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Regulation of cell proliferation is a crucial aspect of tissue development and homeostasis and
plays a major role in morphogenesis, wound healing, and tumor invasion. A phenomenon of such
regulation is contact inhibition, which describes the dramatic slowing of proliferation, cell migra-
tion and individual cell growth when multiple cells are in contact with each other. While many
physiological, molecular and genetic factors are known, the mechanism of contact inhibition is still
not fully understood. In particular, the relevance of cellular signaling due to interfacial contact
for contact inhibition is still debated. Cellular automata (CA) have been employed in the past as
numerically efficient mathematical models to study the dynamics of cell ensembles, but they are not
suitable to explore the origins of contact inhibition as such agent-based models assume fixed cell
sizes. We develop a minimal, data-driven model to simulate the dynamics of planar cell cultures by
extending a probabilistic CA to incorporate size changes of individual cells during growth and cell
division. We successfully apply this model to previous in-vitro experiments on contact inhibition
in epithelial tissue: After a systematic calibration of the model parameters to measurements of
single-cell dynamics, our CA model quantitatively reproduces independent measurements of emer-
gent, culture-wide features, like colony size, cell density and collective cell migration. In particular,
the dynamics of the CA model also exhibit the transition from a low-density confluent regime to
a stationary postconfluent regime with a rapid decrease in cell size and motion. This implies that
the volume exclusion principle, a mechanical constraint which is the only inter-cellular interaction
incorporated in the model, paired with a size-dependent proliferation rate is sufficient to generate
the observed contact inhibition. We discuss how our approach enables the introduction of effective
bio-mechanical interactions in a CA framework for future studies.

Understanding the principles of dynamic tissue orga-
nization requires an interdisciplinary effort where quan-
titative biological observations must be challenged by
mathematical models that integrate existent insight on
a theoretical level [1, 2]. Cell-based mathematical mod-
els essentially consider a tissue as ’a society of cells’ [3]
where cells behave and interact with each other and the
extracellular environment according to individual cellu-
lar characteristics summarizing the effects of sub-cellular
processes, such giving rise to complex emergent processes
at tissue scale. Existing cell-based model frameworks can
be classified into three broad categories, (i) continuum
descriptions of tissue movement which rarely describe in-
dividual cells explicitly [4–9], (ii) models that include an
explicit description of the cell membrane, such as the cel-
lular Potts model [10–13], vertex models [14–19] or disk
models [18, 20], and finally (iii) particle based-models or
cellular automata where cells are represented as point-
like particles [12, 21–28]. Each class has its own mer-
its and drawbacks: (i) Tissue scale descriptions allow to
capture biophysical principles which govern large scale
phenomena like tissue fluidity and deformations (elas-
tic, plastic, viscoelastic) or jamming transitions [29, 30].
However, relating biophysical parameters of cell colonies
to measurable single cell properties remains challenging
and simulation of large collectives with single cell resolu-
tion can cause high computational cost [4, 5]. (ii) Models

that describe cells as spatially extended objects, such as
cellular Potts and vertex models, can incorporate het-
erogeneous cell sizes and shapes within the tissue and
provide a related contact network for specifying inter-
cellular interaction. However, the cellular behavior and
interaction is often described indirectly via membrane
adjustments controlled by free energy terms, the latter
also involving purely technical parameters which have an
impact on the emergent dynamics [12, 31, 32]. This fact
together with the considerable computational effort for
full exploration of the parameter space limits the cali-
bration to concrete experimental data. (iii) Cellular au-
tomata and interacting particle systems are computation-
ally more efficient while being mathematically easier to
analyze [33]. They allow to describe cellular behavior and
intercellular interaction in a rule-based manner based on
clear mechanistic hypotheses and with biologically mean-
ingful parameters [34]. A major drawback, however, is
the idealization of point-like cells hampering the mod-
eling of tissue dynamics where cell sizes and shapes are
supposed to play an essential role [35].

Here, we consider monolayers of growing epithelial tis-
sue viewed as a dynamic 2D arrangement of individual
cells, which grow in size, divide and migrate in response
to mechanical constraints and, potentially, interaction
on cell-cell contact. In-vitro experiments on the devel-
opment of epithelial tissue of Madin-Darby canine kid-
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ney cells from Puliafito et al. (2012) show two distinct
growth regimes: At early times, in the confluent phase,
cell density is low and spatially homogeneous and the
colony grows exponentially in time. At longer times,
in the postconfluent phase, cell density increases inside
the colony and subexponential colony growth driven by
more motile cells near the edge of the expanding colony
is observed. The inhibition of cellular proliferation and
migration in crowded environments as observed in the
center of the growing monolayers is called contact inhi-
bition of proliferation response and migration. It was
found to be a not only a consequence of cell-cell con-
tact but of mechanical constraints that cause successive
cell divisions to reduce cell area. To further differenti-
ate between the impact of biomechanical constraints and
that of intercellular interaction on cell-cell contact, cell-
based mathematical modeling was exploited. Puliafito et
al. (2012) used a 1D vertex model to support their find-
ings qualitatively. However, the model parameters and
the observables of the emergent behavior were not sys-
temically related to experimental measurements. Aland
et al. (2015) could reproduce the observed cell culture
topology and radial distribution function with a hybrid
continuum-discrete model, however, the spatial scale of
the culture had to be extrapolated to realistic culture
sizes due to computational cost of the model. Jain et
al. (2022) incorporated proliferation in the energetic de-
scription of a multiphase field model to predict the co-
ordination numbers of cells in growing epithelial colonies
corresponding to different hypotheses on contact inhibi-
tion and to confirm the typical, experimentally observed
linear boundary growth of the colony radius. The role
of cell polarity and cellular cycling between motile and
dividing states for contact inhibition of proliferation was
explored using a disk model [20]. However, the ques-
tion whether mechanical constraints alone, without fur-
ther intercellular interaction, can explain the observed
tissue-scale dynamics remains still largely open.

We study this question by proposing a minimal model,
an extension of probabilistic cellular automata (CA) that
allows describing heterogeneous cell sizes and growth of
individual cells. In our model, cells located on the nodes
of a 2D regular grid can grow, divide and migrate, see
Fig. 1 for an illustration. They only interact by the ex-
clusion princple, which means that a cellular action is
prevented if there is insufficient space. We calibrate the
model parameters, which quantify single cell dynamics,
to previous in-vitro observations based on single cell mea-
surements, and subsequently compare the emergent fea-
tures of the calibrated CA model, such as culture size and
cell density, to independent experiments. These features
of CA model reproduce quantitatively the corresponding
experimental results, implying that the exclusion princi-
ple, the only intercellular interaction incorporated in the
model, paired with size dependent proliferation rates is
sufficient to generate the observed contact inhibition. We
thus demonstrate the effectiveness of the CA model for ef-
ficient quantitative predictions of tissue organization on

FIG. 1. Illustration of the cellular automaton (CA) model.
Cells (red and green) with individual sizes Ai are positioned
on a regular grid (gray 3 × 3 squares represent a section of
this grid), where each square of the grid can be occupied by
several cells as long as their total size does not exceed the
size of the square

∑
i Ai ≤ Amax. Each cell i can prolifer-

ate with rate γ(Ai), migrate with rate µ, and grow logisti-
cally with rate α to a maximal size of Amax (each action ex-
emplarily sketched for the red highlighted cell in the central
square). Cells interact via exclusion principle, i.e., migration
and growth of individual cells is inhibited by lack of suffi-
cient free space. Dynamics are numerically integrated using
Markov-chain-Monte-Carlo method with time increment ∆t.
Note that the position of a cell is not resolved beyond its grid
square.

the basis of rule-based cellular behavior with heteroge-
neous cell sizes. We discuss the potential to incorporate
effective biomechanical interactions between cells in our
CA model for future studies of contact inhibition.

I. CA MODEL

We present an efficient, agent-based dynamical model
to simulate the development of two-dimensional tissue.
The model is based on a probabilistic cellular automa-
ton (CA) but additionally allows for size changes of in-
dividual cells during cell growth and division, see Fig. 1
for an illustration of the model and Fig. 2 for an ex-
emplary simulation of epithelial tissue. In the CA, the
two-dimensional space is discretized into a regular grid
of M2 squares each with size Amax, which can be oc-
cupied by cells. Several cells i with size Ai can occupy
the same square as long as their cumulative size does not
exceed its size

∑
i Ai ≤ Amax. The position of a cell is

not resolved beyond its grid square. Cell dynamics are
defined by actions with corresponding rates, i.e., a cell
proliferates with rate γ, migrates from one grid square to
an adjacent one with rate µ, and grows with rate α̃.

The proliferation rate γ(A) and growth rate α̃(A) are
both assumed to depend on the size of the cell A as sug-



3

FIG. 2. Exemplary simulation from the CA model of the growth of epithelial tissue in the confluent regime (1 d, 3.3 d, 5 d),
as well as at (6.2 d, 7.3 d) and post-transition (8.3 d, 8.8 d, 9.8 d) to a stationary postconfluent state. For each time point,
the local cell density is encoded in color. The growing culture expands outwards over time. Around day 6 the density increases
drastically in the center of the culture, as the lack of free space inhibits migration and cell growth, reflecting the transition to
a postconfluent state. At the same time, a radial density gradient is visible, implying that cells at the boundary of the culture
are able to grow larger and drive further outwards expansion. Model parameters calibrated as written in the main text.

gested by single-cell measurements [36], while the mi-
gration rate µ is held constant. Cells interact with each
other solely via exclusion principle, that is a cell can only
grow or migrate if sufficient free space is available in its
current grid square or the adjacent ones. This means
that the values α̃ and µ represent the maximal possible
rates for growth and migration of a single cell, whereas
typically these processes are mitigated or inhibited by
neighboring cells competing for the same free space.

As usual for a CA the cell dynamics are integrated nu-
merically in terms of a Markov-chain-Monte-Carlo sim-
ulation with Monte-Carlo-time-step ∆t. Within a time
step ∆t, if there are N cells present, 3N -times a ran-
dom cell and a random action - proliferation, migration
or growth - with corresponding rate ω are chosen. The
cell then performs the chosen action with probability
ω∆t. This procedure emulates numerically that on av-
erage each cell performs each action with corresponding
rate, i.e., the probability that the action has not been
performed decreases exponentially ∼ exp(−ωt), given a
sufficiently small time step ∆t ≪ max{γ−1, µ−1}.

A. Proliferation

Proliferation is defined as a potentially asymmetric di-
vision of a mother cell into two daughter cells keeping
the overall area preserved. Measurements of single-cell
division times [36, Fig. 4E] suggest a sigmoidal function
for the dependence of the proliferation rate γ(A) on the
size A of the mother cell

γ(A) = γmax exp

[
−
(
A0

A

)m]
. (1)

This rate increases with cell size and becomes constant at
large γ(A ≫ A0) ≈ γmax and small sizes γ(A ≪ A0) ≈ 0,
while the steepness of the transition at A0 is set by the
exponentm. Further, measurements of the cell areas dur-
ing single-cell division [36, Inset of Fig. 4C] suggest an
asymmetry between the areas of the two daughter cells,
which is taken into account: If a mother cell of size A di-
vides, one of the daughter cells is assigned a fraction f of
the mother cell and while the other daughter is assigned
the remaining part, meaning the daughter cells have size

fA and (1−f)A. Naturally, the probability density G(f)
of the fraction f ∈ [0, 1] is symmetric around 1/2.

B. Migration

For migration cells move with rate µ to a randomly
selected neighboring grid square. For grid square size
Amax this implies a maximal migration velocity vmax =
µ
√
Amax across the grid or

µ =
vmax√
Amax

. (2)

Cell migration is only performed if the target grid square
has sufficient free space to accommodate the migrating
cell.

C. Growth

Motivated by single-cell tracking measurements [36,
Fig. 4A,B], we assume logistic cell growth

dA

dt
= αA

(
1− A

Amax

)
(3)

with maximal cell sizeAmax and growth rate α. Note that
the growth rate α indirectly affects cell proliferation, as it
affects the position and width of the cell size distribution,
which in turn determines the average proliferation rate
according to Eq. (1). For instance, increasing the growth
rate α leads to accelerated growth of the cell culture.
While the logistic growth Eq. (3) is time-continuous and
could be integrated directly via forward-Euler-scheme,
we employ for simplicity the same Markov-chain-Monte-
Carlo scheme as for proliferation and migration. We use
α̃ = 1/∆t as the rate of the growth action, meaning it
is performed on average once per time step and cell, and
define the action as increasing the cell size by ∆A =
αA(1 − A/Amax)∆t. Note that the time step is chosen
sufficiently small such that ∆A/A ≪ 1. Furthermore,
the increment ∆A is limited to the available free space
in the grid square.
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FIG. 3. Asymmetry G(f) of the daughter cell sizes after cell
division is well described by a Gaussian distribution with ex-
pectation value f̄ = 1/2, standard deviation σ = 1/8, and a
cut-off at large and small cell sizes p ∈ [1/4, 3/4] (black dots
represent data from Ref. [36, Fig. 4C (inset)] obtained from
tracking single-cell divisions, Gaussian distribution shown as
red line). It is assumed that during division of a cell, one
daughter cell has a fraction f of the size of the mother cell,
while the other cell has a fraction (1 − f). The probability
distribution G(f) of these fractions is normalized to the do-
main f ∈ [1/4, 3/4], reflecting the absence of smaller or larger
daughter cells.

II. PARAMETER CALIBRATION

The biologically motivated parameters γ(A), vmax, α
of the CA model are calibrated based on in-vitro ob-
servations, mostly of single-cell dynamics, during the
growth of normally differentiating epithelial cell cultures
of Madin-Darby canine kidney cells [36]: (IIA) The divi-
sion asymmetry G(f) is directly fitted to data from track-
ing of single cell divisions. Then, this asymmetry G(f)
is incorporated into a partial differential equation model
to optimize the proliferation rate γ(A) based on cell size
distributions measured in cell tracking experiments. The
obtained rate γ(A) is validated against independent data
of cell division times in a stationary, postconfluent state.
(II B) The maximal migration velocity vmax, and con-
sequently the migration rate µ, is estimated from the
time point of the transition to a stationary, postconflu-
ent state and the average cell cycle time. (II C) Finally,
the growth rate α is optimized using simple Monte-Carlo-
Simulations of independent cells based on the average cell
cycle time using the already calibrated parameters γ(A),
G(f). Note that the two mathematical models support-
ing the calibration are much simpler than the CA model,
without spatial resolution or inter-cellular interaction.

A. Proliferation

Firstly, the probability density G(f) of the division
asymmetry can be directly fitted to corresponding mea-
surements from tracking single-cell divisions, see Fig. 3.
The data is well described by a Gaussian distribution

G(f) ∼ exp

[
−1

2

(
f − f̄

σ

)2
]

(4)

with expectation value f̄ = 1
2 , standard deviation σ = 1

8 ,

boundaries of the fraction f ∈ [ 14 ,
3
4 ], and corresponding

normalization
∫ 3

4
1
4
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FIG. 4. Distribution of cell sizes over time after transition
to a stationary, postconfluent state (solid lines selected from
experimental data [36, Fig. 4D]) is well described by partial
differential equation (PDE Eq. (5), dashed lines), which only
incorporates cell size-dependent proliferation γ(A), Eq. (1),
and asymmetric cell division G(f), Eq. (4). Deviations from
the experimental distributions originate mainly from overesti-
mated tails at small cell sizes, which could hint to modification
of the asymmetry of the cell division at cell sizes < 100 µm2,
see main text.

The parameters γmax, A0, m defining the proliferation
rate γ(A) are optimized based on the observed dynamics
of the cell size distribution ρ(A, t), see solid lines in Fig. 4.
These distributions are measured in a regime of the cell
culture growth, where cells no longer migrate or increase
their size due to their dense packing. Instead, these cells
only divide into smaller and smaller cells whose prolifer-
ation rates decrease with their size. We model this loss
of larger cells and rise of smaller cells in the distribution
ρ(A) using a partial integro-differential equation (PDE)

∂ρ

∂t
(A, t) =− γ(A)ρ(A, t) +

∫
df G(f) γ

(
A

f

)
ρ

(
A

f
, t

)
+

∫
df G(f) γ

(
A

1− f

)
ρ

(
A

1− f
, t

)
.

(5)
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FIG. 5. Cell size-dependent proliferation rate γ(A) (red line)
optimized with PDE model based on cell area distributions
after transition to a stationary, postconfluent state, see Fig. 4,
is consistent with cell division times τ2 ≈ ln(2)/γ (black dots
from single-cell tracking [36, Fig. 4E]). In particular, prolifer-
ation rates decrease rapidly for cell areas below A < 200µm2.

The first term reflects the loss of cells with size A due
to division with proliferation rate γ(A). The second and
third term reflect the gain of cells with size A due to
division of larger cells with sizes A/f or A/(1−f), where
one of the resulting daughter cells obtains a fraction f or
1−f , respectively, of the mother’s size. We solve Eq. (5)
numerically by discretizing the cell size A → Ai∈N and
integrating the resulting set of ordinary equations with
odeint [38]. We optimize the parameters γmax, A0, m
of the proliferation rate γ(A) by minimizing the distance
D between the distributions ρexp(Ai), ρPDE(Ai) obtained
from experiment and PDE, respectively, at selected times
t

D =
∑
t

∑
i∈N

[ρexp(Ai, t)− ρPDE(Ai, t, γmax, A0,m)]
2

(6)
using the python package scipy.optimize [38]. We se-
lect experimental distributions at three time points from
the experiment, where the distribution at the first time
point ρexp(Ai, t ≈ 0) serves as initial condition for the
PDE while the other two time points t ≈ 0.5 d and t ≈ 6 d
are the reference points for the optimization in Eq. (6).

We obtain parameters γmax ≈ 1.3 d, A0 ≈ 80 µm2,
m ≈ 3, for which we observe good agreement both with
the dynamics of the cell size distributions, see Fig. 4, and
the division times of single cells, see Fig. 5. Deviations
from the experimental distributions in Fig. 4 originate
mainly from overestimated tails at small cell sizes, left
of the maximum of each distribution. These deviations
seem to be diminished, when the domain of the size frac-
tion p, Eq. (4), is further narrowed around the symmetric
case p = 1/2. Thus, the deviations in Fig. 4 could hint
at a narrowing of the asymmetry of the cell division at

small at cell sizes < 100 µm2, e.g., due to a minimal abso-
lute size a cell must have. In fact, the distribution G(p),
which the PDE relies on, has been obtained for mother
cell sizes A ∈ [100, 1000] µm2, due to the difficulty of
tracking cells below 70µm2, while the cell size distribu-
tions ρ(A) were mostly measured at A < 100µm2 [36].

B. Migration

According to Eq. (2), the migration rate µ is directly
defined by the maximal migration velocity vmax. This ve-
locity can be estimated from the transition point tT from
exponential to subexponential growth of the cell culture
(transition to a stationary, postconfluent state [36]): As
cells proliferate and grow in size, they inevitably migrate
outwards causing the cell culture to expand. As long
as this expansion is fast enough, each cell has sufficient
space to grow and divide at maximal capacity and the
cell culture grows exponentially, while the density in the
culture remains constant, see black points in Figs. 6 and 7
before t < 5 d, respectively. However, at some point the
outward migration of the cells cannot compensate for the
increase in total cell size and consequentially the growth
of invidiual cells in the center of the culture is inhibited
by the lack of free space. This leads to subexponential
growth of the culture and an increase in cell density, see
black points in Figs. 6 and 7 after t > 6 d, respectively.
For an exponential growth of a circular cell culture

Acult(t) = Acult(0) exp(γ̄t) = πR2
cult(t) (7)

with the average proliferation rate γ̄ = ln(2)/τ2, given
in terms of the reported average cell cycle time τ2 =
0.75±0.14 d [36]. Note that in the context of the model,
the rate γ̄ should reflect the average proliferation rate
over an ensemble of independently proliferating, Eq. (1),
and growing, Eq. (3), cells, which is latter exploited for
the calibration of (II C) cell growth. Along with the ini-
tial culture size Acult(0) ≈ 1.8 · 104µm2, the maximal
migration velocity vmax can then be estimated from the
condition

vmax =
dRcult

dt

∣∣∣∣
tT

=
dRcult

dAcult
· dAcult

dt

∣∣∣∣
tT

=
γ̄

2

√
Acult(0)

π
exp

( γ̄
2
tT

)
.

(8)

The range of the cell cycle time τ2 and the transition
point tT = 6± 1 d imply a range for the maximal migra-
tion velocity vmax ∈ [9, 100] µm/h. Note that the condi-
tion in Eq. (8) is a simplification and rather estimates a
lower limit for vmax. The transition from exponential to
subexponential growth is expected before the rim of the
cell culture actually reaches an outward velocity vmax.
For instance, at t = 5 d the culture already exhibits
deviations from exponential growth, while according to
Eq. (8) the velocity of the boundary at this point is only
8 − 30 µm. In order to reflect the estimated range for
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vmax, we use its upper limit vmax = 100 µm/h in the fol-
lowing, but also report the results for vmax = 50 µm/h
in SI Figs. 12-15.

C. Cell growth

The average proliferation rate γ̄ derived from the mea-
sured average cell cycle time is also used to estimate the
cell growth rate α: Firstly, the maximal cell size is set
to Amax = 990 µm based on tracking of sizes of single
cells [36, Fig. 4A] and the observed minimal cell den-
sity. For the phase of exponential growth of the culture,
it is reasonable to assume that cells proliferate and grow
independently of each other according to Eqs. (1), (3),
(4). We compute these simple dynamics numerically for
ensembles of cells using Monte-Carlo simulations. In par-
ticular, we use the parameters of proliferation γ(A), G(p)
as calibrated above and additionally optimize the growth
rate α of logistic cell growth Eq. (3) such that the result-
ing exponential slope of the total size of the cell ensemble
matches with the slope γ̄ = ln(2)/τ2 corresponding to the
average cell cycle time τ2 = 0.75± 0.14 d measured inde-
pendently by single-cell tracking. From this optimization
a growth rate α = 1.3± 0.3 d−1 is obtained.

Finally, the time increment in the CA is set sufficiently
small ∆t = 6 min such that ∆t ≪ max{γ−1

max, µ
−1} and

∆A/A ≪ 1. For expanding culture experiments, the size
of the spatial grid is chosen sufficiently large, such that
cells do not reach the boundary of the grid during simu-
lation. We obtain the initial condition of the CA model
by starting from a single cell of maximal size in the center
of the grid and then simulating the dynamics until the
size of the culture matches the initial one in the experi-
ment. For experiments where cells are seeded uniformly,
a 12×12-grid with reflecting boundary conditions is used
and as initial condition a single cell of maximal size is
placed in every second grid point, reflecting the experi-
mental seeding density of 600 cells/mm2.

III. RESULTS

We implement the previously calibrated parameters
into the CA model and compare the emerging dynam-
ics of culture size and cell density with the experiment of
epithelial colony growth, see Figs. 6 and 7. In the CA,
the culture size is computed as the total area of all grid
points containing at least a single cell and the cell density
is computed as ratio between this area and the total num-
ber of cells. The resulting dynamics of culture size and
cell density match with the experimental ones. In partic-
ular, the CA model does not only quantitatively repro-
duce the exponential growth and constant density in the
initial low-density confluent regime and the time point
of the transition to a stationary, postconfluent state, but
also the curve at and after this transition. The predic-
tions of the CA model are also consistent for the case of

0 2 4 6 8 10
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FIG. 6. Emergent dynamics of calibrated CA model (red line)
reproduces experimentally observed size of expanding epithe-
lial colony (black dots from Ref. [36, Fig. 1B]). The colony
size exhibits initially an exponential growth (low-density, con-
fluent regime) and slows around time tT = 6 ± 1 d to a
subexponential growth (transition to a stationary, postcon-
fluent state). Results from CA model are averaged over 15
independent runs and standard deviation is displayed as red
shaded region. Model parameters calibrated as written in the
main text.

initially uniformly seeded cells, see Fig. 8, which reflects
the regime directly at and long after the transition to a
stationary, postconfluent state. Furthermore, the transi-
tion is accompanied by a rapid decrease in the emergent
cell velocities, which are comparable between CA model
and experiment, see Fig. 9. In particular, there is a veloc-
ity gradient from the inside to the outside of the colony
and an outwardly biased flow, see Fig. 10.
Note that the calibration of the model parameters is

only based on observations from experiments indepen-
dent from the one we compare the model predictions to.
The only exception is the time point of transition tT used
for the calibration of the maximal velocity vmax, as the
maximal velocity at the boundary of the culture has not
been directly measured. Apart from that, the majority
of the calibration is based on tracking of the dynamics of
single cells and the model parameters themselves describe
only single-cell behavior.
The match of the emergent features, i.e., dynamics of

culture size and cell density, between experiment and
CA model suggests that they are determined by the
single-cell dynamics. In particular, the CA model does
not incorporate any inter-cellular interactions, besides
the exclusion principle. In the CA model, the transi-
tion of the dynamics at tT originates solely from the
limitation that the boundary of the culture cannot ex-
pand faster outwards than the maximal migration ve-
locity vmax of the cells. Beyond the corresponding crit-
ical size of the culture, cells in the center of the cul-
ture no longer get access to the necessary space to grow,
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FIG. 7. Emergent dynamics of calibrated CA model (red
line) reproduces experimentally observed cell densities of ex-
panding epithelial colony (black dots from Ref. [36, Fig. 1C],
corresponding data to areas displayed in Fig. 6). The cell
density is initially constant (low-density, confluent regime)
and increases rapidly around time tT = 6± 1 d (transition to
a stationary, postconfluent state) implying dense packing of
cells, which become smaller and smaller due to slowing but
continued proliferation without cell growth. Results from CA
model are averaged over 15 independent runs and standard
deviation is displayed as red shaded region. Model parame-
ters calibrated as written in the main text.

i.e. dA/dt → 0, and consequently become smaller due
to continued proliferation. The latter gets slower due
to the size-dependent, sigmoidal proliferation rate γ(A).
The capacity of cells to grow separates their prolifera-
tion behavior into a pre- (A ≫ A0 → γ(A) = γmax)
and posttransition regime (A ∼ A0 → γ(A) ≪ γmax) ac-
cording to Eq. (1). Note that based on the assumption
that for times t ≫ tT effectively only cells in a bound-
ary layer with thickness ∆R of the culture can prolifer-
ate with rate γ̄, the asymptotic, posttransition growth
may be estimated by dA/dt ≈ 2

√
πγ̄∆R ·

√
A = κ

√
A or

A(t ≫ tT ) = κ2/4·(t−t0)
2, analogous to recent estimates

for spherical cultures [39], while ∆R(vmax) may depend
on the maximal migration velocity. We obtain an effec-
tive thickness of the proliferating rim ∆R = 370±10 µm
(t0 = 3.3 ± 0.2 d) from the CA simulation, consistent
with rescaled results from a previous theoretical model
of epithelial colonies [4].

In the CA model, the observed rapid decrease in cell
velocity at the transition results from cells in the inner re-
gion of the colony slowing down due to insufficient space
to migrate, which generates a velocity gradient from in-
side to outside, see Fig. 10. At the same time cell motion
transitions from undirected to a collective outwards bias,
see also Fig. 11. This outwards directed motion is an
emergent feature of the interplay between the migration
rate, the exclusion principle, and the fact that more free
space is available outwards. It should be emphasized that
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FIG. 8. Emergent dynamics of calibrated CA model (red
line) consistent with experimentally observed cell size median
for initially uniformly seeded cells (black dots from Ref. [36,
Fig. 3C], transition tT to a stationary, postconfluent state
corresponds roughly to 1.5 d). Cell size median initially drops
rapidly and then saturates at small cell sizes A ∼ 40 µm2.
Results from CAmodel are averaged over 15 independent runs
and standard deviation is displayed as red shaded region.

for the CA model the maximal migration velocity vmax is
significantly bigger than the velocities that are measured
for individual cells inside the culture, see Fig. 9, due to
the exclusion principle. For instance, 1 to 3 occupied
neighboring grid squares reduce the actual migration ve-
locity by a factor of 3/4 to 1/4. Moreover, the migration
velocity in the CA model represents the speed of instanta-
neous, undirected movement of single cells, whereas in in-
vitro experiments typically collective, directed movement
of groups of cells is measured, e.g., directed outwards
in case of an expanding culture. Consequently, this di-
rected motion exhibits much smaller velocities, consistent
with previous experimental measurements of cell velocity
in epithelial tissue ∼ 25µm/h depending on the setting
(wound-cut technique, expanding colony, ...) [36, 40–43].
Note that the exact value of the average velocity depends
to some degree on the chosen definition, i.e., the chosen
time increment between two cell position measurements
and whether the average is taken over the whole colony
or a specific location. Nevertheless, we can infer from
the match of simulation and experiment in Fig. 9 that
the course of the cell velocities, initially constant with a
rapid decrease around the transition point, is reproduced
by the CA model.

IV. DISCUSSION

We developed a mechanistic, data-driven model to sim-
ulate the dynamics of planar cell cultures by extend-
ing a probabilistic cellular automaton to incorporate size
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FIG. 9. Emergent dynamics of calibrated CA model (red
line) reproduces qualitatively the experimentally observed
cell velocities of expanding epithelial colony (black dots from
Ref. [36, Fig. 2C], corresponding data to Figs. 6 and 7). The
average cell velocity is initially constant (low-density, conflu-
ent regime) and decreases rapidly around time tT = 6 ± 1 d
(transition to a stationary, postconfluent state). Presented
are the root-mean-square velocities, where the model veloc-
ities are computed from a single simulation run over time
increments of 580 min to neglect small-scale oscillations. Due
to the presence of a radial velocity gradient the correspond-
ing standard deviation of the velocities (red shaded region) is
quite large.

changes of individual cells during growth and cell di-
vision. We successfully apply this CA model to pre-
vious in-vitro experiments [36] of epithelial tissue com-
posed of Madin-Darby canine kidney cells. In particular,
the model parameters are calibrated using measurements
based on single-cell tracking and subsequently the result-
ing CA model is validated against independent experi-
ments on the development of culture size, cell density,
and cell velocity. The agreement between model predic-
tions and these experimental observations suggests that
the exclusion principle as sole inter-cellular interaction
paired with a size-dependent proliferation rate of each
cell is sufficient to explain the emerging dynamics of con-
tact inhibition. In the CA model, the reproduced transi-
tion from exponential to quadratic growth of the colony
originates from the increasing lack of space in the center
of the colony, inhibiting cell growth and division, when
the expansion of the colony can no longer be compen-
sated for by the migration of the exterior cells. This is
consistent with previous interpretations and the observa-
tion that contact inhibition can take place several days
after cells have been in contact [4, 36]. Moreover, the
collective, outwards motion of the exterior cells and the
rapidly increasing cell density in the center of the culture
are a consequence of these simple mechanical constraints.

As mentioned there is a wide variety of theoretical

models to describe and simulate the development of
healthy and cancerous cellular tissue and even contact
inhibition [44–53]. Most of these models explicitly con-
sider intra- and inter-cellular forces, allowing to study the
delicate interplay between biomechanical quantities like
tension, pressure, adhesion, as well as cellular stiffness
and compressibility, which govern cell topology and large
scale phenomena like elastic, plastic, viscoelastic defor-
mations. For example, previously a mechanistic hybrid
continuum-discrete model has been applied to the same
experiment of epithelial cell colonies as our study [4]. Be-
sides culture size, cell density and cell area median, this
model was able to reproduce the observed cell topology
and radial distribution function. However, the spatial
scale of the culture had to be fitted empirically to the
culture size, as the model underpredicts the cluster size
where the transition to a stationary, postconfluent state
occurs, and the resulting cell velocities are reported to
be ten times smaller than in the experiment. This is
partially due to computational cost, which prevented the
use of a larger parameter of mobility, which also reflects
effects of cell-substrate adhesion. This example high-
lights two more general issues of the above-mentioned
types of models, see also Ref. [12]: Firstly, they often
rely on empirical or effective parameters, like coefficients
of free energy functions or elastic properties of tissue,
which are either biologically not known or at least very
difficult to measure, in contrast to the properties of sin-
gle cells. Secondly, they often entail high computational
effort, which limits exploration of the parameter space
and consequently the calibration to concrete experimen-
tal data.

While CA models have the advantage, that their pa-
rameters are usually based on biologically motivated,
single-cell behavior and that they are computation-
ally relatively cheap, the incorporation of biomechanical
forces has been a challenge with few exceptions like cell
adhesion [23, 27]. The type of CA we propose here has
the potential to partially overcome this challenge: The
fact that cells of different sizes can be located at the
same grid point naturally defines local cell densities and
density gradients. Together with the possibility to define
cellular, size-dependent mechanisms and forces, beyond
proliferation and growth, this allows to effectively intro-
duce biomechanical processes from other types of mod-
els, e.g., homeostatic pressure [7, 53] or cell bulk stress
in terms of cell compression [4] from the ratio of the ac-
tual size of a cell and its (dynamic) target size. Fur-
thermore, in our CA model cells are capable of moving
past each other, which is typically not inherent to both
common CA models and vertex models. This feature
can be exploited to study effects like collective motion or
fingering [54, 55] by adding direction vectors of persis-
tent motion to each cell, which are affected by neighbor-
ing cell motion or cell densities. Moreover, the concept
of local cell densities allows to couple the CA model to
additional PDEs to incorporate the interaction of cells
with external fields like oxygen, nutrients, and metabolic
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FIG. 10. CA model displays an outwards biased cell motion (right panel) accompanied by a velocity gradient from inner region
of colony to its periphery (left and right panel encoded by color). Displayed are cell velocities v̄ of the last 580 min of the
simulation (posttransition) spatially averaged (left panel: 4× 4 grid squares, right panel: higher resolution 2× 2 grid squares)
where arrows represent direction of motion (left panel) and color magnitude of velocity (linear scale in left panel and logarithmic
scale in right panel for visibility, missing arrows or white squares mean no measurable cell motion).

waste. Finally, the CA model can be directly extended
to three-dimensional space. While none of these concepts
were in the end necessary for the application of the CA
model to the considered experiments of epithelial growth,
they may guide efficient, data-driven modeling of future
scenarios of tissue dynamics.

V. ACKNOWLEDGEMENT

We are grateful for discussions with S. Rühle, M. Luft
and F. Freier. The authors acknowledge that this re-
search has been co-financed by the EU, the European So-
cial Fund (ESF), and by tax funds on the basis of the bud-
get passed by the Saxon state parliament (project SAB-

Nr. 100382145) and the Bundesministerium für Bildung
und Forschung (BMBF 16dkwn001a/b). The funders had
no role in study design, data collection and analysis, de-
cision to publish, or preparation of the manuscript.

VI. CONFLICTS OF INTEREST

The authors declare no conflict of interest.

VII. DATA AVAILABILITY

All relevant data are within the manuscript and its
Supporting information files.

[1] C. Schwayer and D. B. Brückner, Connecting theory and
experiment in cell and tissue mechanics, Journal of Cell
Science 136, jcs261515 (2023).

[2] D. B. Brückner, N. Arlt, A. Fink, P. Ronceray, J. O.
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FIG. 11. CA model displays transition from undirected, uniform, fast cell motion to outwards biased motion with radial velocity
gradient (from top to bottom, note shrinking scale bar). Panels analogous to Fig. 10 in the main text, but for different times
around the transition point tT = 6± 1 d.
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FIG. 12. Emergent dynamics of calibrated CA model (red
line) reproduces experimentally observed size of expanding
epithelial colony (black dots from Ref. [36, Fig. 1B]). The
colony size exhibits initially an exponential growth (low-
density, confluent regime) and slows around time tT = 6±1 d
to a subexponential growth (transition to a stationary, post-
confluent state). Results from CA model are averaged over
15 independent runs and standard deviation is displayed as
red shaded region. Model parameters as Fig. 6 in the main
text, but for a smaller maximal migration velocity vmax =
50 µm2/h.
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FIG. 13. Emergent dynamics of calibrated CA model (red
line) reproduces experimentally observed cell densities of ex-
panding epithelial colony (black dots from Ref. [36, Fig. 1C],
corresponding data to areas displayed in Fig. 12). The cell
density is initially constant (low-density, confluent regime)
and increases rapidly around time tT = 6± 1 d (transition to
a stationary, postconfluent state) implying dense packing of
cells, which become smaller and smaller due to slowing but
continued proliferation without cell growth. Results from CA
model are averaged over 15 independent runs and standard
deviation is displayed as red shaded region. Model param-
eters as Fig. 7 in the main text, but for a smaller maximal
migration velocity vmax = 50 µm2/h.
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FIG. 14. Emergent dynamics of calibrated CA model (red
line) reproduces qualitatively the experimentally observed
cell velocities of expanding epithelial colony (black dots from
Ref. [36, Fig. 2C], corresponding data to Figs. 12 and 13).
The average cell velocity is initially constant (low-density,
confluent regime) and decreases rapidly around time tT =
6± 1 d (transition to a stationary, postconfluent state). Pre-
sented are the root-mean-square velocities, where for the
model velocities are evaluated from a single simulation run
over time increments of 580 min to neglect small-scale os-
cillations and standard deviation is displayed as red shaded
region. Model parameters as Fig. 9 in the main text, but for
a smaller maximal migration velocity vmax = 50 µm2/h.
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FIG. 15. Emergent dynamics of calibrated CA model (red
line) consistent with experimentally observed cell size median
for initially uniformly seeded cells (black dots from Ref. [36,
Fig. 3C], transition tT to a stationary, postconfluent state cor-
responds roughly to 1.5 d). Cell size median initially drops
rapidly and then saturates at small cell sizes A ∼ 40 µm2.
Model parameters as Fig. 8 in the main text, but for a smaller
maximal migration velocity vmax = 50 µm2/h. Results from
CA model are averaged over 15 independent runs and stan-
dard deviation is displayed as red shaded region.
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