and include 7
dimensions of social intelligence evaluation and their overall score.

A.2 Statistic Test

We utilize paired t-test to conduct significant test results on human evaluation on hard social tasks (28
data points). We pair data from two agent models with the same scenario together. Table 6 shows the
results for paired t-test between BC+SR and other methods.
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Agent Model Pair BEL (↑) REL (↑) KNO (↑) SEC (↑) SOC (↑) FIN (↑) GOAL (↑) Overall (↑)

Human Evaluation on Hard Social Tasks (28 data points)

BC+SR / GPT-4 -0.45 (0.661) 2.06 (0.060) 1.00 (0.336) 1.35 (0.200) -1.32 (0.209) -1.09 (0.297) -1.31 (0.213) -0.96 (0.355)
BC+SR / GPT-3.5-turbo -0.71 (0.492) 2.62 (0.024) -1.26 (0.234) - -0.85 (0.412) 0.60 (0.558) 0.47 (0.649) 0.59 (0.568)
BC+SR / Mistral-7B 2.68 (0.019) 6.36 (0.000) -0.59 (0.568) - 3.49 (0.004) 0.39 (0.703) 2.07 (0.059) 5.34 (0.000)

BC+SR / BC -0.61 (0.551) 0.41 (0.685) -1.79 (0.097) 1.00 (0.336) 0.41 (0.690) 0.24 (0.813) 0.71 (0.490) 0.37 (0.720)
BC+SR / SR 1.45 (0.170) 2.28 (0.040) -1.32 (0.209) - 1.54 (0.149) 0.46 (0.650) 1.32 (0.209) 2.98 (0.011)

Table 6: Detailed paired t-test results comparing BC+SR and all other methods and baselines. For each model pair,
we provide the calculated t-value(p-value) testing for each dimension and each model pairs. A positive t-value
indicates that BC+SR is better than the other model in the agent model pair. A small p-value < 0.05 indicates that
the improvement is significant.

B Details of SOTOPIA-π

To provide more technical details about SOTOPIA-π, B.1 describes the detailed process for generating
social tasks. B.2 introduces details of the strategy we utilize for social interaction data filtering. B.3
shows examples of the overall prompting format for training. B.4 provides the detailed model version we
used for conducting experiments. B.5 provides the hyper-parameter setting for our behavior cloning and
self-reinforcement training. B.6 mentions the details of the checkpoint selection during training.

B.1 Social Task Generation

Given the relationship profiles, agent profiles, and constraints provided by SOTOPIA-π, we used GPT4-
Turbo to generate a diverse set of new social tasks based on inspirational prompts from three data sources:
Social Chemistry (Forbes et al., 2020), Social IQa (Sap et al., 2019), and Normbank (Ziems et al., 2023).
Because SOTOPIA-π uses six sources of inspirational prompts, including the above three, we make sure
to exclude the used inspirational prompts in SOTOPIA-π to avoid repetition. We also dropped three
sources due to data availability (Persuasion for Good) and prompts being too similar (Deal-or-No-Deal
and MindCraft).

Below are two examples of scenarios generated by an inspirational prompt. We use one prompt to
generate one scenario and do not reuse the prompt. Upon generating scenario content, agent goals under
the scenario would be generated simultaneously.

Inspirational Prompt: Travel without food

Scenario: Agent1 and Agent2 are friends who decided to go on a spontaneous road trip. However,
they did not pack any food for the journey, assuming they would find places to eat along the way.
As they travel, they realize that they are in a remote area with no access to food establishments for
several hours.

Goals:
Agent1: Convince Agent2 to continue the journey without stopping for food, highlighting the
adventure and suggesting to forage or ration any small snacks available (Extra information: you
are excited about the adventure and believe that finding food along the way can be part of the
experience)

Agent2: Persuade Agent1 to find a solution for food, expressing concern about health
and the lack of preparation, and suggesting to turn back or find the nearest town (Extra information:
you are worried about being hungry and think it’s irresponsible to travel without securing food
first)
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Inspirational Prompt: Being mad at my friend

Scenario: Agent1 and Agent2 are close friends who have recently had a falling out due to a
misunderstanding. Agent1 mistakenly believed that Agent2 shared private information about them
with others, which led to feelings of betrayal and anger. After some time has passed, Agent1
learns that the information leak was actually caused by someone else, and they want to mend the
friendship with Agent2. However, Agent2 is still hurt by the initial accusation and the consequent
cold treatment from Agent1.

Goals:
Agent1: Apologize to Agent2 for the misunderstanding and express the desire to repair the
friendship (Extra information: Agent1 values the friendship with Agent2 and feels regret over the
hasty accusation without proper investigation.)

Agent2: Understand Agent2’s feelings and give them space to express any lingering re-
sentment or doubts (Extra information: Agent1 recognizes that trust needs to be rebuilt and that
Agent2 might need to vent their feelings as part of the healing process.)

Our generation also ensures that the distribution of new social tasks is roughly equal among all three
sources. This aligns with the distribution of sources in SOTOPIA-π. We randomly selected 510 unused
inspirational prompts, 170 from each source, and generated a total of 462 new social tasks upfront, which
is sufficient for all our self-train experiments. Note that some inspirational prompts fail to generate a new
scenario, likely because the prompt is too vague or unclear. All used inspirational prompts are recorded to
avoid future re-use when generating additional social tasks.

B.2 Interaction Data Filtering Strategy

For behavior cloning (BC), we filter the interaction data based on the local ranking of goal score (within
each social task) and global absolute goal score (among the entire social tasks universe). We make sure
each social task has a presence in the training corpus by selecting the top 2 ranked interaction data per
social task per agent. For example, for a given social task with 10 interaction data, for each agent, we rank
the 10 data based on goal scores. If the top 2 for agent 1 is data 4 (D4) and D5, and the top 2 for agent 2 is
D5 and D6, we would include 4 agent-data pairs from 3 interaction conversations (D4, D5, D6). For data
in the remaining ranks {3, 4, ..., 10}, at each rank, we check if the goal score is above the minimum of 1.
local mean and 2. global mean for each agent. If both interaction data at the rank pass the corresponding
thresholds, we include the data for both agents. Else, we include none. This approach ensures we have
balanced data from Agent 1 and Agent 2.

For self-reinforcement (SR), we filter the interaction data based on the local ranking of goal score only.
For each social task, we take the top 20 percent of interaction data.

B.3 Training Data Format

The input of the training data is a prompt consisting of the social task (a context, two characters’ profiles,
and their social goals) and the previous conversation history. The output of the training data is a JSON
string consisting of the agent’s action type and action content as the current response. Consider the
example in Figure 2, the input data should be:

Prompt after formatting:
Here is the context of this interaction:
Scenario: Two friends are discussing their plans to go on a weekend trip
Participants: Samuel Anderson and Mia Davis
Samuel Anderson’s background: Samuel Anderson is a 29-year-old Man Software
Developer. He/him pronouns. Samuel Anderson can cook very well. Personality
and values description: Samuel Anderson, though somewhat impulsive and
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free-spirited, values enjoyment. His decision-making is often spontaneous,
staying within familiar boundaries. Samuel’s secrets: He secretly donates to
charities. Mia Davis is a 50-year-old female high school principal. She/her
pronouns.
Mia Davis has two cats. Personality and values description: Mia Davis,
an extraverted stickler for routines, values tradition and authority. Her
decision-making style is decisive and direct. Mia’s secrets: Unknown.
Samuel Anderson’s goal: Convince the friend to join the trip (Extra
information: the trip will be more fun with more people, and you can share
the expenses. Hint: you can provide some material benefits to persuade your
friend to join.)
Mia Davis’s goal: Unknown. Conversation Starts:

Turn #1
Samuel Anderson said:“Hey Mia, I have an exciting plan for the weekend! How
about we go on a trip together?”
Turn #2
Mia Davis said: “Hey Samuel, that sounds like a really exciting plan! I
really appreciate the invite. Unfortunately, I already have some commitments
this weekend that I can’t get out of. How about we plan for another weekend?”

You are at Turn #3.
Your available action types are
“none action speak non-verbal communication leave”.
Note: You can “leave” this conversation if 1. you have achieved your
social goals, 2. this conversation makes you uncomfortable, 3. you find it
uninteresting/you lose your patience, 4. or for other reasons you want to
leave.

Please only generate a JSON string including the action type and the
argument.
Your action should follow the given format: {‘action_type’: ‘’, ‘argument’:
‘’}

The output data should be:

{‘action_type’: ‘speak’, ‘argument’: ‘I totally understand! But let me tell
you why joining this trip would be absolutely worth it! First of all, we
can share the expenses, which means it will be much more affordable for both
of us. And secondly, the more people we have, the more fun it will be!
We can have group activities, play games, and create unforgettable memories
together. I promise you won’t regret it!’}

B.4 Involved Model Versions

We provide the detailed version number of all the models we used in our experiments. When we mention
each name like GPT-4 or GPT-3.5 in our main section, we actually refer to those model versions below.
Such information helps researchers reproduce our results:
GPT-4: gpt-4-0613
GPT-3.5: gpt-3.5-turbo-0613
Mistral-7B: mistralai/Mistral-7B-Instruct-v0.1 (Huggingface)
GPT-4 for social task generation: gpt-4-1106-preview
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B.5 Training Setup

The training on each Mistral checkpoint was on 4 × A6000 80G GPUs, across 20 epochs. The batch
size was 4 and we set the cut-off length to be 4096. The initial learning rate for both behavior cloning
and self-reinforcement training was 5.0e-5, using cosine annealing with a warm-up ratio of 0.03. The
QLoRA (Dettmers et al., 2023) rank, alpha, and dropout rate were 8, 16, and 0.05, respectively.

B.6 Checkpoint Selection

According to the training loss, for behavior cloning, we always pick the checkpoint at epoch 20; for
self-reinforcement, we always pick the checkpoint at epoch 5.

C Human Evaluation

We provide technical details of human evaluation in this section. C.1 provides a number of annotation data
for each model. C.2 provides details of UI systems for annotation and guidance for human annotation. C.3
discusses the details of how we find qualified annotators to conduct this annotation task.C.4 describes the
demographic and geographic information about human annotators. C.5 describes the overall process of
conducting data collection and explains under which circumstances should we filter out collected human
annotation. C.6 provides details about the payment of human annotators from different regions and C.7
mentions the agreement on the academic usage of their data. C.8 provides the details of the correlation
between GPT-based automatic evaluation and human evaluation. C.9 discusses the inter-annotator
agreement. C.10 discusses additional findings for human evaluation.

C.1 Social Interaction Data for Annotation

In SOTOPIA benchmark, it includes 90 different social scenarios including negotiation, collaboration,
and competition. For each social scenario, it includes 10 role-playing agent pairs. Each agent has personal
background and social goals to achieve. To strike a balance between a limited budget and getting human
evaluation results for SOTOPIA-π that are useful for comparing the performance between multiple
baselines and models given, we select 14 hard social scenarios among 90 social scenarios. For each
social scenario, we randomly sample 2 agent pairs among 10 of them as our annotation data. Typically,
among 2 agents, one of them is role-played by GPT-3.5, and another one is role-played by our target
model including baselines and multiple different settings. The social interaction conversation between
them is GPT-3.5 and our target model talking with each other. Therefore, we collect 28 examples as a
representative subset to annotate for each baseline and model. Statistically, we annotate 3 baseline models,
including GPT-3.5, GPT-4, and Mistral-7B, and 3 different training settings, including self-training
based on Mistral-7B, behavior cloning based on Mistral-7B, and self-training based on behavior cloned
Mistral-7B. Each baseline and model setting is annotated using 28 examples.

C.2 Human Annotation System

For the overall annotation system, we utilize otree (Chen et al., 2016) to build our system and utilize the
Prolific 5 to launch our survey. During each annotation, each annotator would face two separate parts:
the annotation instruction part and the data annotation part. When each annotator participates in the
annotation, the system automatically distributes one available example for them.

Annotation Instruction Part For the annotation instruction part, we provide a precise definition of
the dimensions of our annotations that are defined in SOTOPIA, including believability, relationship,
knowledge, secret, social rules, financial and material benefits, and goal completion. For each dimension
of annotation, we provide explanations and examples for annotators to understand the precise meaning of
abstract social standards. Fig 5 shows an example of such guidance for the believability dimension to
help annotators understand the meaning of each dimension based on examples. Besides the evaluation
dimension definition part, we also provide annotators with a complete example of annotation for two
agents in one social conversation including scores for each dimension and their corresponding reasoning

5Prolific Human Evaluation Platform https://www.prolific.com/
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sentences. Fig 6 shows a complete example of the reasoning and score for each dimension.

Figure 5: An example of the explanation of the believablity dimension of social annotation in the evaluation
instruction page. Each annotator are asked to read similar definitions of social intelligence dimension and their
corresponding annotation standards at the evaluation instruction page.

Data Annotation Part For the data annotation part, the annotator is guided to jump to a new page
after the previously mentioned annotation instruction page. Each annotator is able to review the complete
annotation example again at the data annotation page and start their official data annotation. In the data
annotation part, the repeated explanation of the meaning of range for each social evaluation dimension
is emphasized to make sure every annotator is able to understand the annotation standards correctly.
Fig 7 provides an example of the instruction that annotators see for metric range explanation. Each
annotator is asked to annotate the social intelligence of both agents that have a conversation. For each
social intelligence dimension, annotators need to annotate the score based on the metric range and provide
the reasoning for that. Fig 8 shows the UI that each annotator uses to annotate.

C.3 Human Annotator Selection

Since giving a social intelligence score for multi-turn social conversation is complicated and high-
demanding, we need to pick out qualified human annotators to provide consistent and high-quality human
annotation. Therefore, for the first stage, we launched a qualification test to figure out which annotator
would be qualified to conduct the official round of human evaluation. After that, we invite 30 qualified
human annotators from the Prolific platform together with 4 internal high-quality annotators to participate
in the human annotation process to collect all required data.

To elaborate on the qualification testing process, we selected 10 social interaction examples and
randomly sampled one of them for each incoming annotator. For each social interaction example, we have
an internal ground-truth human annotation that is the average score number of four internal high-quality
annotators. After collecting the data from the prolific annotators, we first picked out the annotators that
have a ±2 range score compared with our ground-truth examples. However, we found that based on these
standards, only a few annotators are able to pass the qualification test. Therefore, we manually checked
the reasoning sentences collected from the annotators and picked those annotators who wrote reasonable

18



Figure 6: An annotation example of social interaction evaluation. Each dimension is annotated with one sentence
and one score.
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Figure 7: The prompt before the official annotation stage to remind annotators about the rules of reasoning writing
and social dimension scoring.

reasoning sentences but had quite different scores in some dimensions. For these annotators, we invite
them to participate in the official human evaluation test as well but we send a user-specific message to all
of them to notice which dimension they should pay attention to and suggest them read the instructions for
annotating that dimension again carefully.

C.4 Demographic and Geographic Information about Human Annotators

For the launch of qualification test, we guarantee that we choose balanced male and female annotators to
participate in that. We also limit the participants to the residents of the United Kingdom and the United
States. For 30 qualified annotators and 4 internal high-quality annotators, we show that most of them are
located in the United Stated and few of them are located in the United Kingdom. Qualified annotators
have a wide range of age from 23 to 53.

C.5 Human Annotation Data Collection

For the official launch of human evaluation, we limited each datapoint in the dataset to be annotated by 2
different qualified annotators and collected all the results from those qualified annotators. We encourage
qualified annotators to participate in the official study of our human evaluation multiple times but distribute
different data points for them to annotate each time they enter the system. Such a mechanism makes sure
that each annotator would not annotate the same example twice.

After collecting human annotation data for each model, we would manually check the quality of
reasoning and scores provided by the annotator and check the agreement between annotators within each
datapoint. If one human annotation does not include well-written reasoning and just provides ambiguous
sentences like "It is good." or "He reached the goal", we would pick out these human annotation
data. If two human annotators annotate the same example but strongly disagree with each other (for
example, they have more than 5 points different on goal completion dimension), we would filter out these
human annotation data. If one human annotation score does not correspond to its reasoning (for example,
one annotator writes the reasoning of "No secret leaked" but annotates -5 for secret dimension), such
data would be filtered.

When it comes to filtering due to strong disagreement with each other, for each experiment including
Mistral-7B, GPT-3.5, GPT-4, BC trained Mistral-7B, SR trained Mistral-7B, and BC + SR trained Mistral-
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Figure 8: The user interface designed for annotators for official annotation for both agent with reasoning and social
scores.
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7B, about 20% of the data points that we collect from the annotators are filtered so that we need to relaunch
20% of the data points for annotation. One interesting phenomenon we observe from the filtering process
is that for more high-quality social interaction conversations, annotators would have more agreement
and less filtering is required. We believe that this is reasonable because low-quality generated social
conversation would include situations like one agent suddenly stopping and leaving the scenario while
they have not reached an agreement yet or their social conversation is very short. It can be confusing for
the annotators to annotate a precise score for such social conversation.

When it comes to filtering due to uncorrelated reasoning, about 1.8% annotations that we collect from
the annotators are filtered due to this reason.

After filtering low-quality annotation after one round of annotation, we collect these social interaction
data that have no qualified human annotation again and launch it as a reannotation task to get new human
annotation data for them. We repeat the process until we get all high-quality annotations for all required
social interaction data.

We also make other efforts for the experimental design to reduce the potential bias for the filtering
process. For each social conversation between two agents, one is the target model that we need to
test, another other is fixed to be gpt-3.5-turbo. The annotators are asked to annotate both sides of the
conversation for all social dimensions. However, in each datapoint, both agent1 and agent2 are randomly
played by gpt-3.5-turbo and the target model. Both the author who participates in the filtering process
and the annotators who participate in the annotation process have no knowledge about which agent is
played by the gpt-3.5-turbo and which agent is played by the target model. Based on such operations, one
datapoint can be filtered because its annotation for the gpt-3.5-turbo side does not agree or its annotation
for the target model side does not agree. Such experimental design reduces the possibility of potential
bias as much as possible.Typically, only one of the paper authors is involved in the filtering process since
it is purely rule-based filtering and does not require additional work.

All the human subjects data collection experiments approved by the Institutional Review Board (IRB)
at the authors’ institution.

C.6 Human Annotator Payment

In the U.S., annotators are compensated at a rate of $1.5 for each task they complete, with the expectation
that each task will take no more than 10 minutes. This setup allows them to potentially earn over $9 per
hour, surpassing the minimum wage in the U.S. Meanwhile, in the U.K., we offer additional bonuses to
ensure that annotators’ average earnings exceed $14.5 per hour, aligning with the U.K.’s minimum wage
standards.

C.7 Human Annotator Consent

All annotators including 4 internal annotators and 30 qualified annotators provided by Prolific acknowledge
the academic use of their data.

C.8 Correlation between Automatic Evaluation and Human Evaluation

Table 7 shows the Pearson correlation between human evaluation score and GPT-4-based automatic
evaluation score in multiple model and baseline settings. Results indicate that among all training settings,
GPT-4-prompting-based automatic annotation and human evaluation have a high correlation with each
other. Therefore, it shows that GPT-4-prompting-based automatic evaluation provides a high correlation
with human evaluation.

C.9 Inter-annotator Agreement

Since for each datapoint that we annotate, it is given to two different annotators for annotation and the
annotator for each datapoint is not paired. Therefore, we cannot directly apply Cohan’s Kappa score for
our experiments. We report pairwise agreement and Randolph’s Kappa score to measure inter-annotator
agreement.
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Agent Model GOAL Correlation (↑)

Expert (GPT-4) 0.86
Base (Mistral-7B) 0.76

O
ur

s Self-Reinforcement (SR) 0.86
Behavior Cloning (BC) 0.73
BC+SR 0.58

Table 7: Pearson correlation between human evaluation and GPT-4-prompting-based automatic evaluation on goal
completion score. (p < 0.01)

Dimension Pairwise Agreement Randolph’s Kappa

BEL 0.7908 0.5816
REL 0.8214 0.7321
KNO 0.8673 0.7347
SOC 0.9694 0.9388
SEC 0.9949 0.9898
FIN 0.9133 0.8776
GOAL 0.8010 0.6020

Table 8: Inter-annotator agreement for all social evaluation dimensions.

C.10 Additional Human Evaluation Results

For human evaluation, we make our target model (including baselines and our SOTOPIA-π models) and
GPT-3.5-turbo to have a multi-turn social conversation with each other. We make sure that each target
model is talking to the same GPT-3.5-turbo model to make sure the comparison between different training
settings is fair. Therefore, we not only have the human evaluation results on our target model side, but we
also have the human evaluation results on the GPT-3.5-turbo side. Based on Table 9, we find that when
our model becomes better and better based on behavior cloning and self-reinforcement, the model that
they speak to, which is always GPT-3.5-turbo, becomes better and better on goal completion score and
overall score. This indicates that they are more likely to reach an agreement and get requirements from
both sides satisfied.

Agent Model BEL (↑) REL (↑) KNO (↑) SEC (↑) SOC (↑) FIN (↑) GOAL (↑) Overall (↑)

GPT-4 vs GPT-3.5-turbo

GPT-4 7.54 0.95 0.77 -0.18 -0.21 0.41 5.25 2.07
GPT-3.5-turbo 7.46 0.68 0.98 0.00 -0.64 0.45 3.64 1.80

GPT-3.5-turbo vs GPT-3.5-turbo

GPT-3.5-turbo 7.49 0.33 1.62 0.00 -0.34 -0.01 4.08 1.87
GPT-3.5-turbo 7.49 0.33 1.62 0.00 -0.34 -0.01 4.08 1.87

Mistral-7B vs GPT-3.5-turbo

Mistral-7B 5.25 -0.64 1.23 0.00 -1.57 0.09 2.89 1.04
GPT-3.5-turbo 6.86 -0.54 1.14 0.00 -0.36 0.04 2.98 1.45

Self-Reinforcement (SR) vs GPT-3.5-turbo

Self-Reinforcement (SR) 6.57 0.46 1.59 0.00 -0.89 0.11 3.32 1.59
GPT-3.5-turbo 7.80 0.46 1.21 0.00 -0.63 0.25 4.13 1.89

Behavior-Cloning (BC) vs GPT-3.5-turbo

Behavior-Cloning (BC) 7.46 1.04 1.55 -0.18 -0.61 0.07 3.55 1.84
GPT-3.5-turbo 7.43 0.82 1.79 -0.05 -0.70 0.23 4.86 2.05

BC + SR vs GPT-3.5-turbo

BC + SR 7.30 1.27 1.09 0.00 -0.46 0.18 4.29 1.95
GPT-3.5-turbo 7.57 1.13 1.55 0.00 -0.55 0.30 5.55 2.22

Table 9: Human Evaluation Results for both agents involved in the conversation.
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D LLM Safety

Below is a concrete example of responses by different models when attempting to express dislike and
injure a person, which aligns with our overall observation.

Figure 9: An example of model behavior to injure person

Under the same relationship setting as above, responses by each model acting as agent 2 to prevent
violence are exemplified below.

Figure 10: An example of model behavior to prevent violence
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E LLM Secret Keeping Ability

Grasping the capability of LLMs to maintain secrets is increasingly vital, especially in light of privacy
concerns. The concept of privacy, as elaborated in Helen Nissenbaum’s "Contextual Integrity" theory,
isn’t solely about what information is shared but significantly about the context in which it’s shared
(Nissenbaum, 2004). LLMs process a multitude of real-world conversations, which presents a novel
privacy challenge if they mishandle this sensitive information flow (Mireshghallah et al., 2023). Tradi-
tional privacy solutions, such as data sanitization (Heider et al., 2020), are inadequate for this scenario.
Therefore, it’s essential to evaluate the trained LLMs’ ability to discern when and with whom sharing
information is inappropriate, thereby safeguarding the secrets entrusted to them.

To understand and compare models’ ability in secret keeping, we picked social tasks from SOTOPIA
that specifically asks both agents to reveal a secret without letting the other agent know that it is the
agent’s secret.

Below is a concrete example of how four models behave under the same settings.

Figure 11: An example of model behavior in secret-oriented scenario

As could be seen from the example below, both BC model and GPT-3.5 reveal the secret directly
without hiding the identity. GPT-4, on the other hand, is smart about hiding the identity, putting the secret
under the shell of a news he recently read about.

We analyze the behaviour of four models across 10 different agent and relationship setup, each setup
with different secrets. Overall, the BC model is generally not great at revealing the secret and hiding the
identity. In most cases, the secret is not discussed at all, which to some extent could be considered as
successfully achieve the goal of hiding the identity. In cases when a secret is revealed, the model reveals
explicitly and fails to hide the identity.

GPT-3.5 tends to discuss irrelevant content less often than behavior cloned model does, but almost
always explicitly reveals the secret without hiding the identity. The way it phrases the secret is often
exactly the same as provided in the profile background, which indicates its weak ability in learning the
task.

GPT-4 is much more skillful about hiding identity when revealing secrets, using “heard a story” or “a
friend of mine” as a wrapper to hide the real identity. It also teaches the other agent (backed by GPT-3.5)
to learn the phrases, and hence inviting the other agent to reveal secrets in the same format and hide the
identity.

F Detailed MMLU Results

The Multimodal Multitask Learning Understanding (MMLU) benchmark is a challenging and compre-
hensive test designed to evaluate the capabilities of artificial intelligence models across a wide range
of subjects and modalities. It includes 57 subjects spanning a broad spectrum of disciplines such as
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humanities, social sciences, STEM (Science, Technology, Engineering, Mathematics), and more. Here in
Figure 10, 11, 12 we present the per-subject performance for each model in Table 2.
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Figure 12: Per-subject comparison between agent models on MMLU. Part 1.
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Figure 13: Per-subject comparison between agent models on MMLU. Part 2.
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Figure 14: Per-subject comparison between agent models on MMLU. Part 3.
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