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Abstract— This paper introduces RobotCycle, a novel ongo-
ing project that leverages Autonomous Vehicle (AV) research to
investigate how road infrastructure influences cyclist behaviour
and safety during real-world journeys. The project’s require-
ments were defined in collaboration with key stakeholders,
including city planners, cyclists, and policymakers, informing
the design of risk and safety metrics and the data collection
criteria. We propose a data-driven approach relying on a novel,
rich dataset of diverse traffic scenes and scenarios captured
using a custom-designed wearable sensing unit. By analysing
road-user trajectories, we identify normal path deviations
indicating potential risks or hazardous interactions related
to infrastructure elements in the environment. Our analysis
correlates driving profiles and trajectory patterns with local
road segments, driving conditions, and road-user interactions to
predict traffic behaviours and identify critical scenarios. More-
over, by leveraging advancements in AV research, the project
generates detailed 3D High-Definition Maps (HD Maps), traffic
flow patterns, and trajectory models to provide a comprehensive
assessment and analysis of the behaviour of all traffic agents.
These data can then inform the design of cyclist-friendly road
infrastructure, ultimately enhancing road safety and cyclability.
The project provides valuable insights for enhancing cyclist
protection and advancing sustainable urban mobility.

Index Terms— Safety, Bicycle, Dataset, Benchmark, Urban
Infrastructure

I. INTRODUCTION

With 15,693 cyclist casualties in UK road accidents in
20221, including fatalities and injuries, and 243 casualties
in Oxfordshire alone in 20212, cyclists remain among the
most Vulnerable Road User (VRU). Cyclists are continually
exposed to risks due to the inherent design of roads, un-
predictable behaviour of other users, and inadequate safety
measures.

Our ongoing RobotCycle project aims to address these
challenges by identifying how specific road features, such
as road layout and traffic filters, along with the behaviour
of other road users, can impact cyclist safety in urban envi-
ronments. Incident reports and accident statistics lack crucial
contextual information surrounding critical events since they

This work was supported by a Google DeepMind Engineering
Science Scholarship, the EPSRC project RAILS (grant reference:
EP/W011344/1), and the Oxford Robotics Institute research project
RobotCycle. Map data copyrighted OpenStreetMap contributors and
available from https://www.openstreetmap.org. Correspondence:
{efimia,daniele,lars,cprahacs}@robots.ox.ac.uk

1Reported road casualties Great Britain, annual report 2022, available at
http://tinyurl.com/5n8zva74

2Oxfordshire County Council (OCC) report 2021 on Road Traffic Colli-
sions, available at http://tinyurl.com/43ff89nc
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Fig. 1: Data-collection platform design (a) and deployment
(b). The sensors and computing unit have been integrated
into a backpack, allowing application flexibility without
compromising the specifications and FOVs of the sensors.

mainly rely on post-event reporting and stationary sensing.
These methods provide limited contextual information from
a restricted set of sensors configured in fixed locations and
viewpoints.

RobotCycle complements these approaches by gathering
detailed information about traffic, road infrastructure, and
behavioural patterns from the perspective of the VRUs,
analysing all the factors contributing to cyclist vulnerability.
We equip cyclists with a mobile sensing unit incorporat-
ing state-of-the-art technologies commonly found in Au-
tonomous Vehicles (AVs) and further combine these rich
ego-centric data with High-Definition Maps (HD Maps),
trajectory tracking, and cyclist feedback to microscopically
investigate the causes of safety-critical incidents and deter-
mine how road infrastructure and users’ behaviour impact
cyclists’ safety during complex social interactions on urban
roads. Figure 1 shows the final design of the sensorised
backpack. We aim to identify previously unrecognized safety
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issues as well as risky and complex behavioural patterns.
Through this, we seek to inform the development of more
effective interventions and deepen our understanding of
social interactions in real-world road contexts, effectively
enhancing cyclist safety.

II. STRUCTURE AND OBJECTIVES

The primary scope of the RobotCycle project is to investi-
gate how cycling infrastructure influences cyclist behaviour
and safety during real-world journeys to inform the design
of cyclist-friendly road layouts, improving road safety and
cyclability. Through our engagement with the key stakehold-
ers, such as policymakers and cyclist associations, we formed
the following three objectives:
O1. Design a novel, wearable sensing unit to collect rich

multi-sensor data from the perspective of the cyclists;
O2. Develop a novel, annotated dataset for analysing the

factors contributing to road safety, focusing on road infras-
tructure and traffic interactions;

O3. Propose a benchmark for assessing road safety for cy-
clists in urban environments through safety and cyclability
indexes, identifying areas of high risk.

In the remainder of the paper, we discuss each objective
further and describe our approach to achieving them.

III. BACKGROUND AND RELATED WORK

Cyclist Journey Analysis. Recent studies investigate
cycling safety and road users’ interactions by modelling driv-
ing, riding, and walking behaviours. These projects leverage
various data sources to capture the environment, including
sensors directly mounted on bicycles or cyclists and per-
sonalised IoT cycling gear [1], [2], [3], [4]. For instance,
[1] conducts a thorough analysis, considering social and
kinematic factors to evaluate cyclists’ safety and comfort in
challenging environmental conditions. Capturing also social
characteristics, [2] assesses highway design and its impact on
cycling while [5] relies on IoT cycling gear for personalised
cyclist training and safety assessment. Additionally, [3] cap-
tures stress and health data from cyclists and correlates them
with image data, focusing on specific events. [4] proposes a
method for detecting near misses from video captured from
various positions, either on a bicycle or on the cyclist’s
helmet. RobotCycle extends upon these works relying on
wearable sensing, and capturing traffic interactions while
mapping and modelling road infrastructure.

Backpack design. Due to their operational flexibility,
backpacks have been previously employed for mapping
and data collection projects, relying either solely on lidar
scanners for capturing the surroundings [6], [7], [8], [9],
[10] or also on cameras [11], [12]. Aiming to collect a
rich multi-modal dataset, we designed and built a custom
versatile backpack equipped with lidars, cameras, and inertial
sensors achieving a complete 360◦ Field-Of-View (FOV)
and close-to-far range detection around the cyclist, capturing
geometry and appearance. This setup allows us to map the
environment, capture close-range interactions, and analyse
the trajectory of each participating actor in a traffic scene.

Sensor Qty Model Description
Lidar 2 PandarXT-32 360x31° (HxV) FOV

Stereo 2 ZED2i Stereo camera, intergrated IMU

Camera 2 Basler acA1920 Colour monocular, fisheye lenses

INS 1 Ellipse-N RTK GNSS

TABLE I: Overview of the sensors used in the final version of
the data collection platform. In post-processing, we utilise the
fitted Inertial Measurement Units (IMUs) to mitigate noise
caused by the cyclists’ body movements and road vibrations.

Behaviour, Risk, and Safety Modelling. Various stud-
ies focus on modelling traffic interactions and risk, while
others propose alternative infrastructure to design safer road
networks. For instance, [13] employs behaviour modelling
to predict collisions and recommend avoidance manoeuvres.
Meanwhile, [14] develops a safety model based on accident
reports and mapping data to unveil behavioural patterns.
In a different approach, [15] leverages risk and discomfort
estimation models to generate personalised route recommen-
dations by correlating accident and traffic data with street
network topology. Additionally, [16] utilises simulation data
to propose improvements in road infrastructure, while [17]
leverages adversarial networks to redesign urban cities. In
contrast, RobotCycle adopts a data-driven approach. We
collect an extensive dataset capturing diverse road layouts,
infrastructure characteristics, and weather and lighting con-
ditions. Leveraging methodologies from AV research, we
generate traffic, behaviour, and risk models. These models, in
correlation with detailed HD Maps, enhance our understand-
ing of road users’ interactions facilitating the identification
of incident hotspots.

IV. WEARABLE SENSOR UNIT DESIGN

Our objective O1 is to develop a comprehensive data-
collection sensing unit incorporating state-of-the-art range
and image sensors with inertial navigation systems. We aim
to collect a robust dataset capturing short- and long-range
infrastructure details and dynamic driving interactions in
each traffic scene. This holistic approach ensures that the
resulting dataset can be used to analyse and understand the
intricacies of various driving scenarios.

We can summarise the requirements for the proposed
sensorised platform with the following:
R1.1. Develop a portable, robust, and weather-invariant

lightweight sensing unit to be used by different VRUs;
R1.2. Achieve a combined multi-modal 360◦ FOV short-

to-long range sensing coverage, also capturing inertial and
positional measurements;

R1.3. Record four hours of continuous cycling data per
day for two weeks, capturing varying times of day, traffic
volumes, and weather conditions;

R1.4. Aim for inconspicuous design.
Importantly, project requirements are derived from and in-
terlinked among the objectives. Indeed, R1.2 is related to
O2’s, R2.3, and O3’s analysis, and R1.1 and R1.3 to O2’s
and R2.4.



(a) (b) (c)

Fig. 2: Various design iterations of the RobotCycle backpack. From the left, the first iteration (a) allowed for sensors’
displacement to optimise their position and orientation. The second iteration (b) consolidated the sensors’ positioning,
computing requirements, and networking, allowing extensive field testing. The final iteration (c), finalised the sensing
configuration and design, maximising sensors’ FOV and optimising overall weight distribution.

To satisfy the design requirements, we opted for a sen-
sorised backpack. This wearable solution enhances deploy-
ment flexibility as it does not depend on external or fixed
infrastructure, such as the bicycle frame, and can be easily
worn by different VRUs at the cost of increased load on the
user, trading off R1.1 and R2.4. In addition, this solution
does not limit our sensor selection and mounting options
while simplifying the overall wiring setup.

The sensors equipped can be seen in Table I, sample data
are visualised in Figure 5, and the final design is depicted
in Figure 1; it should be noted that we prioritised R1.2 over
R1.4 to satisfy the data analysis procedures. The backpack
also fits an onboard computer, a hardware synchronisation
system, and various storage devices, designed to meet the 4-
hour runtime requirement (R1.3) while allowing quick and
easy battery replacement in the field.

A. Iterative design

We optimised the mounting configurations and sensors
specifications to achieve an unobstructed 360◦ FOV coverage

around the ego-cyclist after several design iterations, as
seen in Figure 2. The initial design, in Figure 2a, relied
on custom articulated joints and mounting points, allowing
us to experiment with different sensors’ positioning and
orientations, as well as different sensor types, specifications,
and FOVs. Figure 3 shows one of our custom joint mecha-
nisms enabling six degrees of freedom movement, facilitating
experimentation with various sensors’ positioning. With this
flexible and adjustable setup, we optimised the design, taking
into account various mounting points. For instance, in Fig-
ure 3, the front camera is mounted on the side of the rider,
illustrating one of the possible configurations we explored.

In a second iteration, shown in Figure 2b, we optimised
the platform for a rugged and robust design while allowing
basic height and tilt adjustments adaptable to each rider. We
also focused on developing a computing unit to suit our
data bandwidth requirements and finalised the wiring and
cooling setup. We then run extensive system tests in the field,
recordings of which can be seen in Figure 5.

Following these tests, we finalised the hardware design



Fig. 3: Detail of the articulated systems that enabled ex-
tensive experimentation with various sensors’ positioning to
optimise the sensing setup.

and the sensors’ configuration and positioning as seen in
Table I and Figure 2c. By integrating noise shielding, rein-
forcing mounting points, and optimising weight distribution,
we made the overall system more robust, compact, and
comfortable for prolonged bike rides.

V. DATA COLLECTION

Our goal O2 is to record a comprehensive and detailed
dataset encompassing all traffic interactions and infrastruc-
ture details across diverse environmental and traffic condi-
tions. To achieve this, we have identified and prioritised areas
of interest while remaining compliant with existing data and
traffic regulations. In particular, our data-collection strategy
was formulated based on the following requirements:
R2.1. Ensure compliance with Data Protection and Privacy

Regulations;
R2.2. Ensure compliance with Road Safety Regulations;
R2.3. Capture diverse types of road layouts and different
traffic volumes, road signs, cycling styles as well as various
illumination, weather, and road-surface conditions;

R2.4. The trial length is depended on the risk assessment
and must be agreed upon with the cyclists;

R2.5. Collect data bidirectionally in high- and low-peak
traffic hours in specific semantically rich and diverse loops.
Oxford is known for its diverse infrastructure and road

network, which has led to the collection of several extensive
AV datasets [18], [19], [20]. Yet, to ensure coverage of
varying traffic volumes and various types of cycling infras-
tructure – including roads without cycle paths, roads with
shared cycle paths, and roads with exclusive cycle paths
– we conducted an extensive analysis of the city’s road
network. Indeed, we first qualitatively classified Oxford’s
road network according to traffic, location, and functionality,
also leveraging data from detailed Cycling Network Maps3,

3http://www.transportparadise.co.uk/cyclemap/

and then further prioritised different road segments according
to the diversity of road layout, infrastructure features, and
prevailing traffic conditions. Results of this analysis can be
found in Figure 4, leading to an estimated 15 bidirectional
runs on each route, encompassing different times of the day
and weather conditions (R1.1). The specifics of executing a
single trial are contingent upon agreement with each cyclist,
considering the weight of the total sensor package (R2.5)
and the cyclist’s durability (R2.4).

(a) St. Giles’ fork: Cyclists must navigate the car lanes, moving
from the main bicycle lane to the lane on the right of the fork.
Meanwhile, vehicles can travel and merge from either side.

(b) Woodstock Rd: The bicycle lane begins on one side of the road
and later transitions to the opposite side requiring cyclists to cross
the road and share the lane with pedestrians.

Fig. 4: (Left) CyclOSM4bicycle oriented map rendered from
OpenStreetMap (OSM) [21]. (Right) Visualisation of places
of interest on Google Maps.

VI. DATA ANALYSIS

To the best of our knowledge, this is the first project
capturing data from the cyclists’ perspective using a multi-
sensing backpack. Our sensing platform described in Sec-
tion IV provides a 360◦ FOV, offering a comprehensive
perspective of the cyclist’s surroundings, capturing dynamic
and static elements in roads of diverse traffic volumes and
infrastructure designed in Section V. This section describes
the analysis we will perform on these data to assess, predict,
and monitor the cyclists’ safety on the road, as indicated in
our objective O3. To this end, we are focusing on building
HD Maps, data annotation, and traffic models, which will
be used in conjunction to calculate a safety score that
will holistically comprehend risks associated with traffic
events, allowing us to address safety concerns effectively
and develop strategies to mitigate them. In this analysis, HD
Maps are central as they are a fine-grained representation
of the environment, which we can augment with semantic
and road quality information (smoothness, potholes, etc.) –

4https://github.com/cyclosm/cyclosm-cartocss-style/

http://www.transportparadise.co.uk/cyclemap/
https://github.com/cyclosm/cyclosm-cartocss-style/
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Fig. 5: Sensor samples from the second iteration of the backpack in Figure 2b. Raw 3D scans of the side lidars are visualised
in (a), (b), and combined in (c); undistorted image data from the front and rear stereo cameras are shown in (d) and (f); raw
images from the monocular side cameras are seen in (e) and (g). The side cameras are synchronised with the lidars through
the Pulse Per Second (PPS) signal from the GPS and a custom signal repeater; GPS data can be seen in Figure 6.

retrieved from IMU data – and dynamic agents locations.
Semantic elements, such as objects and local geometry,
have been previously used to explain the performance and
behaviour of AV systems [22], [23]. We aim to follow
a similar approach using semantics to enhance HD Maps
and explain the behaviour of our ego-cyclist in correlation
with elements in the environment. By correlating those with
traffic and trajectory models we can assess the safety of the
road network. Preliminary results are shown here on a test
dataset we recorded with the proposed sensing platform at the
Culham Science Center in Abingdon (UK) – here culham
– and the uniD dataset [24].

A. HD Maps

HD Maps are invaluable for providing detailed contex-
tual information about the environment, including precise
lane locations, road boundaries, curbs, and landmarks. In
addition, they capture local and global morphology, such
as surface and geometry, detailing static infrastructure. This
level of accuracy offers insights into complex intersections
and infrastructure, aiding in localising all road agents and
allowing us to correlate their behaviours to traffic flows and
interactions. A preliminary example of an HD Map applied

to culham is depicted in Figure 6.

B. Data Annotation
To analyse the data and extract trajectory and behavioural

patterns, we need to detect and track semantics of interest
in the dataset. We will annotate all dynamic agents and
road-layout-specific classes in the dataset, extending existing
class definitions – e.g. the extensively-used CityScapes’ [25]
– including infrastructure elements critical to a thorough
description of the scene. Table II summarises our semantic
class definition of interest and Figure 7 depicts labelled
images in our culham dataset.

C. Traffic and Trajectory Models
Since this dataset will be taken from the perspective of

a VRU instead of a vehicle, it will contain diverse VRU-
to-VRU and VRU-to-Vehicle interactions. These interactions
have higher variability as VRUs do not necessarily follow
allocated lanes, traffic lights, and road rules. Especially
cyclists, because they operate at higher speeds, pose a
danger to other types of road users, making predicting cyclist
trajectories crucial for a comprehensive safety assessment.

We have begun developing these processes by leveraging
the uniD dataset [24]. Figure 8 shows results for road agents’



(a) GPS trace overlaid onto OSM [21] using the on-board INS
unit from Table I. A noticeable gap in the traces highlights
moments when the GPS signal was briefly lost, providing
insights into the signal interference challenges faced during
data collection.

(b) Preliminary results of the HD Map generated after fusing
the scans from the two side lidars sensors, generating a rich
and detailed 3D structured representation of the environment.

Fig. 6: GPS trace and HD Map visualisation from our
culham dataset.

Category Subcategories
ground road, pavement, cycle-lane, bus-lane, parking-

spot, bus-stop, lane-marking, roundabout, cross-
ing, traffic-island, other

structure building, fence, wall, barrier, stop-shelter, road-
works, overhead-bridge, other

nature vegetation, trunk

object pushchair, sign, fence, pole, traffic-cone, traffic-
light, wheelchair, other

vehicle car, truck, bicycle, motorcycle, e-scooter,
mobility-scooter, van, bus, on-rails, other

animate-agent animal, pedestrian, rider, other

TABLE II: Target categories and derived subcategories for
semantic labelling of image and pointcloud data focusing on
infrastructure elements and dynamic agents.

tracked directions and velocity, divided by kind. As expected,
VRUs tend to occupy a larger portion of the road surface
exhibiting a wider range of behaviours.

VII. FUTURE WORK AND OPEN ISSUES

As the outlined work packages have provided encouraging
preliminary results, further refinement and analysis are im-
perative for the project’s success. We aim to conduct a data-
driven safety analysis leveraging behavioural modelling and
trajectory prediction methods from AV research. In addition,
an in-depth causality analysis is required to identify the
intricate causes and effects of each event captured.

Our initial data collection is limited to private and con-
strained environments, capturing very few driving interac-
tions; in the final iteration of our project, we will collect the

(a)

(b)

Fig. 7: Sample labelled images from two locations depicting
different traffic scenarios in our culham dataset. Label
categories can be seen in Table II.

Oxford dataset described in this paper, which we commit
to making publicly available. Using this novel dataset, we
aim to develop a generalisable approach to assessing safety,
which, based on infrastructure, traffic volumes, and historical
data, can generate insights into potentially unsafe situations,
even on roads not traversed within the dataset. Within the
scope of this project, our focus lies on urban environments.
However, an extension to off-road areas can provide valuable
insights into the behaviour of VRUs across more diverse and
challenging environments [26].

VIII. CONCLUSION

This paper introduces the RobotCycle project which aims
to evaluate the safety of cycling infrastructure by leveraging
advancements in AV research and technologies. Here, we
have described the development process of a wearable data
collection device, the design of the data collection process,
and the data analysis rationale. Our primary focus has been
on building and testing the sensing backpack to ensure that
it satisfies all design requirements so that we can achieve the
project’s objectives. Initial results demonstrate the device’s
ability to capture diverse and rich datasets, which are then
used to extract semantic elements, HD Maps, and traffic pat-
terns. The RobotCycle project is an innovative undertaking
with a mission to enhance the safety and sustainability of
urban cities. We aim to generate valuable insights into the
ongoing discourse on urban development, setting a bench-
mark for further advancements in the field.



Fig. 8: Preliminary analysis results for road agents’ direction (a) and velocity (b) on the uniD dataset [24]. Interestingly,
VRUs exhibit a more varied behaviour w.r.t. engine-powered vehicles, which follow road lanes more closely.

REFERENCES

[1] M. M. Shoman, H. Imine, E. M. Acerra, and C. Lantieri, “Evaluation
of Cycling Safety and Comfort in Bad Weather and Surface Conditions
Using an Instrumented Bicycle,” IEEE Access, vol. 11, no. January,
pp. 15 096–15 108, 2023.

[2] I. Kaparias, S. Miah, S. Clegg, Y. Gao, B. Waterson, and E. Milonidis,
“Measuring the effect of highway design features on cyclist behavior
using an instrumented bicycle,” 2021 7th International Conference on
Models and Technologies for Intelligent Transportation Systems, MT-
ITS 2021, pp. 1–6, 2021.

[3] P. Vieira, J. P. Costeira, S. Brandao, and M. Marques, “SMARTcycling:
Assessing cyclists’ driving experience,” IEEE Intelligent Vehicles
Symposium, Proceedings, vol. 2016-August, no. Iv, pp. 1321–1326,
2016.

[4] M. R. Ibrahim, J. Haworth, N. Christie, and T. Cheng, “CyclingNet:
Detecting cycling near misses from video streams in complex urban
scenes with deep learning,” IET Intelligent Transport Systems, vol. 15,
no. 10, pp. 1331–1344, 2021.

[5] S. M. Kumar, “Smart Biking : IoT-Connected Cycling Gear for
Training and Safety,” 2023 Second International Conference On Smart
Technologies For Smart Nation (SmartTechCon), pp. 652–656, 2023.

[6] C. Wen, S. Pan, C. Wang, and J. Li, “An Indoor Backpack System for
2-D and 3-D Mapping of Building Interiors,” IEEE Geoscience and
Remote Sensing Letters, vol. 13, no. 7, pp. 992–996, 2016.

[7] Z. Gong, J. Li, Z. Luo, C. Wen, C. Wang, and J. Zelek, “Mapping and
Semantic Modeling of Underground Parking Lots Using a Backpack
LiDAR System,” IEEE Transactions on Intelligent Transportation
Systems, vol. 22, no. 2, pp. 734–746, 2021.

[8] P. Chen, W. Shi, S. Bao, M. Wang, W. Fan, and H. Xiang, “Low-
Drift Odometry, Mapping and Ground Segmentation Using a Backpack
LiDAR System,” IEEE Robotics and Automation Letters, vol. 6, no. 4,
pp. 7285–7292, 2021.
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