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Background: Introducing low-energy effective Hamiltonians is usual to grasp most correlations in quantum
many-body problems. For instance, such effective Hamiltonians can be treated at the mean-field level to reproduce
some physical properties of interest. Employing effective Hamiltonians that contain many-body correlations
renders the use of perturbative many-body techniques difficult because of the overcounting of correlations.
Purpose: In this work, we develop a strategy to apply an extension of the many-body perturbation theory
starting from an effective interaction that contains correlations beyond the mean field level. The goal is to re-
organize the many-body calculation to avoid the overcounting of correlations originating from the introduction of
correlated effective Hamiltonians in the description.
Methods: For this purpose, we generalize the formulation of the Rayleigh-Schrödinger perturbation theory by
including free parameters adjusted to reproduce the appropriate limits. In particular, the expansion in the bare
weak-coupling regime and the strong-coupling limit serves as a valuable input to fix the value of the free parameters
appearing in the resulting expression.
Results: This method avoids double counting of correlations using beyond-mean-field strategies for the descrip-
tion of many-body systems. The ground state energy of various systems relevant for ultracold atomic, nuclear, and
condensed matter physics is reproduced qualitatively beyond the domain of validity of the standard many-body
perturbation theory.
Conclusions: Finally, our method suggests interpreting the formal results obtained as an effective field theory
using the proposed reorganization of the many-body calculation. The results, like ground state energies, are
improved systematically by considering higher orders in the extended many-body perturbation theory while
maintaining a straightforward polynomial expansion.

Keywords: quantum many-body problem, many-body perturbation theory, effective field theory, energy den-
sity functional theory, strongly correlated Hamiltonian, ultracold atoms, nuclear physics, condensed matter
physics.

I. INTRODUCTION

Quantum many-body problems are, most of the time,
unsolvable exactly, and several approximations have been
developed to grasp the properties of such complex sys-
tems. One can mention two types of approaches that aim
to solve many-body problems under some well-controlled
approximations: the non-perturbative methods such as
Quantum Monte Carlo (QMC) [1–6] or Density Matrix
Renormalization Group (DMRG) [7–10] and the per-
turbative techniques such as Many-Body Perturbation
Theory (MBPT) [11–17] or Coupled-Cluster (CC) the-
ory [18–22]. On the one hand, starting from the bare
Hamiltonian of the theory, non-perturbative methods can
express the problem with multidimensional integrals in
the Feynman’s path integral formalism, which are man-
ageable by Monte Carlo algorithms [23–26] or, alterna-
tively, the problem can be tackled by optimizing a matrix
product state tensor network using an iterative eigen-
solver such as the Lanczos algorithm [27, 28]. On the
other hand, perturbative techniques rely on a trunca-
tion scheme up to an arbitrary order of the exact solu-
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tion expressed as an infinite series [29, 30]. In particular,
truncation at the leading order, i.e. at the first order in
perturbation, is the so-called mean-field approximation.

In both perturbative and non-perturbative approaches,
the description includes Beyond-Mean-Field (BMF) cor-
relations. Another approach, namely the Density Func-
tional Theory1, is a third class of methods used to solve
quantum many-body problems involving BMF correla-
tions in an effective Hamiltonian formally treated with
the mean-field approximation [31–34].

Difficulties arise if we apply perturbative methods be-
yond the mean field level from an effective Hamilto-
nian that contains such BMF correlations by construc-
tion. Considering an effective Hamiltonian and employ-
ing many-body methods will include BMF correlations
already accounted for in the effective Hamiltonian. Sev-
eral methods have been developed to avoid this over-
counting in many-body techniques to deal with effective
interactions at the BMF level [35]. It seems like the ef-
fective interaction to consider depends on the order of
perturbation considered. One possibility to avoid over-
counting of correlations is to adjust the parameter of the

1 Also called Energy Density Functional (EDF) theory in the nu-
clear physics context.
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effective Hamiltonian according to the truncation order
considered to reproduce physical properties [36]. Another
strategy consists of adding counter terms in the effective
interaction to avoid double counting of correlations [37].

Starting from this observation, namely the dependence
of the effective interaction as a function of the perturba-
tive order considered in the many-body technique em-
ployed, the goal of this paper is to illustrate:

1. How to incorporate properly beyond mean field cor-
relations into an effective interaction, e.g. using
limiting constraints, symmetries, etc.?

2. How to go beyond mean field calculations using ef-
fective interactions that already contain such corre-
lations?

We restrict our development to the case of the MBPT
to clarify the formal link between the effective interac-
tion and the truncation order of the perturbative method.
The purpose of this work is then to develop a systematic
MBPT for strongly correlated effective Hamiltonians.

The article is organized as follows. In section II, the
framework of our development is briefly presented and
motivated to generalize the Rayleigh-Schrödinger pertur-
bation theory. In section III, we develop a reformulation
of the MBPT exhibiting a new extra parameter that al-
lows the use of an effective Hamiltonian that is the core
of the presented work. We also discuss the interpreta-
tion of our extended MBPT in the Effective Field Theory
(EFT) framework. Then, in sections IV, V and VI, we
apply our strategy for several many-body problems en-
countered, respectively, in the context of ultracold atomic
quantum gases, nuclear and condensed matter physics, as
a proof of principle. Finally, in section VII, we conclude
and discuss the implications and further developments of
our approach for the description of quantum many-body
systems.

II. PRESENTATION OF THE PROBLEM

We consider a many-particle system of N fermions in-
teracting through a Hamiltonian parameterized by a tun-
able coupling constant λ and decomposed as:

Ĥλ = Ĥ0 + λĥ. (1)

The reference state |Φ0⟩ is chosen as the solution of
the static many-body Schrödinger equation involving Ĥ0,
that is, Ĥ0 |Φ0⟩ = E0 |Φ0⟩ with the unperturbed energy
E0. In this work, we only consider the normal compo-
nent, making the reference state |Φ0⟩ the Hartree-Fock
Slater determinant associated with Ĥ0.

Then, we assume that we know the Taylor expansion
of the Ground State (GS) energy around λ = 0 and its
value at the limit λ → ∞. These two limits, respectively
λ ≪ 1 and λ ≫ 1, will be named respectively low- and

high-scale limits in the following. For simplicity, we use
dimensionless GS energy. We then write:

Eλ

E0
= 1 +

∞∑
n=1

γnλ
n, (2)

where we have introduced the set {γn} for the low-scale
expansion of the dimensionless GS energy. In the high-
scale limit, we define the parameter ξ0 as:

lim
λ→∞

Eλ

E0
= ξ0. (3)

At the standard Hartree-Fock (HF) level or first-order
MBPT, i.e. when λĥ can be considered in perturbation
according to Ĥ0 (low-scale limit λ ≪ 1), the energy of
the system is given by the parameter γ1 only: Eλ/E0 =
1 + γ1λ+O(λ2). In general, the result of any order will
give a polynomial expansion in λ that diverges in the
strong-coupling regime (high-scale limit λ ≫ 1). Thus,
in this sense, the standard MBPT does not provide a
finite value of the observable in this limit. The goal of
this paper is to propose a method based on the MBPT
at a given order and relying on the use of an effective
parameterization of the Hamiltonian such that:

(i) we recover the low-scale limit up to the order of the
MBPT considered;

(ii) we impose the high-scale results E∞/E0 = ξ0,
where the parameter ξ0 is assumed to be known.

In the following, we will arbitrarily assume the partic-
ular form of the effective Hamiltonian as follows:

H̃λ = Ĥ0 +
λĥ

1 + λγ1/a
, (4)

which mimic, in a simple manner 2, the bare Hamiltonian
(1) up to first order in power of λ, i.e. H̃λ = Ĥλ+O(λ2),
but having a finite limit in the high-scale regime tuned
by the parameter a. In other words, the bare coupling
constant λ is replaced by λ/(1 + λγ1/a) which can be
interpreted as a renormalized coupling constant due to
the medium effect [38]. This extra parameterization al-
lows one to include many-body BMF correlations, e.g.
the high-scale constraint (3), directly in the effective in-
teraction. Using this particular form of effective Hamil-
tonians, we will propose a systematic method to perform
MBPT calculations capable of reproducing the low-scale
expansion of the GS energy (2) up to a given order in
perturbation and the high-scale limit (3).

In the following, we will first illustrate our motiva-
tions with a recent example of the GS energy of diluted

2 In general, H̃λ = Ĥ0 + Fa(λ)ĥ where the function Fa has the
following properties: Fa(λ) = λ+O(λ2) and Fa(∞) = a/γ1.
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many-body Fermi systems at the HF level using an ef-
fective Hamiltonian equivalent to (4). Then, we extend
the method to higher orders in perturbation using a re-
formulation of the MBPT that allows flexibility to adjust
some parameters on the proper low- and high-scale con-
straints.

A. Hartree-Fock or MBPT at first order

The HF energy using the effective Hamiltonian (4) is
given by the Leading Order (LO) in perturbation:

ELO
λ = E0 +

⟨Φ0|λĥ|Φ0⟩
1 + λγ1/a

. (5)

Identifying with the low-scale expansion (2), we have
⟨Φ0|λĥ|Φ0⟩ = γ1λE0. Then, imposing the exact high-
scale limit constraint (3), we get ξ0 = 1 + a. This ex-
pression of the high-scale parameter is valid only at the
HF level and depends on the form chosen to define the
effective Hamiltonian (4).

B. Direct application to ultracold atom systems

In this section, as a proof of principle, we consider
an infinite spin-saturated diluted system of fermions at
zero temperature. In that case, the Hamiltonian is the
sum of the kinetic Hamiltonian and a two-body contact
interaction of the form: ⟨k′|λĥ|k⟩ = 4πas/m [39] where
as is the s-wave scattering length and plays the role of
the parameter λ. Here, we use the convention ℏ = 1. We
know that within the framework of the MBPT applied to
dilute Fermi gases with an attractive interaction (as < 0),
this corresponds to the Bardeen-Cooper-Schrieffer (BCS)
regime [40, 41]:

E

E0
= 1 +

10

9π
(askF ) +O[(askF )

2], (6a)

lim
|as|→∞

E

E0
= ξ, (6b)

where ξ = 0.376(4) [42] is the so-called Bertsch param-
eter, kF is the Fermi momentum of the system directly
linked to the density ρ = k3F /3π

2, and E0/N = 3k2F /10m
is the free Fermi gas energy.

Then we can directly identify and make the correspon-
dence λ = as, γ1 = 10kF /9π and ξ0 = ξ that leads to the
HF energy (5):

ELO

E0
= 1 +

10

9π
(askF )

1 +
10

9π
(ξ − 1)−1(askF )

. (7)

This expression was proposed several times during the
last decade in the context of ultracold atoms using a
Padé[1/1] form of the energy and the unitary limit as

a constraint [43, 44]. In figure 1, we display the GS en-
ergy of the spin-saturated Fermi gas at the HF level,
denoted as ELO, as a function of (askF ) and obtained
with (7) using the correspondences of parameters for the
dilute Fermi gas. As discussed in [43, 44], this functional
qualitatively reproduces well the GS energy and thermo-
dynamical properties of diluted ultracold atom systems
across the weak to the strong coupling regimes in a very
compact form, explicitly in terms of the density and the
low-energy constant of the bare two-body interaction.

Including higher-order MBPT contributions (or apply-
ing more high-scale constraints such as the Taylor expan-
sion in the limit λ → ∞) at the HF level is not feasible
in a systematic manner. For instance, various parame-
terizations of the effective Hamiltonian can lead to diver-
gences in certain cases. Such developments are not the
purpose of this work. Below, we suggest pursuing BMF
calculations keeping the idea and the form of the Hamil-
tonian discussed up to now. In the following, we develop
a method that allows us to extend MBPT for an effective
Hamiltonian similar to (4) and keep the low- and high-
scale limits valid. The aim is to elaborate a method that
avoids naturally the double-counting of correlations aris-
ing from the association of perturbative techniques and
effective Hamiltonians.

III. EXTENSION OF THE MBPT WITH
STRONGLY CORRELATED EFFECTIVE

HAMILTONIANS

In this section, we propose an extension of the MBPT
allowing the use of effective Hamiltonians (4). We first
recall the equation of MBPT in Rayleigh-Schrödinger
formalism and then propose another truncation scheme
by introducing a free parameter. This new formulation
of the theory allows for some flexibility to perform the
MBPT up to a given order using the effective Hamilto-
nian (4) and keep the proper low-scale expansion up to
the order considered, as well as the high-scale constraint.

A. Many-body perturbation theory with a bare
Hamiltonian

Assuming that the GS of the Hamiltonian Ĥλ = Ĥ0 +

λĥ for the many-body system of interest is nondegenerate
[12, 45], we decompose the exact many-body GS |Ψ0⟩ as
a series of reference states, e.g. Slater determinants, as:

|Ψ0⟩ = |Φ0⟩+
∑
i ̸=0

Ci |Φi⟩ , (8)

where |Φ0⟩ is the GS of the unperturbed system, i.e.
Ĥ0 |Φ0⟩ = E0 |Φ0⟩, E is the exact GS energy of the sys-
tem, the set {|Φi⟩} denotes the eigenvector basis of the
unperturbed Hamiltonian Ĥ0 (note that we use the in-
termediate normalization ⟨Ψ0|Φ0⟩ = 1), and the {Ci} are
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the associated amplitudes of the state in this basis. The
static many-body Schrödinger equation reads:

Ĥλ |Ψ0⟩ = E |Ψ0⟩ , (9)

and using the hermiticity of the Hamiltonian, we define
the energy shift as:

∆E = E − E0 = ⟨Φ0|λĥ|Ψ0⟩ . (10)

Then, we define the projectors P̂ = |Φ0⟩⟨Φ0| and Q̂ =∑
i ̸=0 |Φi⟩⟨Φi| such that |Ψ0⟩ = (P̂ + Q̂) |Ψ0⟩ = |Φ0⟩ +

Q̂ |Ψ0⟩. Now, starting from the Schrödinger equation (9),
we introduce an energy operator ω̂ and we project the
result into the sub-Hilbert space defined by Q̂ to get:

|Ψ0⟩ = |Φ0⟩+ R̂(ω̂) · (ω̂ − E + λĥ) |Ψ0⟩ , (11)

where we denote the resolvent operator (that is assumed
to exist) by:

R̂(ω̂) =
Q̂

ω̂ − Ĥ0

. (12)

By consecutive iterations, we can write the energy shift
(10) and the exact many-body state (11) as a perturba-
tive series:

∆E =

∞∑
n=1

⟨Φ0|λĥ · [R̂(ω̂) · (ω̂ − E + λĥ)]n−1 |Φ0⟩ ,

(13a)

|Ψ0⟩ =
∞∑

n=1

[R̂(ω̂) · (ω̂ − E + λĥ)]n−1 |Φ0⟩ . (13b)

1. Rayleigh-Schrödinger Perturbation Theory

In Rayleigh-Schrödinger Perturbation Theory (RSPT),
we chose ω̂ = E0. Using that particular choice, the en-
ergy shift (13a) and the exact many-body state (13b) can
be written as a perturbative series:

∆E =

∞∑
n=1

⟨Φ0|λĥ · [R̂(E0) · (λĥ−∆E)]n−1 |Φ0⟩ ,

(14a)

|Ψ0⟩ =
∞∑

n=1

[R̂(E0) · (λĥ−∆E)]n−1 |Φ0⟩ . (14b)

Then, expanding the energy shift as a series ∆E =∑
n ∆E(n) in powers of λ and using the fact that

Q̂∆E |Φ0⟩ = 0, we can get the expression of ∆E as a se-
ries in terms of the interaction strength λ. For instance,
up to the third order in power of λ:

∆E(1) = ⟨Φ0|λĥ|Φ0⟩ , (15a)

∆E(2) = ⟨Φ0|λĥ · R̂0 · λĥ|Φ0⟩ , (15b)

∆E(3) = ⟨Φ0|λĥ · R̂0 · λŵ · R̂0 · λĥ|Φ0⟩ , (15c)

where we have defined R̂0 = R̂(E0) and λŵ = λĥ−∆E(1).
We can remark that by matching the low-scale expansion
for the energy in series of λn given by (2), we have, by
definition, ∆E(n) = γnλ

nE0.

2. Alternative choice for the resolvent parameter

The choice (12) for the resolvent operator is not unique.
For example, the Brillouin-Wigner perturbation theory
consists of setting ω̂ = E.

In this work, we propose to set ω̂ = Ĥ0+β(E0−Ĥ0) =
ω̂β , such that:

R̂(ω̂β) =
1

β

Q̂

E0 − Ĥ0

=
1

β
R̂0, (16)

where β is a number to be determined. Note that the
case β = 1 is equivalent to RSPT. The energy shift (13a)
and the exact many-body state (13b) are now given by:

∆E(β) =

∞∑
n=1

⟨Φ0|λĥ · B̂n(β) |Φ0⟩ , (17a)

|Ψ0(β)⟩ =
∞∑

n=1

B̂n(β) |Φ0⟩ , (17b)

where we have defined B̂1(β) = 1 and for n ≥ 2:

B̂n(β) =
1

βn−1
[(β − 1) + R̂0 · (λĥ−∆E)]n−2 · R̂0 · λĥ.

(17c)

To obtain these expressions, we use (Ĥ0 − E0) |Φ0⟩ = 0,
Q̂∆E |Φ0⟩ = 0, the relationship R̂0 · (E0 − Ĥ0) · R̂0 = R̂0

since Q̂ is idempotent (Q̂2 = Q̂), and the commutation
property of Ĥ0 with R̂0.

We can show that, following the same truncation
scheme in terms of the power of λ as in RSPT, each
term is re-summed exactly to be β-independent at each
order and consequently ∆E(β) = ∆E. More precisely,
we have:

∞∑
n=2

B̂n(β) =
1

1− R̂0 · (λĥ−∆E)
· R̂0 · λĥ

=

∞∑
n=2

[R̂0 · (λĥ−∆E)]n−2 · R̂0 · λĥ,

and we then recover the RSPT results (14), i.e. the β-
independent results.

Considering the bare interaction Hamiltonian λĥ, the
only (or more natural) possibility is to use the RSPT
formalism, that is to set β = 1 or to use the simplified
β-independent result above, which appears naturally in
calculations. However, using an effective Hamiltonian
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like (4), the flexibility of the β parameter can be used to
match the low-scale expansion at a given order in MBPT.
In the following, we illustrate this aspect at the first,
second, and third orders using the effective Hamiltonian
(4).

B. Extended many-body perturbation theory with
an effective Hamiltonian

We consider the effective Hamiltonian (4) where the
parameter a is to be determined by containing the GS

energy3 at NlLO on the high-scale limit constraint (3).
Using the preliminary result on the MBPT scheme pro-
posed in section IIIA 2, the energy shift (13a) and the
exact many-body state (13b) are now given by:

∆Eλ(β) =

∞∑
n=1

⟨Φ0|λĥ · B̃n(β)|Φ0⟩
1 + λγ1/a

, (18a)

|Ψ0(β)⟩ =
∞∑

n=1

B̃n(β) |Φ0⟩ , (18b)

where we have defined B̃1(β) = 1 and for n ≥ 2:

B̃n(β) =
1

βn−1

[
(β − 1) + R̂0 ·

(
λĥ

1 + λγ1/a
−∆Eλ(β)

)]n−2

· R̂0 ·
λĥ

1 + λγ1/a
. (18c)

The basic idea of performing MBPT calculations using
the particular choice (4) for an effective Hamiltonian is
to reorganize the standard truncation scheme and adjust
the β parameter to match the low-scale MBPT expan-
sion. More precisely, we will take advantage of the refor-
mulation of the RSPT to express the GS energy and the
many-body state at NlLO as series of the form:

EN lLO
λ

E0
= 1 +

l+1∑
n=1

(
λ

fN lLO
λ

)n

ΓN lLO
n , (19a)

|ΨN lLO
0 ⟩ =

l+1∑
n=1

(
λ

fN lLO
λ

)n−1

ĜN lLO
n |Φ0⟩ , (19b)

where fN lLO
λ = 1+λγ1/a. In the following, we illustrate

the strategy in the first (l = 0), second (l = 1), and third
(l = 2) order, and the parameter a will now be denoted
al+1 to avoid confusion.

1. First order

In that case, the GS energy is given by the energy shift
(18) truncated at l = 0, that is:

ELO
λ

E0
= 1 + γ1

λ

fLO
λ

, (20)

3 The notation NlLO refer to the next-to-next-...-to-next lead-
ing order. For example, the next-to-leading order (NLO) cor-
responds to the second order in perturbation, the next-to-next-
to-leading-order (N2LO) corresponds to the third order in per-
turbation, etc.

where we can identify ΓLO
1 = γ1 using the fact that

⟨Φ0|λĥ|Φ0⟩ = γ1λE0. It remains the determination of
the high-scale parameter using (3). As above, this gives
ξ0 = 1 + a1.

2. Second order

Following the same strategy, we truncate (18) to l = 1.
We have first to determine:

⟨Φ0|λĥ · B̃2(β)|Φ0⟩
1 + λγ1/a2

=
1

β

⟨Φ0|λĥ · R̂0 · λĥ|Φ0⟩
(1 + λγ1/a2)2

=
γ2
β

(
λ

1 + λγ1/a2

)2

E0. (21)

Then, the GS energy at NLO reads:

ENLO
λ

E0
= 1 + γ1

λ

fNLO
λ

+
γ2
β

(
λ

fNLO
λ

)2

. (22)

a. Low-scale expansion Now, we determine the β-
parameter to match the low-scale expansion up to the
second order, i.e. such that:

ENLO
λ

E0
= 1 + γ1λ+ γ2λ

2 +O(λ3), (23)

leading to:

1

β
= 1 +

γ2
1

a2γ2
. (24)

b. High-scale constraint Finally, we fix the high-
scale parameter a2 using (3) leading to the quadratic
equation:

ξ0 = 1 + 2 a2 +
γ2
γ2
1

a22. (25)
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This quadratic equation admits two independent solu-
tions for a2. The choice of solutions to consider is dis-
cussed in the latter.

c. Many-body state Just above, we have fixed all the
parameters used in the method proposed by matching on
the low-scale expansion (2) and on the high-scale con-
straint (3). Thus, we are now able to express the many-
body state in that new formulation of the MBPT using
(18). To be more explicit, ΓNLO

n and ĜNLO
n appearing in

(19) are given by ΓNLO
1 = γ1, ĜNLO

1 = 1 and:

ΓNLO
2 =

[
1 +

γ2
1

a2γ2

]
γ2,

ĜNLO
2 =

[
1 +

γ2
1

a2γ2

]
R̂0 · ĥ.

3. Third order

In this part, we illustrate the truncation method that
we propose at the third order (l = 2) in perturbation.

For that, we use the flexibility to adjust the β parameter
a posteriori on the low-scale expansion and the property
that, as discussed before, the energy shift (17) is, in fact,
β-independent. At the second order in perturbation (see
above), only one β parameter is required to obtain the
proper low-scale expansion. But, in the third order, we
need two different β parameters to match the low-scale
expansion up to the third order. Here, the strategy con-
sists of including an additional parameter to (18) as:

∆Eλ(β) →
∆Eλ(β1) + ∆Eλ(β2)

2
. (26)

We note that this choice is arbitrary in the sense that
any weighted arithmetic mean of the form ∆E(β) →
r∆E(β1) + (1− r)∆E(β2) can be used, where 0 < r < 1
is a parameter to adjust. For simplicity and because the
strategy developed in this work implies to adjust only
three parameters at the third order in perturbation on
the low- and high-scale limits, we chose the arithmetic
mean r = 1/2. Then, making a truncation of (18) up to
l = 2, we have the following:

⟨Φ0|λĥ · B̃3(β)|Φ0⟩
1 + λγ1/a3

=
β − 1

β2

⟨Φ0|λĥ · R̂0 · λĥ|Φ0⟩
(1 + λγ1/a3)2

+
1

β2

⟨Φ0|λĥ · R̂0 · λŵ · R̂0 · λĥ|Φ0⟩
(1 + λγ1/a3)3

=
(β − 1)γ2

β2

(
λ

1 + λγ1/a3

)2

E0 +
γ3
β2

(
λ

1 + λγ1/a3

)3

E0, (27)

where we have moreover truncated the expression of
B̃3(β) up to the third order in power of λ (as in the stan-
dard RSPT formulation). Finally, using (26), the N2LO
GS energy is given by:

EN2LO
λ

E0
= 1 + γ1

λ

fN2LO
λ

+
γ2
2

[
2β1 − 1

β2
1

+
2β2 − 1

β2
2

](
λ

fN2LO
λ

)2

+
γ3
2

[
1

β2
1

+
1

β2
2

](
λ

fN2LO
λ

)3

. (28)

As before, the parameters {β1, β2} are to be deter-
mined in terms of {γ1, γ2, γ3} and a3 to match the low-
scale expansion up to the third order, and then the high-
scale parameter a3 can be determined by imposing the
high-scale constraint for the GS energy.

4. Avoiding the double counting of correlations

We can observe that our method does not overcount
the many-body correlations. This is due to the fact that
we impose the low-scale expansion up to a given order

in perturbation. Thus, even if many-body correlations
are included in an effective Hamiltonian and potentially
taken into account within the MBPT framework, the ad-
justment of the β-parameters in order to reproduce the
low-scale expansion (2) in the limit λ ≪ 1 avoid this even-
tual double-counting. To be more precise, if we reduce
our strategy to the RSPT, that is to say setting β = 1,
and keeping an effective Hamiltonian similar to (4), the
low-scale expansion (2) cannot be recovered in the limit
λ ≪ 1. Therefore, our strategy consists in mimic the in-
finite series (2) with effective parameters {γ̃n} for which
the first parameters match the physical parameters {γn}
up to the order m that is considered to truncate the
MBPT calculation, i.e. γ̃1 = γ1, . . . , γ̃m = γm, and
γ̃n ̸= γn for n > m.

C. Effective Field Theory interpretation of the
extended MBPT

Considering the new method proposed and described
above using a correlated effective Hamiltonian, a general
and comprehensive Effective Field Theory (EFT) expan-
sion emerges. Indeed, in the GS energy expansion (19)
obtained, λ plays the role of the low-scale and fN lLO

λ
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the role of the high-scale. This expansion is similar to
the low-scale expansion (2) except that the low-scale pa-
rameter λ is renormalized by the high-scale in-medium
function fN lLO

λ . The proposed method is a systematic
procedure to:

• get a better convergence of the result compared to
a standard MBPT approach, e.g. finite limit in the
strong coupling regime (except when fN lLO

λ = 0);

• include correlations in an effective way much BMF
correlations and even much beyond the correlations
accessible using the standard MBPT approach;

• allow the use of the MBPT systematically using an
effective correlated Hamiltonian (4);

• reorganize the MBPT expansion to be valid in the
low- and high-scale limit;

• remove automatically the double-counting of cor-
relations included in the effective Hamiltonian (4)
and resulting of the MBPT approach;

• obtain an EFT expansion of the observables in term
of (λ/fN lLO

λ )n where λ and fN lLO
λ play the role of

the low- and high-scales, respectively;

• have analytical, simple, and compact expressions
for the observable as a function of well-determined
fixed quantities, e.g. {γn} and ξ0, without fitting
procedure (eventually the used coefficients can be
provided by ab initio calculations or experiments).

But two problems remain:

(i) The polynomial equation similar to (25) admits l
different complex solutions for the determination of
the parameter al+1 defining the effective Hamilto-
nian (4).

(ii) The GS has an imaginary non-physical part due to
the fact that we allow a complex value for the al+1

parameter.

Before discussing the results for some applications of the
extended MBPT method developed and applied to phys-
ical systems, we give a simple argument and an expla-
nation to (i) make a pragmatic choice for the parameter
al+1 to use and (ii) remove the pathology and recover a
real GS energy.

1. Choice of the high-scale solution

The NlLO, the GS energy in the limit λ → ∞ is
given by a polynomial equation similar to (25). The
main purpose of the proposed method is to grasp the
high-scale correlations from the HF level. Thus, this
motivates the choice of the minimum solution, i.e. set
al+1 = min{|xl+1|}, where the set {xl+1} denotes the l

solutions of the high-scale polynomial equation similar
to (25), such that the main contribution to the energy in
the high-scale limit is given by the leading order4 of the
expansion (19).

2. Remove the imaginary part

The appearance of an imaginary part in the GS energy
comes from the resolution of the polynomial equation
similar to (25) having l + 1 distinct solutions. However,
the low-scale expansion of the GS energy (19) matches
the standard MBPT expansion up to the l+1 order and
the high-scale constraint (3). Consequently, we have the
following properties:

Im

(
EN lLO

λ

E0

)
= O(λl+2).

This flexibility allows the redefinition of ΓN lLO
l+1 to get

a real GS energy since this change does not affect the
systematic procedure requiring only the first l+1 order of
the low-scale expansion. Thus, this minimal subtraction
of the imaginary part consists of keeping the real part of
the GS energy.

IV. QUANTUM GASES CONTEXT:
APPLICATION TO ULTRACOLD ATOM

SYSTEMS

As in section II B, the correspondence for spin-
saturated dilute ultracold atom systems with the NlLO
GS energy is given by the high-scale constraint, i.e. the
Bertsch parameter ξ0 = 0.376, and the low-scale expan-
sion (2) where γ1 = 10kF /9π, γ2 = 4(11−2 ln 2)k2F /21π

2,
γ3 = 0.032k3F , and γ4 = 0.451k4F [46]. These results are
summarized in table I.

TABLE I. Low-scale coefficients and high-scale limit (Bertsch
parameter), for (askF ) > 0 and (askF ) < 0, of the ultracold
Fermi gas. The dashes mean that the coefficient is not defined.

(askF ) > 0 (askF ) < 0

γ1 kF /6π 10kF /9π
γ2 – 4k2

F (11− 2 ln 2)/21π2

γ3 – 0.032k3
F

ξ0 0.376 0.376

We show in figure 1 the GS energy of the spin-saturated
Fermi gas at NlLO, EN lLO given by (19), as a function
of (askF ). On the BCS side of the crossover (as < 0),

4 Valid in the case |al+1| < 1, but the same conclusion on this
choice occurs to minimize the correction of the next order.
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the results obtained with our method go much beyond
the standard MBPT approach and reproduce very well
the ab initio calculations from the weak to the strong
coupling regime without substantial improvement when
we increase the order of perturbation using the effec-
tive Hamiltonian (4). On the Bose-Einstein Condensate
(BEC) side of the crossover (as > 0), due to the appear-
ance of bound dimers in the gas, the GS energy of the
system (containing the binding energies of the dimers)
takes the following expansion [43, 47]:

E

E0
=

1

6π
(askF ) +

32

375
√
π5/10

(askF )
5/2 + · · · . (29)

This expansion does not exhibit a simple polynomial form
in (askF ) and, thus, the proposed method, in particular
the choice of the effective Hamiltonian (4), is not adapted
for such a low-scale expansion (except up to the first
order). That is why we do not discuss this case further.
For reference, the leading order is given in figure 1(c,d)
and shows a large error in the non-perturbative regime
(askF > 1).

V. NUCLEAR PHYSICS CONTEXT:
APPLICATION TO THE RICHARDSON

PAIRING HAMILTONIAN

We consider a quantum many-body system composed
of N doubly degenerate in spin σ = ↑, ↓ and equally
spaced single-particle levels n = 1, 2, . . . . The many-
body Hamiltonian expressed in the second quantization
formalism, with at most two-body interaction, is given
by the so-called Richardson Pairing Hamiltonian5 (RPH)
[50]:

ĤRPH = Ĥ0 + V̂

= e
∑
nσ

(n− 1)â†nσânσ − g

2

∑
nm

â†n↑â
†
n↓âm↓âm↑.

(30)

For simplicity and without loss of generality, we consider
e = 1. The coupling g corresponds to the pairing con-
tribution of the two-body interaction V̂ . Note that the
RPH can be rewritten as (in the total spin S = 0 channel
only):

ĤRPH = e
∑
nσ

(n− 1)â†nσânσ − g

2

∑
nm

P̂+
n P̂−

m , (31a)

in terms of the pair creation/annihilation operators de-
fined as:

P̂+
n = â†n↑â

†
n↓ and P̂−

m = âm↑âm↓. (31b)

5 This is a simplified version of the RPH: in a more realistic case,
e and g are not constants.

This Hamiltonian commutes with the product of the pair
creation and annihilation operators and thus corresponds
to a system with no broken pairs, i.e. the RPH link two-
particle states in spin-reversed states.

In the following, we consider a system with N = 4
and no broken pairs (total spin S = 0) in the GS. We
only consider Np = 8 single-particle states, that is, p = 4
levels. The schematic configurations of this model are
shown in figure 2.

TABLE II. Energy of the single-particle states for the RPH
discussed in the text labeled by the quantum number n and
the spin-projection on the quantification axis σ.

n σ Enσ

1 ±1/2 − g/2
2 ±1/2 e− g/2

3 ±1/2 2e
4 ±1/2 3e

Using table II and figure 2, we deduce that the Hamil-
tonian has the following matrix form:

ĤRPH = 2e


1 0 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 3 0 0
0 0 0 0 4 0
0 0 0 0 0 5

− g

2


2 1 1 1 1 0
1 2 1 1 0 1
1 1 2 0 1 1
1 1 0 2 1 1
1 0 1 1 2 1
0 1 1 1 1 2

 .

(32)

A. Exact GS energy

In figure 3, we show the GS energy as a function of g.
In the following, we introduce the reduced GS energy E
defined as:

E

E0
=

E

E0
+

3g

2
Θ(g), (33)

where E is the GS energy of the system and Θ is the
Heaviside step function. This definition of the reduced
GS energy allows for a finite limit in the high-scale limit,
that is, limg→±∞ E/E0 = 3, which gives the high-scale
constraint ξ0 = 3.

B. Hartree-Fock and MBPT solutions

1. Hartree-Fock

Starting in the single-particle basis |i⟩ = |niσi⟩ given
by table II (eigenvectors of Ĥ0), we define the single-
particle HF basis as:

|i⟩HF =
∑
j

Cij |j⟩ , (34)
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FIG. 1. GS energy of the spin-saturated Fermi gas ENlLO
λ discussed in section IV as a function of (askF ) [panels (a) for

as < 0 and (c) for as > 0] and (askF )
−1 [panels (b) for as < 0, and (d) for as > 0] obtained with (19) using the dilute Fermi

gas correspondence (see section IV) for l = 0, l = 1, and l = 2. E0 corresponds to the exact GS energy of the non-interacting
Fermi gas. For reference, using thin gray lines, the first, second, and third orders of MBPT for the dilute Fermi gas [46] are
shown, and, the ab initio calculations of [48, 49] are represented in each panel by black circles.

n=1
n=2
n=3
n=4

FIG. 2. Configurations (Slater determinants) of the RPH
discussed in the text with N = 4 and p = 4 (Np = 2p).
On the left is displayed the GS and zero-particle-zero-hole
excitations (0p−0h), the four central diagrams correspond to
the 2p− 2h excitations, and the right diagrams correspond to
the 4p− 4h excitations.

and then the HF equation reads (eigenvalues problem):∑
j

hHF
kj Cij = ϵHF

i Cik, (35a)

where the HF matrix is defined as:

hHF
ij = ⟨i|ĥ0|j⟩+

N∑
k=1

∑
pq

⟨ip|v̂|jq⟩ , (35b)

with ⟨i|ĥ0|j⟩ = eδij and:

⟨ip|v̂|jq⟩ = −g

2
(−1)σi+σjδninp

δnjnq

× (1− δσiσp
)(1− δσiσq

), (35c)

is antisymmetrized under the exchange of particles.
We can show that the solution to the HF equation is

given by Cij = δij and we deduce the HF GS energy:

EHF =

N∑
i=1

N∑
j=1

[
⟨i|ĥ0|j⟩ −

1

2
⟨ij|v̂|ij⟩

]
= 2e− g. (36)

We note that the HF GS energy is equal to the reference
energy obtained considering only the 0p− 0h excitation,
i.e. EHF = E0p−0h.

2. MBPT results

Calculations of the many-body perturbation theory
provide the low-scale expansion of the GS energy for the
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FIG. 3. GS energy of the RPH ENlLO
λ discussed in the text as a function of g [panels (a) for g < 0 and (c) for g > 0] and

g−1 [panels (b) for g < 0, and (d) for g > 0] obtained with (19) using the low-scale parameter correspondence of the model for
l = 0, l = 1, and l = 2. E0 corresponds to the reference energy of the GS. For reference, using thin gray lines, the first, second,
and third orders of MBPT are shown, and the exact result is represented in each panel by black circles.

pairing model discussed in this section, i.e. the coeffi-
cients {γn} appearing in (2) up to fifth order are given by:
γ1 = −1/2, γ2 = −7/48, γ3 = −1/24, γ4 = −77/27648,
γ5 = 5/864, etc. For the reduced GS energy (33), only
the first order is affected and γ1 = γ1 + 3Θ(g)/2 and
γn = γn where {γn} are the coefficients of the low-scale
expansion (2) for the reduced GS energy E. These results
are summarized in table III.

TABLE III. Low-scale coefficients and high-scale limit, for
g > 0 and g < 0, of the RPH model introduced in the text. In
parentheses, we give the values of the regularized coefficients
to remove divergences of the GS energy when it is suitable.

g > 0 g < 0

γ1 −1/2 (1) −1/2
γ2 −7/48 −7/48
γ3 −1/24 −1/24

ξ0 −∞ (3) 3

In practice, we perform the method proposed in this

paper for the reduced GS energy E using the low-scale
coefficients γn and the high-scale constraint ξ0 = 3, then
the energy is obtained simply using (33), i.e. EN lLO =

E
N lLO − 3gE0Θ(g)/2.
The final result for the GS energy as a function of

the coupling constant g is shown in figure 3. We ob-
serve that, even at leading order, the GS energy is repro-
duced in good approximation in a wide range of interac-
tion strengths. In particular, contrary to the standard
MBPT results that diverge for |g| > 1 (thin gray lines),
our approaches grasp most of the BMF correlations in
the strong coupling regime.

VI. CONDENSED MATTER PHYSICS
CONTEXT: APPLICATION TO THE HUBBARD

HAMILTONIAN

In this section, we apply our strategy developed above
for the description of a model that describes low-energy
physical properties of strongly correlated fermions navi-
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gating into a lattice, namely the Hubbard model.
The Hubbard model [51–53] stands as one of the sim-

plest and most frequently used effective models in the-
oretical condensed matter physics [54, 55]. Its purpose
is to capture the general properties of spin-1/2 electrons
moving through a lattice by hopping between neighbor-
ing sites and subject to a local two-body interaction with
strength U . In its second-quantized form, the correlated
tight-binding Hamiltonian is expressed as:

ĤHubbard = −t
∑

⟨i,j⟩,σ

(
ĉ†iσ ĉjσ + ĉ†jσ ĉiσ

)
+ U

∑
i

n̂i↑n̂i↓,

(37)

where t is the hopping integral, ĉ†iσ and ĉiσ are, respec-
tively, the creation and annihilation operators of electron
with spin σ =↑, ↓ on site i, the n̂iσ = ĉ†iσ ĉiσ is the oc-
cupation number operator, and U is the on-site nearest-
neighbor Coulomb repulsion of spin-up and spin-down
electrons occupying the same lattice site. We note that
in the positive U regime, the model received a consider-
able renewed interest in two-dimensional (2D) geometry
after P. W. Anderson’s proposal in connection to high-
Tc superconducting cuprates [56, 57]. Furthermore, the
one-dimensional (1D) Hubbard model [58] has previously
also been proposed as a minimal model to describe the
low-energy physical properties of 1D conductors [59] and
quasi-1D copper oxides compounds [60–62]. In the fol-
lowing, we will put t = 1 to set our unit of energy without
losing generality. Note that the summation appearing in
the kinetic term in (37) is done on the nearest neighbor
sites j for all sites i designed by ⟨i, j⟩.

For the sake of simplicity of the discussion and to be
able to compare our results with the exact solution, we
restrict the model to the so-called half-filled 1D Hub-
bard chain and to the half-filled 2D four-sites Hubbard
Hamiltonian for which exact formulas of the GS energy
from exact diagonalization can be found in the literature
[63, 65].

A. Application to the 1D Hubbard chain model

As mentioned above, we apply our strategy to the 1D
Hubbard chain model described by the Hubbard Hamil-
tonian (37) at half-filling and considering only nearest-
neighbor hopping amplitudes with a positive on-site re-
pulsion (U > 0).

The exact GS energy is then obtained using the Bethe
anzats and is given in [63]:

E

E0
= π

∫ ∞

0

dω

ω

J0(ω)J1(ω)

1 + exp((U/t)ω/2)
, (38)

where the Jn are the Bessel functions of the first kind.
This expression can then be expanded to the low-scale
limit U/t ≪ 1 leading to the low-scale coefficients of ex-
pansion (2) and presented in table IV [64]. Taking the

high-scale limit provides the high-scale parameter ξ0 = 0
for U/t > 0 and ξ0 = 2 for U/t < 0.

TABLE IV. Low-scale coefficients and high-scale limit, for
(U/t) > 0 and (U/t) < 0, of the 1D Hubbard chain model
introduced in the text.

(U/t) > 0 (U/t) < 0

γ1 −π/16 −π/16
γ2 7ζ(3)/64π2 7ζ(3)/64π2

γ3 0 0

ξ0 0 2

The results of the strategy developed in this article
and applied in the previous sections, are given in figure
4. Again, we observe a rather good approximation of
the GS energy along the wide range of (U/t) values. We
mention that the strategy is not applicable at the third
order because of the vanishing of the third order term
in the low-scale expansion (γ3 = 0). However, we argue
that careful decomposition of the fourth-order MBPT ex-
pansion will lead to a substantial improvement. We stick
here to the third order to be consistent with the level of
approximation employed in the discussion above.

B. Application to the four-sites 2D Hubbard model

Finally, we follow our strategy for the four-sites 2D
Hubbard model (square 2× 2 cluster) that also takes the
prerequisites decomposition (37) for which the exact GS
energy can be found in [65] and takes the expression:

E

E0
= −U

4t
+

1

2

√
16 + (U/t)2

3
cos

(
θ

3

)
, (39)

where:

θ = arccos

(
4U

t

(
3

16 + (U/t)2

)3/2
)
,

leading to the low- and high- scale parameters given in
table V. The only subtlety is that, in this case, we have

TABLE V. Low-scale coefficients and high-scale limit, for
(U/t) > 0 and (U/t) < 0, of the four-sites 2D Hubbard model
introduced in the text. In parentheses, we give the values of
the regularized coefficients to remove divergences of the GS
energy when it is suitable.

(U/t) > 0 (U/t) < 0

γ1 −3/16 −3/16 (1/2)
γ2 13/512 13/512
γ3 −3/1024 −3/1024

ξ0 0 ∞ (0)

a linear divergence of the GS energy for (U/t) < 0 that
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FIG. 4. GS energy ENlLO
λ discussed in the text for the 1D Hubbard chain model as a function of U/t [panels (a) for U/t < 0

and (c) for U/t > 0] and (U/t)−1 [panels (b) for U/t < 0 and (d) for U/t > 0] obtained with (19) using the low-scale parameter
correspondence of the model for l = 0 and l = 1. E0 corresponds to the reference GS energy. For reference, using thin gray
lines, the first and second orders of MBPT are shown, and the exact result is represented in each panel by the black circles.

can be treated as the one appearing in the study of the
Richardson Pairing Hamiltonian in section V. The results
are compared to the exact calculations and MBPT results
in figure 5 for the first, second, and third order expansion.
We observe that the GS energy is reproduced accurately
at the third order in perturbation. Also, convergence
according to the level of approximation is obtained, as
expected by the formal aspect of our expansion.

VII. CONCLUSION: DISCUSSION AND
OUTLOOK

In this work, we emphasized the possibility of exhibit-
ing free parameters in the MBPT expansion that allow
for the use of effective Hamiltonians that contain BMF
correlations. In particular, we show that the problem of
double counting of BMF correlations, arising from the
use of many-body techniques on a renormalized theory,
can be automatically solved due to the flexibility of the
expansion without fitting procedure or further adjust-

ments. The main advantage of the strategy used in this
paper is twofold:

• A systematic convergence of the results, faster than
the standard MBPT, is observed at each order of
truncation without inducing an increasing compu-
tational complexity.

• An explicit parameterization of the GS energy (and
of the many-body states) is obtained in terms of the
MBPT amplitude and high-scale limit of the bare
theory, that is to say, a finite and restricted num-
ber of physical constants, e.g. {γn}, accessible from
standard many-body theory or analysis of experi-
mental data.

We can mention some restrictions since the applicability
of our strategy depends strongly on the state-of-the-art
standard MBPT, ab initio methods, and experiments to
provide the low-scale constants and the high-scale limit
of the bare Hamiltonian.

A compelling aspect resides in the fact that the for-
malism is independent of the parameterization of the
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FIG. 5. GS energy ENlLO
λ discussed in the text for the four-sites Hubbard model as a function of U/t [panels (a) for U/t < 0,

and (c) for U/t > 0] and (U/t)−1 [panels (b) for U/t < 0, and (d) for U/t > 0] obtained with (19) using the low-scale parameter
correspondence of the model for l = 0, l = 1, and l = 2. E0 corresponds to the reference GS energy. For reference, using thin
gray lines, the first, second, and third orders of the MBPT are shown, and the exact result is represented in each panel by the
black circles.

correlated effective Hamiltonian chosen. As shown in
this work, our extended MBPT is valid for various cor-
related systems, from ultracold atoms and finite nuclei,
to condensed matter systems described by the Hubbard
Hamiltonian. The simple cases for which we tested our
strategy have highlighted some restrictions that require
further investigations to grasp most of the complexity of
realistic models [66–76]. We contend that our approach
to characterize quantum many-body problems possesses
a degree of universality, as it allows the integration of pa-
rameters that can be adjusted to match specific physical
properties.

This novel approach could finally be a valuable guide
providing new insights and ideas to predict the collective
behavior of quantum many-body systems, e.g. via the
linear response theory [77–80] that requires the knowl-
edge of the ground state. Another aspect of the new
method developed in this paper is the possibility of de-
signing a new parameterization of BMF DFT that ex-
tends the domain of applicability for a wide range of sys-

tems. This is also a promising way to link DFT and
EFT [39, 81]. Finally, due to the link between MBPT
and Coupled-Cluster theory, it can be interesting to in-
vestigate possibilities to apply our method in such a for-
malism.
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