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Abstract

This paper presents a new approach for batch Bayesian Optimization (BO) called Thompson Sampling-
Regret to Sigma Ratio directed sampling (TS-RSR), where we sample a new batch of actions by minimizing
a Thompson Sampling approximation of a regret to uncertainty ratio. Our sampling objective is able to
coordinate the actions chosen in each batch in a way that minimizes redundancy between points whilst
focusing on points with high predictive means or high uncertainty. Theoretically, we provide rigorous
convergence guarantees on our algorithm’s regret, and numerically, we demonstrate that our method
attains state-of-the-art performance on a range of challenging synthetic and realistic test functions, where
it outperforms several competitive benchmark batch BO algorithms.

1 Introduction
We are interested in the following problem of batch Bayesian Optimization (batch BO). Let X ⊂ Rd be a
bounded compact set. Suppose we wish to maximize an unknown function f : X → R, and our only access to
f is through a noisy evaluation oracle, i.e. y = f(x) + ϵ, ϵ ∼ N(0, σ2

n), with σn > 0. We consider the batch
setting, where we assume that we are able to query f over T rounds, where at each round, we can send out
m queries in parallel. We are typically interested in the case when m > 1, where we expect to do better than
when m = 1. In particular, we are interested in quantifying the “improvement” that a larger m can give us.

To be more precise, let us discuss our evaluation metrics. Let xt,i denote the query point of the i-th agent
at the t-th time. Let x∗ ∈ X denote a maximizer of f . In this paper, we provide high-probability bounds for
the cumulative regret RT,m, where

RT,m :=

T∑
t=1

m∑
i=1

[f(x∗)− f(xt,i)].

We also define the simple regret as

ST,m := min
t∈[T ]

min
i∈[m]

f(x∗)− f(xt,i),

where we note the use of the notation [N ] := {1, 2, . . . , N} (for any positive integer N), which we will use
throughout the paper. We observe that the simple regret satisfies the relationship ST,m ⩽ 1

TmRT,m. This
shows that a bound on the cumulative regret translates to a bound on the simple regret.
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Without any assumptions on the smoothness and regularity of f , it may be impossible to optimize it in a
limited number of samples; consider for instance functions that wildly oscillate or are discontinuous at many
points. Thus, in order to make the problem tractable, we make the following assumption on f .

Assumption 1. [GP model] We model the function f as a sample from a Gaussian Process (GP), where
GP(0, k(·, ·)) is our GP prior over f . A Gaussian Process GP(µ(x), k(x, x′)) is specified by its mean function
µ(x) = E [f(x)] and covariance function k(x, x′) = E [(f(x)− µ(x))(f(x′)− µ(x′))].

There are several existing algorithms for batch Bayesian optimization with regret guarantees, e.g. batch-
Upper Confidence Bound (UCB) [Srinivas et al., 2009], batch-Thompson sampling (TS) [Kandasamy et al., 2018].
There are known guarantees on the cumulative regret of batch-UCB and batch TS. However, empirical
performance of batch-UCB and batch-TS tend to be suboptimal. A suite of heuristic methods have been
developed for batch BO, e.g. [Ma et al., 2023, Garcia-Barcos and Martinez-Cantin, 2019a, Gong et al., 2019].
However, theoretical guarantees are typically lacking for these algorithms.

This inspires us to ask the following question:

Can we design theoretically grounded, effective batch BO algorithms that also satisfy rigorous
guarantees?

Inspired by the literature of information-directed sampling (IDS) [Russo and Van Roy, 2014, Baek and Farias, 2023],
we introduce a new algorithm for Bayesian Optimization (BO), which we call Thompson Sampling-Regret to
Sigma Ratio directed sampling (TS− RSR). The algorithm works for any setting of the batch size m, and is
thus also appropriate for batch BO. Our contributions are as follows.

First, on the algorithmic front, we propose a novel sampling objective for BO that automatically balances
exploitation and exploration in a parameter-free manner (unlike for instance in UCB-type methods, where
setting the confidence interval typically requires the careful, often domain-specific choice of a suitable
hyperparameter). In particular, for batch BO, our algorithm is able to coordinate the actions chosen in each
batch in an intelligent way that minimizes redundancy between points.

Second, on the theoretical front, we show that under mild assumptions, the cumulative regret RT,m

of our algorithm scales as Õ(ρm
√
mT ) with the number of time-steps T and batch size m, yielding a

simple regret of Õ
(

ρm√
mT

)
. The ρm is a problem dependent quantity that scales linearly with m for the

squared exponential kernel, but with an appropriate modification to our algorithm (cf. Appendix B in
[Desautels et al., 2014]), can be reduced to O(1), yielding a simple regret of Õ

(
1√
mT

)
, which decays at the

optimal rate of 1/
√
m as the batch size m increases [Chen et al., 2022]. Along the way, we derive a novel

high-probability bound for a frequentist version of the regret-sigma ratio, which is known to be a challenging
problem [Kirschner and Krause, 2018].

Finally, empirically, we show via extensive experiments on a range of synthetic and real-world nonconvex
test functions that our algorithm attains state-of-the-art performance in practice, outperforming other
benchmark algorithms for batch BO.

2 Related work
There is a vast literature on Bayesian Optimization (BO) [Frazier, 2018] and batch BO. One popular class
of methods for BO and batch BO is UCB-inspired methods, [Srinivas et al., 2009, Desautels et al., 2014,
Kaufmann et al., 2012, Daxberger and Low, 2017]. Building on the seminal work in [Srinivas et al., 2009]
which studied the use of the UCB acquisition function in BO with Gaussian Process and provided regret
bounds, subsequent works have extended this to the batch setting. The most prominent approach in this
direction is Batch UCB (BUCB) [Desautels et al., 2014], which is a sequential sampling strategy that keeps
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the posterior mean constant throughout the batch but updates the covariance as the batch progresses.
Another notable work combines UCB with pure exploration by picking the first action in a batch using UCB
and subsequent actions in the batch by maximizing posterior uncertainty. One key drawback of UCB-type
methods is the strong dependence of empirical performance on the choice of the βt parameter; note that in
UCB-type methods, the UCB-maximizing action is typically determined as xUCB

t ∈ argmaxµt(x) + βtσt(x),
where βt shapes the weight allocation between the posterior mean µt and posterior uncertainty σt. While
there exist theoretically valid choices of βt that ensure convergence, practical implementations typically
requiring heuristic tuning of the βt parameter. In contrast, in our algorithm, we do not require the tuning of
such a βt parameter.

Another popular class of methods is Thompson Sampling (TS)-based methods [Kandasamy et al., 2018,
Dai et al., 2020, Hernández-Lobato et al., 2017]. The downside of TS-based methods is the lack of penal-
ization for duplicating actions in a batch, which can result in over-exploitation and a lack of diversity, as
discussed for instance in [Adachi et al., 2023]. On the other hand, as we will see, our method does penalize
duplicating samples, allowing for better diversity across samples.

In many practical applications, Expected Improvement (EI) [Letham et al., 2019, Zhan and Xing, 2020,
Ament et al., 2024] is also a popular approach to BO. While EI lacks theoretical guarantees, it is popular
amongst practioners of BO, and has also been extended to the batch setting, where it is also known as
qEI[Hunt, 2020, Ginsbourger et al., 2008].

In addition, informational approaches based on maximizing informational metrics have also been proposed
for BO [Hennig and Schuler, 2012, Hernández-Lobato et al., 2015, Wang et al., 2016, Wang and Jegelka, 2017]
and batch BO [Shah and Ghahramani, 2015, Garrido-Merchán and Hernández-Lobato, 2019, Takeno et al., 2020,
Hvarfner et al., 2022]. While such methods can be effective for BO, efficient extension of these methods to
the batch BO setting is a challenging problem, since the computational complexity of searching for a batch of
actions that maximize information about (for instance) the location of the maximizer scales exponentially with
the size of the batch. One interesting remedy to this computational challenge is found in [Ma et al., 2023],
which proposes an efficient gradient-descent based method that uses a heuristic approximation of the posterior
maximum value by the Gaussian distribution for the output of the current posterior UCB. However, this
method also relies on the tuning of the βt parameter in determining the UCB, and also does not satisfy any
theoretical guarantees.

There are also a number of other works in batch BO which do not fall neatly into the categories above.
These include an early work that tackles batch BO by trying to using Monte-Carlo simulation to select
input batches that closely match the expected behavior of sequential policies [Azimi et al., 2010]. However,
being a largely heuristic algorithm, no theoretical guarantees exist. Other heuristic algorithms include an
algorithm [Gonzalez et al., 2015] that proposes a batch sampling strategy that utilizes an estimate of the
function’s Lipschitz constant, Acquisition Thompson Sampling (ATS) [De Palma et al., 2019], which is based
on the idea of sampling multiple acquisition functions from a stochastic process, as well as an algorithm
that samples according to the Boltzman distribution with the energy function given by a chosen acquisition
function [Garcia-Barcos and Martinez-Cantin, 2019b]. However, being heuristics, these algorithms are not
known to satisfy any rigorous guarantees. An interesting recent work proposes inducing batch diversity in
batch BO by leveraging the Determinental Point Process (DPP) [Nava et al., 2022], and provides theoretical
guarantees for their algorithm. However, a limitation of the algorithm is that the computational complexity
of sampling scales exponentially with the number of agents, limiting the application of the algorithm for
large batch problems. For large batch problems, there has been a very recent work [Adachi et al., 2023]
that seeks scalable and diversified batch BO by reformulating batch selection for global optimization as a
quadrature problem. Nonetheless, this algorithm lacks theoretical guarantees, and being designed for large
batch problems, e.g. m in the hundreds, it may fail to be effective for moderate m problems, e.g. m less than
50. Another interesting direction in batch BO considers the case when the delay in receiving the feedback of
the function evaluation is stochastic [Verma et al., 2022]; while orthogonal to our work, it could be meaningful
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to apply the methods proposed here to the stochastic delay batch BO setting.
Finally, we note that a strong inspiration on our work comes from ideas in the information directed

sampling literature (e.g. [Russo and Van Roy, 2014, Baek and Farias, 2023, Kirschner and Krause, 2018]),
where the sampling at each stage also takes place based on the optimization of some regret to uncertainty
ratio. While [Russo and Van Roy, 2014] and [Baek and Farias, 2023] did not cover the setting of BO with
Gaussian Process (GP), we note that the algorithm in [Kirschner and Krause, 2018] does apply to BO with
GP, and they also provided high-probability regret bounds. However, the design of the sampling function in
[Kirschner and Krause, 2018] also requires choosing a βt parameter (similar to UCB type methods), which
as we observed can be hard to tune in practice.

3 Problem Setup and Preliminaries
In the sequel, we denote f∗ := f(x∗). Let Xt,m := {x1,1, . . . , x1,m, x2,1, . . . x2,m, . . . , xt,1, . . . , xt,m} ∈ X tm

denote the tm points evaluated by the algorithm after t iterations where m points were evaluated per iteration,
with xτ,j denoting the j-th point evaluated at the τ -th batch; for notational convenience, we omit the
dependence on the batch number m and refer to Xt,m as Xt througout the paper. Then, for any x ∈ X , we
note that f | Ft ∼ GP (µt(x), kt(x, x

′)), where

µt(x) = kt(x)
⊤(Kt + σ2

nI)
−1yt,

kt(x, x
′) = k(x, x′)− kt(x)

⊤(Kt + σ2
nI)

−1kt(x
′),

where Kt := [k(x′, x
′′
)]x′,x′′∈Xt denotes the empirical kernel matrix, kt(x) := [k(x′, x)]x′∈Xt , and yt denotes

{f(x′) + ϵ′}x′∈Xt , where we recall that ϵ′ ∼ N(0, σ2
n). In particular, for any x ∈ X , we have that f(x) | Ft ∼

N(µt(x), σ
2
t (x)), where the posterior variance satisfies

σ2
t (x) = k(x, x)− kt(x)

⊤(Kt + σ2I)−1kt(x). (1)

For any set of B points {xb}b∈[B] ∈ X , we also find it useful to introduce the following notation of posterior
variance σ2

t (x | {xb}b∈[B]), where

σ2
t (x | {xb}b∈[B]) (2)

:= k(x, x)− kt,B(x)
⊤(KXt∪[B] + σ2I)−1kt,B(x), (3)

where kt,B(x) represents the concatenation of kt(x) and [k(xb, x)]b∈[B], and KXt∪[B] ∈ R(tm+B)×(tm+B) is a
block matrix of the form

KXt∪[B] =

[
Kt Kt,B

K⊤
t,B KB,B ,

]
where Kt,B = [k(x′, xb)]x′∈Xt,b∈[B] ∈ Rtm×B, and KB,B = [k(xb, xb′)]b,b′∈[B] ∈ RB×B. In other words,
σ2
t (x | {xb}b∈[B]) denotes the posterior variance conditional on having evaluated Xt as well an additional set

of points {xb}b∈[B].
To streamline our analysis, we focus our attention on the case when X is a discrete (but possibly large

depending exponentially on the state dimension d) set, which has size D.

4 Algorithm
For clarity, we first describe our algorithm in the case when the batch size m is 1. At each time t, the
algorithm chooses the next sample according to the following criterion:

xt+1 ∈ argmin
x∈X

f̃∗
t − µt(x)

σt(x)
=: Ψt(x), (4)
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where f̃∗
t := maxx f̃t(x), where f̃t is a single sample from the distribution f | Ft. The numerator can be

regarded as a TS approximation of the regret incurred by the action x, whilst the denominator is the predictive
standard deviation/uncertainty of the point x. This explains the name of our algorithm. In this case, the
sampling scheme balances choosing points with high predictive mean with those which have high predictive
uncertainty.

In the batch setting, where we have to choose a batch of points simultaneously before receiving feedback,
our algorithm takes the form

xTS−RSR
t+1,1 ∈ argmin

x∈X

f̃∗
t,1 − µt(x)

σt(x)

xTS−RSR
t+1,2 ∈ argmin

x∈X

f̃∗
t,2 − µt(x)

σt

(
x | {xTS−RSR

t+1,1 }
)

...

xTS−RSR
t+1,m ∈ argmin

x∈X

f̃∗
t,m − µt(x)

σt

(
x | {xTS−RSR

t+1,j }m−1
j=1

) (5)

where for each i ∈ [m], f̃∗
t,i := maxx f̃t,i(x), where f̃t,i denotes an independent sample from the distribution

f | Ft. Meanwhile, σt(x | {xt+1,j}τj=1) denotes the predictive standard deviation of the posterior GP
conditional on Ft = {Xt,yt}, as well as on the fact that the first τ actions in the (t+1)-th batch, {xt+1,j}τj=1,
have been sampled; we recall here that the predictive variance only depends on the points that have been
picked, and not the values of those points (see (1)). Intuitively, the denominator in (5) encourages exploration,
since it is large when the sample points are both uncertain conditional on the knowledge so far (Ft) and
are spaced far apart. In addition, the numerator in (5) is high for points with higher predictive means
conditional on Ft. So, the objective strikes a balance between picking batches of points which have high
uncertainty/spatial separation and points with high predictive means.

5 Analysis
As we stated earlier, to streamline our analysis, we focus our attention on the case when X is a discrete
set of size D. However, we stress that our algorithm works also for compact bounded sets X ; indeed under
appropriate smoothness assumptions on the kernel, we believe our analysis also carries over the continuous
space setting. We will address this issue more in a remark following the statement of our main result.

We first state our main result.

Theorem 1. Suppose k(x, x′) ⩽ 1 for all x, x′. Let X be a discrete set with D elements, where D ⩾ 2. Then,
running TS− RSR for a sample f of a GP with mean zero and covariance k(x, x′), we have

E [RT,m] = O
(
ρm
√
TmγTm

√
log (D(Tm)3)

)
,

where ρm := maxx∈X maxτ maxX̃⊂X ,|X̃|⩽m
στ (x)

στ (x|X̃)
denotes maximal decrease in posterior variance resulting

from conditioning on any additional set of samples X̃ of cardinality up to m, γTm denotes the maximal
informational gain by observing Tm elements, and the expectation is taken over the random draw of f ∼
GP (0, k(·, ·)) as well as the stochasticity of the measurement noises and the stochasticity of the TS draws.

Proof. We defer the proof to the proof outline in Section 5.1 below.
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Algorithm 1 TS− RSR

1: Input: Input set X ; GP Prior µ0 = 0, k, output noise standard deviation σn; batch size m
2: for t = 0, 1, · · · , T − 1 do
3: Sample m i.i.d copies of f̃t,i ∼ f | Ft, and set f̃∗

t,i = maxx f̃t,i(x).
4: Choose

xTS−RSR
t+1,1 ∈ argmin

x∈X

f̃∗
t,1 − µt(x)

σt(x)

xTS−RSR
t+1,2 ∈ argmin

x∈X

f̃∗
t,2 − µt(x)

σt(x | {xTS−RSR
t+1,1 })

...

xTS−RSR
t+1,m ∈ argmin

x∈X

f̃∗
t,m − µt(x)

σt(x | {xTS−RSR
t+1,j }m−1

j=1 )

5: Observe yt+1,i = f(xTS−RSR
t+1,i ) + ϵt+1,i for each i ∈ [m]

6: Perform Bayesian update to obtain µt+1, σt+1

7: end for

Remark 1. We note that in general, the term ρm may scale linearly with m. However, following a well-known
trick where we have an exploration phase of length Tinit where we always sample the point with the highest
predictive variance (cf. [Desautels et al., 2014]), we may reduce ρm to be of size O(1), at the expense of
a Õ(Tinit) term in the regret. For large enough Tm, the resulting simple regret will then be of the order
Õ
(√

logD√
Tm

√
γTm

)
. Then, the dependence of the simple regret on the batch size m scales with the square root

m, which is in general the best possible dependence [Chen et al., 2022].

Remark 2. The information gain γTm can be bounded for several well-known kernels, as shown in
[Srinivas et al., 2009, Vakili et al., 2021]. We have

1. (Linear kernel): γTm = O(d log(Tm))

2. (Squared exponential kernel):
γTm = O((log(Tm))

d+1
)

3. (Matern kernel with ν > 1):
γTm = O((Tm)

d(d+1)
2ν+d(d+1) log(Tm))

Remark 3. Finally, we note that while our analysis focused on the discrete case, for kernels where the
resulting GP sample functions are differentiable with high probability, such as the squared exponential kernel
kernel or the Matern kernel (with ν parameter at least 1.5), the analysis of regret for a bounded compact
set X ∈ Rd can be essentially reduced to the analysis of a discretization D of X where D is on the order of
D = ϵ−d, where 0 < ϵ < 1 is a discretization parameter that is a function of the smoothness of the kernel; see
for instance the analysis in [Srinivas et al., 2009]. Then, a regret bound for the discrete set D that depends
on the square root of logD translates to a regret bound that depends on

√
logD for the original setting with

a bounded compact X , i.e. a bound that depends on Õ(
√
d log(1/ϵ)). For instance, in combination with the

preceding remark, for the linear kernel, our regret bound then becomes

RT,m = Õ
(
dρm log(Tm) log(1/ϵ)

√
Tm

)
,
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matching known bounds in the batch BO literature (e.g. the bound for the batch UCB algorithm BUCB in
[Desautels et al., 2014]).

5.1 Proof outline
We now provide the following proof outline for Theorem 1. We first have the following result which expresses
E [RT,m] in terms of quantities that, as we will demonstrate, can be bounded to yield our final regret bound.

Lemma 1. Let RT,m =
∑T−1

t=0

∑
i∈[m] f

∗−f(xTS−RSR
t+1,i ), and R̃T,m =

∑T−1
t=0

∑
i∈[m] f̃

∗
t,i−f(xTS−RSR

t+1,i ). Then,
for any event G, we have

E[RT,m] = E
[
R̃T,m

]
= E[R̃T,m1G ] + E[R̃T,m1cG ]

⩽ E[R̃T,m1G ] +
√

E[R̃2
T,m]P(Gc),

Proof. We first observe that by the tower property, for any t ∈ [T ] and i ∈ [m], we have

E [f∗] = E
[
E
[
f̃∗
t,i | Ft

]]
= E

[
f̃∗
t,i

]
,

where we recall that f̃∗
t,i = maxx∈X f̃t,i(x), and f̃t,i is a random draw (of the i-th agent at the t-th round)

from f | Ft. Thus,

E [RT,m] = E

T−1∑
t=0

∑
i∈[m]

f∗ − f(xTS−RSR
t+1,i )

 = E

T−1∑
t=0

∑
i∈[m]

f̃∗
t,i − f(xTS−RSR

t+1,i )

 .

Letting R̃T,m :=
∑T−1

t=0

∑
i∈[m] f̃

∗
t,i − f(xTS−RSR

t+1,i ), we see then that E [RT,m] = E
[
R̃T,m

]
. Observe that for

any event G (which we may think intuitively think of as a “clean” event which we will later show happen with
high probability), we have

E[RT,m] = E
[
R̃T,m

]
= E[R̃T,m1G ] + E[R̃T,m1cG ]

⩽ E[R̃T,m1G ] +
√
E[R̃2

T,m]E
[
(1cG)

2
]

⩽ E[R̃T,m1G ] +
√
E[R̃2

T,m]P(Gc),

where the first inequality follows from applying Cauchy-Schwarz to the term E[R̃T,m1cG ].

At a high level, we will use Lemma 1 in the following way. We will bound the regret by (a) defining an
event G on which we have an almost sure bound on R̃T,m1G which translates to a bound on E

[
R̃T,m1G

]
,

(b) (loosely) bound E
[
R̃2

T,m

]
and show that P(Gc) is small enough such that

√
E[R̃2

T,m]P(Gc) is on the same

order as E
[
R̃T,m1G

]
.

5.1.1 Decomposition of R̃T,m

The following helpful lemma demonstrates how we can decompose R̃T,m in terms of the Regret-to-Sigma
ratio (RSR) and other quantities.
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Lemma 2. The term R̃T,m can be decomposed as

R̃T,m =

T−1∑
t=0

m∑
i=1

f̃∗
t,i − f(xTS−RSR

t+1,i )

⩽
T−1∑
t=0

(
m∑
i=1

(µt(x
TS−RSR
t+1,i )− f(xTS−RSR

t+1,i ))

)

+ Ψ̄

√√√√Tm

T−1∑
t=0

m∑
i=1

σ2
t (x

TS−RSR
t+1,i | {xTS−RSR

t+1,j }i−1
j=1) (6)

Proof. We observe that

R̃T,m =

T−1∑
t=0

m∑
i=1

f̃∗
t,i − f(xTS−RSR

t+1,i )

=

T−1∑
t=0

m∑
i=1

f̃∗
t,i − µt(x

TS−RSR
t+1,i ) + µt(x

TS−RSR
t+1,i )− f(xTS−RSR

t+1,i )

=

T−1∑
t=0

(
m∑
i=1

(µt(x
TS−RSR
t+1,i )− f(xTS−RSR

t+1,i ))

)

+

T−1∑
t=0

m∑
i=1

(
f̃∗
t,i−µt(x

TS−RSR
t+1,i )

)
σt(x

TS−RSR
t+1,i |{xTS−RSR

t+1,j }i−1
j=1)

σt(x
TS−RSR
t+1,i | {xTS−RSR

t+1,j }i−1
j=1)

(i)
⩽

T−1∑
t=0

(
m∑
i=1

(µt(x
TS−RSR
t+1,i )− f(xTS−RSR

t+1,i ))

)

+ Ψ̄

T−1∑
t=0

m∑
i=1

σt(x
TS−RSR
t+1,i | {xTS−RSR

t+1,j }i−1
j=1)

(ii)
⩽

T−1∑
t=0

(
m∑
i=1

(µt(x
TS−RSR
t+1,i )− f(xTS−RSR

t+1,i ))

)

+ Ψ̄

√√√√Tm

T−1∑
t=0

m∑
i=1

σ2
t (x

TS−RSR
t+1,i | {xTS−RSR

t+1,j }i−1
j=1)

Above, in obtaining (i), we define the maximum Regret-to-Sigma Ratio (RSR) encountered during the course
of the algorithm as

Ψ̄ := max
t=0,...,T−1

(
max
i∈[m]

f̃∗
t,i − µt(x

TS−RSR
t+1,i )

σt(x
TS−RSR
t+1,i | {xTS−RSR

t+1,j }i−1
j=1)

)
.

In addition, we used Cauchy-Schwarz to derive (ii). This completes our proof.

We will next discuss (a) how to bound the term Ψ̄, and (b) show how to bound

T−1∑
t=0

m∑
i=1

σ2
t (x

TS−RSR
t+1,i | {xTS−RSR

t+1,j }i−1
j=1)
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in an information-theoretic fashion. After that, we will show how to bound the additional term

T−1∑
t=0

m∑
i=1

µt(x
TS−RSR
t+1,i )− f(xTS−RSR

t+1,i ).

By using equation 6, these bounds will then give us a handle on bounding R̃T,m.

5.1.2 Bounding Ψ̄ and
∑T−1

t=0

∑m
i=1 σ

2
t (x

TS−RSR
t+1,i | {xTS−RSR

t+1,j }i−1
j=1)

We begin by bounding Ψ̄.

Lemma 3. On the event

G(1)(δ) :=
⋃

0⩽t⩽T−1,i∈[m]

G(1)
t,i (δ), where (7)

G(1)
t,i (δ) :=

{
∀x ∈ X :

∣∣∣∣∣ f̃t,i(x)− µt(x)

σt(x)

∣∣∣∣∣ ⩽√2 log(2DmT/δ)

}
, (8)

which happens with probability at least 1− δ, we have

Ψ̄ := max
0⩽t⩽T−1,i∈[m]

Ψt,i(x
TS−RSR
t+1,i )

= max
0⩽t⩽T−1,i∈[m]

f̃∗
t,i − µt(x

TS−RSR
t+1,i )

σt(x
TS−RSR
t+1,i | {xTS−RSR

t+1,j }i−1
j=1)

⩽
√
2 log(2DmT/δ)ρm, (9)

where ρm := maxx∈X maxτ maxX̃⊂X ,|X̃|⩽m
στ (x)

στ (x|X̃)
denotes the maximal decrease in posterior variance result-

ing from conditioning on an additional set of samples X̃ of cardinality up to m.

Proof. Recall that the Regret-to-Sigma Ratio (RSR) for our chosen iterates xTS−RSR
t+1,[m] , which, as presented in

(5), takes the form

xTS−RSR
t+1,1 ∈ argmin

x∈X

f̃∗
t,1 − µt(x)

σt(x)

xTS−RSR
t+1,2 ∈ argmin

x∈X

f̃∗
t,2 − µt(x)

σt

(
x | {xTS−RSR

t+1,1 }
)

...

xTS−RSR
t+1,m ∈ argmin

x∈X

f̃∗
t,m − µt(x)

σt

(
x | {xTS−RSR

t+1,j }m−1
j=1

)
To bound the RSR of the algorithm’s iterates, we will show that the iterates xTS

t+1,i produced by a particular
kind of Thompson Sampling has bounded RSR, in the sense that for each i ∈ [m], Ψt,i(x

TS
t+1,i) is bounded,

where xTS
t+1,i ∈ argmaxx f̃t,i(x), and

Ψt,i(x) :=
f̃∗
t,i − µt(x)

σt(x | {xTS−RSR
t+1,j }i−1

j=1)

9



This in turn implies a bound for Ψt,i(x
TS−RSR
t+1,i ), since Ψt,i(x

TS−RSR
t+1,i ) ⩽ Ψt,i(x

TS
t+1,i) by definition of xTS−RSR

t+1,i .
By Lemma 7 in Section 5.2 which will appear later, we find that for any 0 < δ < 1, on the event

G(1)(δ) :=
⋃

0⩽t⩽T−1,i∈[m]

G(1)
t,i (δ), where

G(1)
t,i (δ) :=

{
∀x ∈ X :

∣∣∣∣∣ f̃t,i(x)− µt(x)

σt(x)

∣∣∣∣∣ ⩽√2 log(2DmT/δ)

}
,

which happens with probability at least 1− δ, we have

∀0 ⩽ t ⩽ T − 1,∀i ∈ [m] : Ψt,i(x
TS
t+1,i) ⩽

√
2 log(2DmT/δ)ρm,

where ρm := maxx∈X maxτ maxX̃⊂X ,|X̃|⩽m
στ (x)

στ (x|X̃)
denotes the maximal decrease in posterior variance

resulting from conditioning on an additional set of samples X̃ of cardinality up to m. Since Ψt,i(x
TS−RSR
t+1,i ) ⩽

Ψt,i(x
TS
t+1,i) by definition of xTS−RSR

t+1,i , on the event G(1)(δ), we thus have

Ψ̄ := max
0⩽t⩽T−1,i∈[m]

Ψt,i(x
TS−RSR
t+1,i )

= max
0⩽t⩽T−1,i∈[m]

f̃∗
t,i − µt(x

TS−RSR
t+1,i )

σt(x
TS−RSR
t+1,i | {xTS−RSR

t+1,j }i−1
j=1)

⩽
√
2 log(2DmT/δ)ρm.

Next, we bound the term
∑T−1

t=0

∑m
i=1 σ

2
t (x

TS−RSR
t+1,i | {xTS−RSR

t+1,j }i−1
j=1).

Lemma 4. Suppose k(x, x) ⩽ 1 for each x ∈ X . Then, letting C1 := 2σ2
n/ log(1 + σ2

n), we have

T−1∑
t=0

m∑
i=1

σ2
t (x

TS−RSR
t+1,i | {xTS−RSR

t+1,j }i−1
j=1) ⩽ σ2

nC1γTm,

where

γTm := sup
A⊂X ,|A|=Tm

I(yA;yA).

Proof. The proof follows by the calculations in Lemma 5.4 of [Srinivas et al., 2009], which in turn utilizes
Lemma 8, which relates informational gain with the predictive variances.

5.1.3 Bounding
∑T−1

t=0

∑m
i=1 µt(x

TS−RSR
t+1,i )− f(xTS−RSR

t+1,i )

We have the following result on bounding
∑T−1

t=0

∑m
i=1 µt(x

TS−RSR
t+1,i )−f(xTS−RSR

t+1,i ), a term which also appeared
in the decomposition of R̃T,m in Lemma 2

Lemma 5. On the event

G(2)(δ) :=
{
∀0 ⩽ t ⩽ T − 1,∀x ∈ X : |µt(x)− f(x)| ⩽

√
2 log(2DT/δ)σt(x)

}
, (10)

10



which happens with probability at least 1− δ, we have

T−1∑
t=0

m∑
i=1

µt(x
TS−RSR
t+1,i )− f(xTS−RSR

t+1,i )

⩽
√
2 log(2DT/δ)ρm

√
Tmσ2

nC1γTm, (11)

Proof. Fix some 0 < δ < 1. Consider any 0 ⩽ t ⩽ T − 1. Then, for any x ∈ X , since f(x) | Ft is a Gaussian
random variable with mean µt(x) and standard deviation σt(x), by applying a standard subGaussian
concentration inequality (cf. the argument in Lemma 6), with probability at least 1− δ/(DT ), we have

|µt(x)− f(x)| ⩽
√

2 log(2DT/δ).

Taking a union bound over all x ∈ X (recall that |X| = D) and 0 ⩽ t ⩽ T − 1, the event

G(2)(δ) :=
{
∀0 ⩽ t ⩽ T − 1,∀x ∈ X : |µt(x)− f(x)| ⩽

√
2 log(2DT/δ)σt(x)

}
happens with probability at least 1− δ. Recalling the definition of ρm as

ρm := max
x∈X

max
τ

max
X̃⊂X ,|X̃|⩽m

στ (x)

στ (x | X̃)
, (12)

it follows that on the event G(2)(δ), we have that for each 0 ⩽ t ⩽ T − 1 and i ∈ [m], we have

µt(x
TS−RSR
t+1,i )− f(xTS−RSR

t+1,i ) ⩽
√
2 log(2DT/δ)σt(x

TS−RSR
t+1,i )

⩽
√

2 log(2DT/δ)σt(x
TS−RSR
t+1,i | {xTS−RSR

t+1,i }i−1
j=1)ρm.

Thus, on the event G(2)(δ), we have

T−1∑
t=0

m∑
i=1

µt(x
TS−RSR
t+1,i )− f(xTS−RSR

t+1,i )

⩽
T−1∑
t=0

m∑
i=1

√
2 log(2DT/δ)σt(x

TS−RSR
t+1,i | {xTS−RSR

t+1,i }i−1
j=1)ρm

⩽
√
2 log(2DT/δ)ρm

√√√√Tm
T−1∑
t=0

m∑
i=1

σ2
t (x

TS−RSR
t+1,i | {xTS−RSR

t+1,i }i−1
j=1)

⩽
√
2 log(2DT/δ)ρm

√
Tmσ2

nC1γTm,

where the second-to-last inequality follows by Cauchy-Schwarz, and the final inequality uses the information-
theoretic bound in Lemma 8.

5.1.4 Proof of Theorem 1

We are now ready to prove our main result, Theorem 1.

Proof of Theorem 1. Recall that by the derivations in Lemma 2, we have from equation 6 that

R̃T,m =

T−1∑
t=0

m∑
i=1

f̃∗
t,i − f(xTS−RSR

t+1,i
)

11



⩽
T−1∑
t=0

m∑
i=1

µt(x
TS−RSR
t+1,i )− f(xTS−RSR

t+1,i )

+ Ψ̄

√√√√Tm

T−1∑
t=0

m∑
i=1

σ2
t (x

TS−RSR
t+1,i | {xTS−RSR

t+1,j }i−1
j=1).

Consider a fixed 0 < δ < 1. By combining

(a) the bound for Ψ̄ in equation 9 of Lemma 3,

(b) the bound for
∑T−1

t=0

∑m
i=1 σ

2
t (x

TS−RSR
t+1,i | {xTS−RSR

t+1,j }i−1
j=1) in Lemma 8,

(c) the bound for
∑T−1

t=0

∑m
i=1 µt(x

TS−RSR
t+1,i )− f(xTS−RSR

t+1,i ) in equation 11 of Lemma 5,

we obtain that on the event G(δ) := G(1)(δ) ∩ G(2)(δ) (where G(1)(δ) is defined in equation 7 and G(2)(δ) is
defined in equation 10), which happens with probability at least 1− 2δ, we have

R̃T,m =

T−1∑
t=0

m∑
i=1

f̃∗
t,i − f(xTS−RSR

t+1,i
)

⩽ 2
√
2 log(2DmT/δ)ρm

√
Tmσ2

nC1γTm.

Pick now δ0 = (Tm)−2/2, and define the event G = G(δ0). Note that

P (Gc) ⩽ (Tm)−2. (13)

Since

R̃T,m1G ⩽ 2
√
2 log(2DmT/δ0)ρm

√
Tmσ2

nC1γTm

⩽ 2
√
2 log(4D(mT )3ρm

√
Tmσ2

nC1γTm,

it follows that E
[
R̃T,m1G

]
⩽ 2
√

2 log(4D(mT )3ρm
√

Tmσ2
nC1γTm. Meanwhile, observe that

E
[
R̃T,m1Gc

]
⩽

√
E
[
R̃2

T,m

]
P(Gc)

⩽
√

24 logD(Tm)3
√
(Tm)−2

⩽
√
24 logDTm,

where the second-to-last inequality follows from the bound on E
[
R̃2

T,m

]
in Lemma 12 (which we prove in the

appendix) and the bound on P(Gc) in equation 13. Thus, it follows from Lemma 1 that

E [RT,m] = E
[
R̃T,m

]
⩽ E

[
R̃T,m1G

]
+

√
E
[
R̃2

T,m

]
P(Gc)

⩽ 2
√
2 log(4D(mT )3ρm

√
Tmσ2

nC1γTm +
√

24 logDTm.

This completes our proof.

A key step in our analysis took place when we used the technical result Lemma 7 to prove Lemma 3, in
which we found a bound for the Regret-to-Sigma Ratio (RSR). We discuss this step in detail next.

12



5.2 Bounding the RSR
To bound the Regret-Sigma Ratio (RSR), we first need the following result.

Lemma 6. Suppose Y ∼ N(µ,Σ), where µ ∈ RD and Σ ≻ 0D×D. For each j ∈ [D], we denote σ2
j := Σj,j.

Let ℓ∗ = argmaxj∈[D] Yj, and denote Y ∗ = maxj∈[D] Yj = Yℓ∗ . Then, for any δ > 0, on the event that

E(δ) :=
{
∀ℓ ∈ [D] :

∣∣∣∣Yℓ − µℓ

σℓ

∣∣∣∣ ⩽√2 log(D/δ)

}
, (14)

which happens with probability at least 1− δ, we have

Y ∗ − µℓ∗

σℓ∗
⩽
√

2 log(D/δ)

Proof. Note that by a standard subGaussian concentration bound, for each ℓ ∈ [D], for any t > 0,

P

(∣∣∣∣Yℓ − µℓ

σℓ

∣∣∣∣ ⩾ t

)
⩽ 2 exp(−t2/2)

Pick t =
√

2 log(2D/δ). Then, it follows that for any ℓ ∈ [D],

P

(∣∣∣∣Yℓ − µℓ

σℓ

∣∣∣∣ ⩾√2 log(D/δ)

)
⩽ 2 exp

(
−
(
√

2 log(2D/δ))2

2

)

=
δ

D
.

Thus, by applying union bound, we have that

P

(
∀ℓ ∈ [D] :

∣∣∣∣Yℓ − µℓ

σℓ

∣∣∣∣ ⩽√2 log(2D/δ)

)
⩾ 1− δ. (15)

Consider ℓ∗ such that Yℓ∗ = maxℓ∈[D] Yℓ. Then, it follows by (15) that

Yℓ∗ − µℓ∗

σℓ∗
⩽
√
2 log(2D/δ)

also holds with probability at least 1− δ.

We are now ready to state and prove the following result that provides an explicit bound for the RSR.

Lemma 7. For any 0 < δ < 1, on the event G defined as

G(δ) :=
⋃

0⩽t⩽T−1,i∈[m]

G(1)
t,i (δ), where

G(1)
t,i (δ) :=

{
∀x ∈ X :

∣∣∣∣∣ f̃t,i(x)− µt(x)

σt(x)

∣∣∣∣∣ ⩽√2 log(2DmT/δ)

}
,

which happens with probability at least 1− δ, we have for every t ∈ {0, 1, . . . , T − 1} and i ∈ [m] that

f̃∗
t,i − µt(x

TS−RSR
t+1,i )

σt(x
TS−RSR
t+1,i | {xTS−RSR

t+1,j }i−1
j=1)

13



⩽
f̃∗
t,i − µt(x

TS
t+1,i)

σt(xTS
t+1,i | {x

TS−RSR
t+1,j }i−1

j=1)

⩽
√
2 log(2DTm/δ)ρm := Ψ̄(δ)

Proof. We start by noting that at any time t, that for each i ∈ [m], f̃∗
t,i := maxx f̃t,i(x), where f̃t,i is an

independent sample from f | Ft. Let xTS
t+1,i := argmaxx f̃t,i(x); we use TS in the superscript of xTS

t+1,i to
represent the fact that if we performed Thompson sampling and drew m independent samples from x∗ | Ft to
be our action, we will play exactly the policy {xTS

t+1,i}mi=1. By applying Lemma 6, we see that for any δ > 0,
for a given 0 ⩽ t ⩽ T − 1 and i ∈ [m], on the event

G(1)
t,i (δ) :=

{
∀x ∈ X :

∣∣∣∣∣ f̃t,i(x)− µt(x)

σt(x)

∣∣∣∣∣ ⩽√2 log(2DmT/δ)

}
,

which happens with probability at least 1− δ/(Tm), we have(
f̃∗
t,i − µt(x

TS
t+1,i)

)
σt(xTS

t+1,i)
⩽
√
2 log(2DmT/δ).

By denoting ρm to be

ρm := max
x∈X

max
τ

max
X̃⊂X ,|X̃|⩽m

στ (x)

στ (x | X̃)
, (16)

we then obtain that

σt(x
TS
t+1,i) ⩽ ρmσt(x

TS
t+1,i | {xTS−RSR

t+1,j }i−1
j=1),

which implies that on the event G(1)
t,i (δ),(
f̃∗
t,i − µt(x

TS
t+1,i)

)
σt(xTS

t+1,i | {x
TS−RSR
t+1,j }i−1

j=1)
⩽
√

2 log(2DmT/δ)ρm.

Since

xTS−RSR
t+1,i ∈ argmin

x∈X

f̃∗
t,i − µt(x)

σt(x | {xTS−RSR
t+1,j }i−1

j=1)
,

this implies that on the event G(1)
t,i (δ), which happens with probability at least 1− δ/(mT ), we have

f̃∗
t,i − µt(x

TS−RSR
t+1,i )

σt(x
TS−RSR
t+1,i | {xTS−RSR

t+1,j }i−1
j=1)

⩽
f̃∗
t,i − µt(x

TS
t+1,i)

σt(xTS
t+1,i | {x

TS−RSR
t+1,j }i−1

j=1)

⩽
√

2 log(2DmT/δ)ρm

The final result then follows by a union bound over 0 ⩽ t ⩽ T − 1 and i ∈ [m].
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6 Numerical results
The performance of our algorithm is compared against the following competitors: namely Batch UCB
(BUCB, [Desautels et al., 2014]), Thompson Sampling (TS, [Kandasamy et al., 2018]), GP-UCB with pure
exploitation (UCBPE, [Contal et al., 2013]), Fully Distributed Bayesian Optimization with Stochastic Policies
(SP, [Garcia-Barcos and Martinez-Cantin, 2019a]), a sequential kriging version of Expected Improvement
(qEI, [Zhan and Xing, 2020], [Hunt, 2020], [Ginsbourger et al., 2008]), and DPPTS [Nava et al., 2022] (which
is a state-of-the-art batch variant of Thompson Sampling).

6.1 Functions sampled from GP prior
To better understand the performance of our algorithm, we first evaluated its performance on functions
sampled from a known GP prior. To this end, we 1) sampled 10 random 2D functions from a RBF prior with
lengthscale = 0.25, defined on the domain [−5, 5]2, and sampled 10 random 3D functions from a GP prior,
with a Gaussian RBF kernel that has lengthscale 0.15, defined on the domain [0, 1]3. For the 2D function,
for each of the ten functions, we repeat each algorithm for ten runs, yielding a total of 100 trials for each
algorithm. For the 3D function, for each of the ten functions, we repeat each algorithm for five runs, yielding
a total of 50 trials for each algorithm. Before each run, each algorithm has access to 15 random samples,
which is identical across all the algorithms. We note that it is nontrivial to compute the standard deviation
across the different functions, but in this case, we compute the means and standard deviations in Table 1 by
treating each trial as coming from the same function. We see in Table 1 that TS-RSR outperforms its peers
in both the 2D and 3D case with known GP prior. The trajectories of simple regret are shown in Figure 1.
We note that considering the total number of available function evaluations (400 in the 2D case and 250 in
the 3D case) , both settings are rather difficult considering their domain size and GP prior lengthscale, and
given the large number of trials, these serve as representative demonstrations of the superior efficacy and
consistency of the proposed TS-RSR algorithm.

Table 1: Simple regret at last iteration (2D/3D synthetic functions)
GP-RBF-prior-2D GP-RBF-prior-3D

(batch size m) m = 20 m = 5
(iterations T ) T = 20 T = 50

(units for regret) 10−2 10−2

DPPTS 6.1 (±11.4) [R: 3] 5.8 (±9.1) [R: 3]
BUCB 5.1 (±11.3) [R: 2] 36.0 (±29.5) [R: 6]
UCBPE 11.8 (±16.8) [R: 5] 48.9 (±35.5) [R: 7]

SP 12.7 (±18.6) [R: 6] 12.4 (±20.6) [R: 4]
TS 8.9 (±14.6) [R: 4] 3.0 (±6.8) [R: 2]
qEI 29.8 (±26.1) [R: 7] 29.8 (±54.2) [R: 5]

TS-RSR 3.8(±10.0) [R: 1] 1.9(±3.6) [R: 1]

6.2 Synthetic test functions
6.2.1 2D/3D functions

For the synthetic test functions, we chose from a range of challenging nonconvex test functions, across varying
dimensions. In 2D, we have Ackley, Bird, and Rosenbrock. In 3D, we have the 3D version of Ackley. Our
results are summarized in Table 2. As we can see, our algorithm outperforms all the other algorithms for all
the test functions here except the Bird, where it performs only slightly worse than TS and DPPTS. The plots
of the averaged simple regret for the different algorithms on these test functions can be found in Figure 2.
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Figure 1: Simple regret for synthetic functions with known prior. Each curve is the average of 10 runs. The
error bars represent ± 1 standard error.

Table 2: Simple regret at last iteration (2D/3D synthetic functions)
Ackley-2D Rosenbrock-2D Bird-2D Ackley-3d

(batch size m) m = 5 m = 5 m = 5 m = 20
(iterations T ) T = 50 T = 50 T = 50 T = 15

(units for regret) 10−3 10−3 10−4 10−2

DPPTS 2.2 (±1.6) [R: 2] 6.2 (±7.2) [R: 3] 0.4 (±1.0) [R: 2] 3.9 (±4.0) [R: 2]
BUCB 2.3 (±1.1) [R: 3] 22.7 (±24.1) [R: 5] 7.1 (±7.2) [R: 6] 50.1 (±71.7) [R: 5]
UCBPE 8.3 (±5.4) [R: 6] 207.1 (±165.9) [R: 7] 763.3 (±1782.0) [R: 7] 158.7 (±113.3) [R: 7]

SP 3.5 (±1.8) [R: 4] 69.0 (±61.1) [R: 6] 1.4 (±1.0) [R: 5] 104.2 (±97.3) [R: 6]
TS 4.3 (±3.1) [R: 5] 3.9 (±1.7) [R: 2] 0.3(±0.0) [R: 1] 18.0 (±38.3) [R: 3]
qEI 10.4 (±3.5) [R: 7] 12.1 (±7.3) [R: 4] 1.4(±2.0) [R: 4] 45.6 (±55.6) [R: 4]

TS-RSR 1.7 (± 1.1) [R: 1] 2.0 (± 1.6) [R: 1] 0.7(±1.0) [R: 3] 1.2(±0.6) [R: 1]

6.2.2 Higher-dimensional test functions

We also tested on the following higher dimensional test functions: Hartmann (6D), Griewank (8D), and
Michalewicz (10D), which are well-known nonconvex test functions with many local optima. Our results
are summarized in Table 3, and the simple regret curves can be found in Figure 3. Again, our proposed
algorithm consistently outperforms its competitors.

6.3 Real-world test functions
To better evaluate our algorithm, we also experimented on three realistic real world test functions.

First, we have a 4D hyperparameter tuning task for the hyperparameters of the RMSProp optimizer in a
1-hidden layer NN regression task for the Boston housing dataset. Here, the 4 parameters we tune are 1) the
number of nodes in the hidden layer (between 1 and 100), 2) the learning rate of the RMSProp optimizer
(between 0.001 and 0.1), 3) the weight decay of the optimizer (between 0 and 0.5), 4) the momentum
parameter of the optimizer (between 0 and 0.5). The experiment is repeated 10 times, and the neural
network’s weight initialization and all other parameters are set to be the same to ensure a fair comparison.
The dataset was randomly split into train/validation sets. We initialize the observation set to have 15 random
function evaluations which were set to be the same across all the methods. The performances of the different
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Figure 2: Simple regret for 2D/3D synthetic functions. Each curve is the average of 10 runs. The error bars
represent ± 1 standard error.

Table 3: Simple regret at last iteration (higher-dimensional)
Hartmann-6D Griewank-8D Michaelwicz-10D

(batch size m) m = 5 m = 10 m = 5
(iterations T ) T = 30 T = 30 T = 30

(units for regret) 10−2 10−2 100

DPPTS 11.1 (± 9.4) [R: 7] 14.0 (± 5.0) [R: 4] 5.4 (± 0.8) [R: 4]
BUCB 4.78 (± 4.9) [R: 4] 5.2 (± 1.8) [R: 2] 5.4 (± 1.1) [R: 4]
UCBPE 8.3 (± 6.5) [R: 6] 14.3 (± 4.8) [R: 6] 5.8 (± 0.7) [R: 7]

SP 4.0 (± 8.0) [R: 3] 15.5 (± 8.9) [R: 7] 4.8 (± 0.8) [R: 2]
TS 5.9 (± 9.5) [R: 5] 14.9 (± 4.3) [R: 5] 5.5 (± 0.7) [R: 6]
qEI 1.9 (± 5.5) [R: 2] 11.0 (± 4.1) [R: 3] 5.0 (± 0.7) [R: 3]

TS-RSR 1.6 (± 4.7) [R: 1] 3.1 (± 1.7) [R: 1] 4.4 (± 0.7) [R: 1]

algorithms in terms of the simple regret1 at the last iteration for the regression L2-loss on the validation set
of the Boston housing dataset is shown in Table 4. As we can see, TS-RSR outperforms all its competitors,
improving on its closest competitor (BUCB) by 25.7%. The trajectories of the average simple regret is shown
in Figure 4.

Table 4: Simple regret at last iteration (real-world test functions)
(Boston housing) NN regression Robot pushing (3D) Robot pushing (4D)

(batch size m) m = 5 m = 5 m = 5
(iterations T ) T = 30 T = 30 T = 30

(units for regret) 10−1 10−2 10−1

DPPTS 7.6 (± 3.4) [R: 3] 31.0 (± 20.1) [R: 6] 3.5(±2.5) [R:4]
BUCB 6.6 (± 3.5) [R: 2] 12.6 (± 5.0) [R: 2] 2.6(±1.9) [R:2]
UCBPE 9.9 (± 4.3) [R: 5] 18.9 (± 6.3) [R: 4] 3.5(±2.3) [R:3]

SP 11.1 (± 5.6) [R: 6] 18.6 (± 19.2) [R: 3] 5.5 (±(5.6))[R:7]
TS 11.4 (± 4.8) [R: 7] 39.2 (± 22.3) [R: 7] 3.8 (± 2.4)[R:5]
qEI 7.8 (± 4.5) [R: 4] 27.1 (± 38.7) [R: 5] 5.2(±7.6)[R:6]

TS-RSR 4.9 (± 2.5) [R: 1] 8.1 (± 5.5) [R: 1] 1.9(± 1.3) [R:1]

Next, we experimented on the active learning for robot pushing setup from [4]. This consists of conducting
active policy search on the task of selecting a pushing action of an object towards a designed goal location.
There are two variants to the problem with one being 3D, and another being 4D. For the 3D function, the
input includes the robot location (rx, ry) and the pushing duration tr; for the 4D, the input also includes
specifying the initial angle the robot faces. In this experiment, we also have ten repetitions for both the
two functions, where each repetition represents a different goal. The simple regret performances at the last

1Since a grid search is infeasible over the 4-dimensional search space, to compute the average regret, we take the best
validation loss found across all the runs of all the algorithms as our proxy for the best possible loss.
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Figure 3: Simple regret for higher-dimensional synthetic functions. Each curve is the average of 10 runs. The
error bars represent ± 1 standard error.
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Figure 4: Average simple regret for Boston housing, robot pushing 3D and robot pushing 4D problems. Each
curve is the average over ten runs. The error bars represent ± 1 standard error.

iteration can be found in Table 4, where we again we see that TS-RSR significantly outperforms its peers,
improving on its closests competitor (BUCB in both cases) by 35.7% in the 3D case and 25.7% in the 4D
case respectively. The trajectories of the average simple regret is shown in Figure 4.

6.4 More details about experimental setup
Our detailed experimental setup is as follows. For the GP prior (except the cases with known GP prior),
we use the Matern kernel with ν parameter set as ν = 1.5. For the likelihood noise, we set ϵ ∼ N(0, σ2

n),
where σn = 0.001. We compute the performance of the algorithms across 10 runs, where for each run, each
algorithm has access to the same random initialization dataset with 15 samples. Finally, we note that in a
practical implementation of our algorithm, for any given t and i ∈ [m], it may happen that f̃∗

t,i < µt(x), in
which case the algorithm will simply pick out the action x with the highest µt(x). While such a situation
does not affect the theoretical convergence, for better empirical performance that encourages more diversity,
we resample f̃∗

t,i whenever f̃∗
t,i < maxx µt(x), until f̃∗

t,i > maxx µt(x). The specific kernel, lengthscale and
domain we used in the experiments for each of the test functions can be found in Tables 5 and 6 below; note
that all functions use the same initial kernel.
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Table 5: Experimental set up for 2D/3D synthetic functions
Ackley-2D Rosenbrock-2D Bird-2D Ackley-3d GP-RBF-prior-2D GP-RBF-prior-3D

Domain [−5, 5]2 [−2, 2] × [−1, 3] [−2π, 2π]2 [−5, 5]3 [−5, 5]2 [0, 1]3

Lengthscale used ln(2) ln(2) ln(2) ln(2) 0.25 0.15
Kernel Matern (ν = 1) Matern (ν = 1) Matern (ν = 1) Matern (ν = 1) RBF RBF
Noise σ 10−3 10−3 10−3 10−3 10−3 10−3

Table 6: Experimental set up for higher-dimensional and real-world functions
Hartmann-6D Griewank-8D Michalewicz-10D Boston Housing (NN regression) Robot-3D Robot-4D

Domain [0, 1]6 [−1, 4]8 [0, π]10 [1, 100]×[0.001, 0.1]×[0.1, 0.5]2 [−5, 5]2×[1, 30] [−5, 5]2×[1, 30]×[0, 2π]
Lengthscale ln(2) ln(2) ln(2) [0.1, 0.005, 0.1, 0.1] ln(2) ln(2)

Kernel Matern (ν = 1) Matern (ν = 1) Matern (ν = 1) Matern (ν = 1) Matern Matern
Noise σ 10−3 10−3 10−3 10−3 10−3 10−3

7 Conclusion
In this paper, we introduced a new algorithm, TS− RSR, for the problem of batch BO. We provide strong
theoretical guarantees for our algorithm via a novel analysis, which may be of independent interest to
researchers interested in studying IDS methods for BO. Moreover, we confirm the efficacy of our algorithm
on a range of simulation problems, where we attain strong, state-of-the-art performance. We believe that our
algorithm can serve as a new benchmark in batch BO, and as a buiding block for more effective batch BO in
practical applications.
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Appendix
8.1 Facts from information theory
We have the following result (Lemma 5.3 in [Srinivas et al., 2009]), which states that the information gain for
any set of selected points can be expressed in terms of predictive variances.

Lemma 8. For any positive integer t, denoting ft as {f(xi)}ti=1, we have

I(yt;ft) =
1

2

t∑
i=1

log
(
1 + σ−2

n σ2
t−1(xt)

)
8.2 Concentration results for Sum1 and Sum2

In this section, we seek to bound Sum1 and Sum2 using martingale concentration inequalities. We first
provide a (standard) martingale concentration inequality for subGaussian martingales.

Lemma 9 (Azuma-Hoeffding [Vershynin, 2018]). Let Fi be a sequence of filtrations, and suppose Xi+1

is a sequence of random variables that is adapted to Fi, such that E[Xi+1 | Fi] = 0, and Xi+1 | Fi is
c2i -subGaussian, i.e.

E [exp(λXi+1) | Fi] ⩽ exp(λ2c2i /2)∀λ > 0.

Suppose ci ⩽ c for all i. Then,

P

(
n∑

i=1

Xi ⩾ t

)
⩽ exp

(
− t2

2nc2

)
.

In particular, with probability at least 1− δ,
n∑

i=1

Xi ⩽ c
√
2n log(1/δ).

We next provide a martingale concentration inequality result for the term Sum1, which takes the form
Sum1 =

∑T−1
t=0

∑m
i=1 f

∗ − f̃∗
t,i.

Lemma 10 (Bound for Sum1). Let f̃∗
t,i denote an iid sample from f∗ | Ft. Then, for any δ > 0, with

probability at least 1− δ, we have

T−1∑
t=0

m∑
i=1

f∗ − f̃∗
t,i ⩽ 2

√
Tm log(D/δ).

Proof. To bound this sum, we use a proxy sequence, {xbucb
t,i }, where

We focus first on an arbitrary x ∈ X , and try to bound

T−1∑
t=0

m∑
i=1

f(x)− f̃∗
t,i.

Then, we observe that we have the following:

T−1∑
t=0

m∑
i=1

f(x)− f̃∗
t,i
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=

T−1∑
t=0

m∑
i=1

f(x)− f̃t,i(x) + f̃t,i(x)− f̃∗
t,i

⩽
T−1∑
t=0

m∑
i=1

f(x)− f̃t,i(x),

where we note that the inequality follows since f̃t,i(x) denotes the random draw of x at the same time when
f̃∗
t,i was sampled, such that f̃t,i(x) ⩽ f̃∗

t,i has to hold. We proceed to bound
∑T−1

t=0

∑m
i=1 f(x) − f̃t,i(x).

Observe that (
f(x)− f̃t,i(x) | Ft

)
∼ N(0, 2σ2

t,i(x)).

i.e. {Zt,i(x)}T−1
t=0 is a centered, 2σ2

t (x) Gaussian martingale, where

Zt,i(x) :=
(
f(x)− f̃t,i(x) | Ft

)
.

Thus, by applying Azuma-Hoeffding (Lemma 9), we have that with probability at least 1− δ,

T−1∑
t=0

m∑
i=1

f(x)− f̃∗
t,i ⩽ 2

√
Tm log(D/δ).

The result then follows by observing that f(x∗)− f̃t,i(x
∗) is a centered, 2σ2

t (x
∗) subGaussian martingale,

the fact that σ2
t (x

∗) ⩽ 1, and applying Lemma 9 to the sum

T−1∑
t=0

m∑
i=1

f(x∗)− f̃t,i(x
∗).

We next bound Sum2.

Lemma 11. Let f̃t,i denotes a random sample from f(xTS−RSR
t+1,i ) | Ft. Then, with probability at least 1− 2δ,

we have

Sum2 =

T−1∑
t=0

m∑
i=1

(µt(x
TS−RSR
t+1,i )− f(xTS−RSR

t+1,i ))

=

T−1∑
t=0

m∑
i=1

(µt(x
TS−RSR
t+1,i )− f̃t,i(x

TS−RSR
t+1,i ))︸ ︷︷ ︸

Sum2,1

+

T−1∑
t=0

m∑
i=1

(f̃t,i(x
TS−RSR
t+1,i )− f(xTS−RSR

t+1,i ))︸ ︷︷ ︸
Sum2,2

⩽ 4
√

Tm log(1/δ)

Proof. The result follows from applying Lemma 9 to each of Sum2,1 and Sum2,2.

We next bound E
[
R̃2

T,m

]
, where we recall that R̃T,m :=

∑T−1
t=0

∑m
i=1 f̃

∗
t,i − f(xTS−RSR

t,i ).
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Lemma 12. Suppose that D ⩾ 2 (where D is the size of X ), and that k(x, x) ⩽ 1 for any x ∈ X . Then, for
any t ∈ [T ] and i ∈ [m], we have

E[(f̃∗
t,i − f(xTS−RSR

t,i ))2] ⩽ 24 logD,

which implies then that

E
[
R̃2

T,m

]
= E

(T−1∑
t=0

m∑
i=1

f̃∗
t,i − f(xTS−RSR

t,i )

)2


⩽ (Tm)2
T−1∑
t=0

m∑
i=1

E[(f̃∗
t,i − f(xTS−RSR

t,i ))2]

⩽ 24 logD(Tm)3

Proof. We observe that for any t ∈ [T ] and i ∈ [m],

E[(f̃∗
t,i − f(xTS−RSR

t,i ))2] ⩽ 2E[(f̃∗
t,i)

2] + 2E[(f(xTS−RSR
t,i ))2]

(i)
= 2E

[
E
[
(f̃∗

t,i)
2 | Ft

]]
+ 2E

[
(f(xTS−RSR

t,i ))2
]

(ii)
= 2E

[
E
[
(f∗)2 | Ft

]]
+ 2E

[
(f(xTS−RSR

t,i ))2
]

(iii)
= 2E

[
(f∗)2

]
+ 2E

[
(f(xTS−RSR

t,i ))2
]

(iv)
⩽ 24 logD (17)

Above, we used the tower property of conditional expectation in (equation i), and in (equation ii), we used
the fact that f∗ | Ft has the same distribution as f̃∗

t,i | Ft, which implies also that (f∗)2 | Ft has the same
distribution as (f̃∗

t,i)
2 | Ft. The equation (iii) follows again from the tower property, while to derive (iv), we

used Lemma 13, which we will prove later.
The final bound on E

[
R̃2

T,m

]
then follows from Cauchy-Schwarz and applying equation 17.

We introduce the following technical lemma, which gives us a helpful bound relating to a (discrete)
Gaussian Process with D elements.

Lemma 13. Consider a D-dimensional Gaussian, Y ∼ N(0,Σ), where Σ ≻ 0D×D. Suppose that D ⩾ 2,
and that for each j ∈ [D], we have σ2

j ⩽ 1, where σ2
j := Σj,j. Then,

E
[
max
j∈[D]

(Yj)
2

]
⩽ 6 logD.

Proof. First, observe that for each i ∈ [D], applying the standard formula for the moment-generating-function
(MGF) of a chi-squared random variable, we have E

[
exp(λY 2

i )
]
= 1√

1−2λσ2
i

whenever λ ⩽ 1
2σ2

i
. Since σ2

i ⩽ 1,

for any λ < 1
2 , we have E

[
exp(λY 2

i )
]
= 1√

1−2λσ2
i

⩽ 1√
1−2λ

. Now, for any λ < 1/2, observe that

exp

(
λE
[
max
i∈[D]

(Yi)
2

]) (v)
⩽ E

[
exp(λmax

i∈[D]
(Yi)

2)

]
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= E
[
max
i∈[D]

exp(λ(Yi)
2)

]
⩽ E

[
D∑
i=1

exp(λ(Yi)
2)

]

=

D∑
i=1

E
[
exp(λ(Yi)

2)
]

⩽
D√

1− 2λ

Above, to derive (v) we used Jensen’s equality. Taking log on both sides and dividing by λ, we find that

E
[
max
i∈[D]

Y 2
i

]
⩽

log(D)− 1
2 log(1− 2λ)

λ
.

Setting λ = 1
4 (which is less than 1

2 ), we then find that

E
[
max
i∈[D]

Y 2
i

]
⩽ 4

(
log(D) +

1

2
log(2)

)
⩽ 6 logD,

where the final inequality uses the assumption that D ⩾ 2.
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