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Néel ordered antiferromagnets exhibit two-mode squeezing such that their ground state is a non-
classical superposition of magnon Fock states. Here we theoretically demonstrate that antiferro-
magnets can couple to spin qubits via direct dispersive interaction stemming from, e.g., interfacial
exchange. We demonstrate that this kind of coupling induces a magnon number dependent level
splitting of the excited state resulting in multiple system excitation energies. This series of level
splittings manifests itself as nontrivial excitation peaks in qubit spectroscopy thereby revealing
the underlying nonclassical magnon composition of the antiferromagnetic quantum state. By ap-
propriately choosing the drive or excitation energy, the magnonic state can be controlled via the
qubit, suggesting that Fock states of magnon pairs can be generated deterministically. This enables
achieving states useful for quantum computing and quantum information science protocols.

I. INTRODUCTION

Antiferromagnets (AFMs) are materials with magnetic
order and a vanishing net macroscopic magnetization [1].
Due to their robustness against magnetic fields, their fast
THz dynamics and phenomena such as exchange bias
and spin-orbit effects, AFMs have been investigated espe-
cially for their potential in spintronics [2–7]. The classical
AFM ground state can be described by a Néel ordered
state comprising two sublattices of oppositely oriented
spins [8]. Coherent excitations on the magnetic order
generate a collective precession of the magnetic moments
around their equilibrium position referred to as spin
waves or magnons [4, 9]. Being two-sublattice magnets,
easy-axis collinear AFMs host two kinds of spin waves
that are distinguished by chirality [4]. While the semi-
classical spin wave description is successful in explaining
many phenomena [4], it misses important physics [10–12]
as the true quantum ground state of the ordered AFM
is superposition of states with an equal number of spin-
up and spin-down magnons [10]. Therefore, the AFM
ground state is nonclassical and harbors composite exci-
tations capable of generating states useful for quantum
information protocols [10, 13–17]. It is therefore impor-
tant to establish protocols to detect and quantify the
quantum properties of these states.

If two observables are non-commuting, their quantum
fluctuations obey Heisenberg’s uncertainty principle [18].
Squeezing is a phenomenon where the quantum fluctua-
tions of one observable are reduced beyond the standard
quantum limit at the expense of the other’s [19, 20]. In
quantum optics, squeezed states of light have been ex-
ploited in feats such as the detection of gravitational
waves due to reduced quantum noise [21]. While squeezed
states of light are nonquilibrium, magnets exhibit squeez-
ing in equilibrium suggesting to be a useful platform for
quantum computing purposes [10, 12, 22–24]. If a ferro-
magnet possesses anisotropy, the ground state fluctuation
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of the total spin Sx and Sy components are squeezed,
adjusting to the energy cost dictated by the magnet’s
anisotropy. Considering the spatially homogeneous com-
ponent corresponding to wavevector k = 0, the ferromag-
netic ground state becomes a one-mode squeezed-magnon
vacuum which is composed of even magnon number
states making the ground state a nonclassical superposi-
tion [20, 22]. While ferromagnets exhibit squeezing only
in the presence of anisotropies, AFMs display (typically
large) squeezing as an intrinsic property due to strong
exchange interaction between the sublattices [10, 25]. As
a consequence, the fluctuations of the total spin of the
two sublattices become quantum correlated, such that
the AFM exhibits two-mode squeezing of the two sublat-
tice modes. As a result, the ground state is a two-mode
squeezed vacuum – a superposition of entangled pairs of
spin-up and spin-down sublattice modes [10]. Ferromag-
nets also exhibit two-mode squeezing between the +k
and −k magnon modes [22]. Two-mode squeezed states
exhibit Bell nonlocality [26, 27], making them useful for
manipulation of quantum information and study of fun-
damental principles of quantum mechanics [26, 28, 29].
While there have been experiments successfully realizing
two-mode spin squeezing with coherent drives [10, 20, 30–
32], generating squeezed magnon Fock states poses a big-
ger challenge. This, in part, motivates the present study
to generate two-mode squeezed states in AFMs and the
design of experiments to study their quantum properties.

The detection of AFM structure is challenging due
to insensitivity to magnetic fields and makes investi-
gating the quantum nature of AFMs an experimental
challenge [5, 33]. A recently suggested theoretical pro-
tocol [34] finds that the two-mode magnon entangle-
ment exhibited by AFMs can be detected via modula-
tion of Rabi oscillations in a transmon qubit. While
the number state resolution of nonequilibrium states has
been demonstrated experimentally for photons [35–37]
and magnons [38], a recent theoretical proposal sug-
gests that the equilibrium magnon composition of a fer-
romagnetic ground state [22] can also be resolved via a
qubit [39]. This proposal is based on a unique direct dis-
persive magnon-qubit coupling stemming from, e.g., in-
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terfacial exchange interaction [40]. The coupling induces
a magnon number dependent excitation energy of the
qubit, enabling to generate magnon number states via
controlled drive of the qubit and revealing the ground
state composition related to squeezing via qubit spec-
troscopy. Since AFMs potentially also offer interfacial
exchange interaction [41], we are motivated to examine
control and probe of the nonclassical magnon states in
an AFM via a spin qubit. This qubit-based approach is
complementary to the recent suggestions [42, 43] of em-
ploying light for probing the squeezed nature of magnetic
states and excitations.

Here, we investigate a two-sublattice AFM. Its quan-
tum ground state, a two-mode squeezed magnon vacuum,
is a superposition of states with an equal number of spin-
up and spin-down magnons [Fig. 1(a)] [10]. We theoret-
ically demonstrate that the AFM can be coupled to a
spin qubit via direct dispersive interaction [Fig. 1(b)] [39]
and that the ground state of the coupled system is a su-
perposition of excited states with an equal number of
spin-up and spin-down squeezed-magnons. These levels
are non-degenerate such that there are multiple magnon-
dependent qubit excitation energies, allowing to control
the magnonic state and probe the magnon composition
of the AFM ground state via the qubit. While the large
frequency of AFM magnons makes the probe via a qubit
difficult, we find that excitation probabilities under the
qubit drive are exponentially enhanced via the squeez-
ing present in the AFM [17, 25, 44–46]. We expect this
squeezing-mediated enhancement to be strong due to the
large squeezing present in AFMs and therefore prob-
ing the AFM ground state easier to achieve. We show
that the direct dispersive coupling stems from interfa-
cial spin exchange interaction [40] and that the structure
of the AFM interface determines the coupling strength,
i.e. if the interface is compensated or uncompensated
[Fig. 1(c)]. Our findings suggest that the qubit probe
and control only shows nontrivial effects if the AFM in-
terface is uncompensated.

We structure the paper as follows: In Sec. II we develop
and analyze the bosonic model for an AFM coupled to a
spin qubit. In Sec. III we turn our attention to realistic
systems and derive the bosonic Hamiltonian for hematite
and the direct dispersive coupling from a spin model.
Finally, we discuss and conclude our paper in Secs. IV
and V.

II. ANTIFERROMAGNETIC MAGNONS
DISPERSIVELY COUPLED TO A QUBIT

In this section, we analyse the quantum model of a two-
sublattice AFM coupled to a spin qubit via direct disper-
sive interaction [39]. We discuss the uncoupled AFM and
introduce useful notation and functions. We then deter-
mine the eigenmodes and eigenenergies of the coupled
system via projection onto the qubit ground (|g⟩) and
excited (|e⟩) states. The resulting reduced Hamiltonians

FIG. 1. Schematic depiction of (a) two-mode squeezed
magnon vacuum (b) magnon-qubit interaction and (c) inter-
faces of the antiferromagnet. (a) The two-mode squeeze op-

erator Ŝ2(r) applied to the Néel ordered state |⟩ is a superpo-
sition of states with equal number of delocalized spin flips on
the down-spin (blue) and up-spin (red) sublattices [10]. (b)
The spin qubit σ̂z (green) couples to the antiferromagnetic

sublattice (spin flip) magnons â and b̂ via direct dispersive

interaction [39] χaâ
†â − χbb̂

†b̂ (orange). The eigenmodes of

the antiferromagnet are two-mode squeezed-magnons α̂ and β̂
(purple). (c) A compensated interface consists of equal num-
ber of up and down spins corresponding to equal direct disper-
sive coupling strength χa = χb (left). In a completely uncom-
pensated interface, χa is maximized while χb = 0 (right) [40].

reveal the system ground state and a set of excited states.
Finally, we discuss probe and control of the system state
via controlled drive of the qubit |g⟩ → |e⟩.

A. Uncoupled antiferromagnet

We consider an AFM with Heisenberg exchange and
Dzyaloshinskii–Moriya interaction between neighboring
spins Ŝi and Ŝj , easy-axis anisotropy in ẑ-direction
and an applied magnetic field along the easy-axis. In
Sec. III A, we present the corresponding full spin Hamil-
tonian. Here, starting from Néel ordering, we define two
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sublattices: Sublattice A is the sublattice of all spins
pointing along −ẑ and sublattice B is the sublattice of
all spins pointing along +ẑ [10, 47, 48] [see Fig. 1(a)]. We

map spin operators Ŝi and Ŝj onto boson operators âi
and b̂j via Holstein-Primakoff transformations [49] and
switch to Fourier space [see Eqs. (34)–(39) in Sec. III A
for details]. Considering a small magnet, we only take the
uniform k = 0 mode into account [17]. We define bosonic

excitations on the two sublattices via Ŝ+
i∈A ∝ â†k=0 and

Ŝ−
j∈B ∝ b̂†k=0 interpreting them as delocalized spin flips

on sublattice A and B respectively [see Fig. 1(a)]. We
drop the index k = 0 and refer to them as spin-up (â)

and spin-down (b̂) sublattice-magnons. We obtain the
following Hamiltonian [10, 47, 48]

ĤAFM = Aâ†â+Bb̂†b̂+ C∗âb̂+ Câ†b̂†, (1)

where the parameters A and B are evaluated to be real
from the spin model. The parameter C can be com-
plex and quantifies the exchange between the two sub-
lattices [see Sec. IIIA for the full derivation]. Our goal

is to diagonalize the Hamiltonian ĤAFM [Eq. (1)] to un-
derstand the eigenmodes of the AFM and its quantum
ground state.

In the following, it will be convenient to define the
functions

E (x, y) =

√
(x+ y)

2
/4− |C|2 (2)

∆ (x, y) = (x− y) /2, (3)

U (x, y) =
1√
2

√
x+ y

2E (x, y)
+ 1, (4)

V (x, y) =
eiϕ√
2

√
x+ y

2E (x, y)
− 1, (5)

with the phase eiϕ = C/ |C|. We diagonalize the Hamil-

tonian ĤAFM [Eq. (1)] via the Bogoliubov transforma-

tions [48, 50] α̂ = uâ + vb̂† and β̂ = ub̂ + vâ†, where
the Bogoliubov coefficients are given by u = U (A,B)
and v = V (A,B) [Eqs. (4) and (5)]. We obtain the di-

agonalized Hamiltonian ĤAFM = ωαα̂
†α̂ + ωβ β̂

†β̂ + E0

with the eigenfrequencies ωα/β and a zero-point energy
E0 = (ωα + ωβ −A−B) /2. The eigenfrequencies ex-
plicitly read

ωα = E (A,B) + ∆ (A,B) , (6)

ωβ = E (A,B)−∆(A,B) , (7)

where we used the functions E (x, y) and ∆ (x, y) [Eqs. (2)
and (3)]. It is convenient to denote the average of the
eigenfrequencies as ε = (ωα + ωβ) /2 which corresponds
to the AFM resonance without an applied magnetic field.

The eigenmodes (α̂ and β̂) are related to the sublattice-

magnons (â and b̂) via the two-mode squeeze transforma-

tions α̂ = Ŝ2(ξ) âŜ
†
2 (ξ) and β̂ = Ŝ2(ξ) b̂Ŝ

†
2 (ξ) [10, 20, 51].

The two-mode squeeze operator Ŝ2(ξ) is defined by [20,

51, 52]

Ŝ2(ξ) = exp
(
ξ∗âb̂− ξâ†b̂†

)
, (8)

with the two-mode squeeze factor ξ = reiϕ. Its absolute
value is given by

tanh(r) = |V (A,B)| /U (A,B) , (9)

and the phase ϕ is the same as in Eq. (5). Note that per
our definition, U (A,B) [Eq. (4)] is real and positive, such
that r [Eq. (9)] is real and positive as well. We refer to
the AFM eigenexcitations as spin-up (α̂) and spin-down

(β̂) two-mode squeezed-magnons (TMSMs).

We denote the eigenstates of ĤAFM [Eq. (1)] by
|nα, nβ⟩sq which is a TMSM Fock state with nα spin-up

and nβ spin-down TMSM excitations. The AFM ground
state is the TMSM vacuum denoted by |0, 0⟩sq [10]. The
TMSM vacuum can be obtained from the sublattice-
magnon vacuum |0, 0⟩sub (absence of spin flips) via

|0, 0⟩sq = Ŝ2(ξ) |0, 0⟩sub. Denoting |na, nb⟩sub as a
Fock state with na spin-up and nb spin-down sublattice-
magnons, our TMSM vacuum can be expanded as [10,
20, 51]

|0, 0⟩sq =
∑
n

[
−eiϕ tanh(r)

]n
cosh(r)

|n, n⟩sub . (10)

The AFM ground state is therefore a superposition of
states with equal number of delocalized spin flips on both
sublattices [see Fig. 1(a)]. Due to Heisenberg uncertainty
relation [53], the total spin on sublattice A and B fluctu-
ate. Because of the strong exchange interaction between
the sublattices, these fluctuations are quantum correlated
such that the ground state exhibits squeezed quantum
fluctuations [10, 54] [see Fig. 2(a)].

B. Eigenmodes of the coupled system

We consider an AFM as discussed in Sec. II A, de-
scribed by Hamiltonian ĤAFM [Eq. (1)], and couple it
to a spin qubit σ̂z. As depicted in Fig. 1(b) and (c), the
qubit couples to the spins in the antiferromagnetic inter-
face via spin exchange interaction ∝ Ŝ · σ̂. As detailed
in Sec. III B, the dominating contribution comes from
the z-component of the interfacial exchange if the bare
AFM eigenfrequencies ωα and ωβ [Eqs. (6) and (7)] are
far detuned from the bare qubit level splitting ωq. From
this, we obtain a direct dispersive coupling between the

spin qubit and sublattice-magnons â and b̂ and find that
the coupling strength depends on the size of the mag-
net and the structure of the interface. Assuming a large
detuning between AFM and spin qubit, we neglect coher-
ent exchange [17, 51]. As demonstrated in Sec. III B, we
obtain the following Hamiltonian describing the coupled
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FIG. 2. Schemetic depiction of (a) quantum fluctuations of the two-mode squeezed magnon vacuum (b) energy levels of the
ground state and the first 4 excited states and (c) qubit spectroscopy protocol. (a) We depict the phase space of SAx + SBx

and SAy − SBy , corresponding to to the sum of x -and difference of y-components of the total spin on sublattice A and B and

compare the quantum fluctuation of the two-mode squeezed magnon vacuum |0, 0⟩sq = Ŝ2 |0, 0⟩sub with an elliptical shape (red)

to the isotropic quantum fluctuations of the sublattice-magnon vacuum |0, 0⟩sub (grey) [54]. (b) We depict the two subspaces
resulting from projection onto the qubit states |g⟩ and |e⟩, with squeezing rg (green) and re (blue). The ground state |0, 0⟩gsq
can be excited into states with an equal number of spin-up and spin-down two-mode squeezed magnons |n, n⟩esq by driving

the qubit with frequency ωd = ωn [Eq. (29)]. (c) We depict a lossy qubit that is driven by a monochromatic microwave drive
with frequency ωd. The qubit evolves under the drive until a steady state is reached. Sweeping over drive frequency ωd and
measuring steady state qubit excitation for each ωd results in the qubit spectrum with excitation peaks at frequencies ω0,
ω1, . . . [Eq. (29)].

magnet-qubit system

Ĥ0 = Aâ†â+Bb̂†b̂+ C∗âb̂+ Câ†b̂† +
ωq

2
σ̂z

+ χaâ
†âσ̂z − χbb̂

†b̂σ̂z, (11)

where the parameters χa and χb quantify the direct dis-
persive coupling strength and are assumed to be real and
positive for simplicity.

We start to diagonalize the Hamiltonian Ĥ0 [Eq. (11)]
by projecting onto the qubit ground (|g⟩) and excited

(|e⟩) states. We find that the reduced Hamiltonian Ĥg =

⟨g| Ĥ0 |g⟩ is given by

Ĥg =(A− χa) â
†â+ (B + χb) b̂

†b̂

+ C∗âb̂+ Câ†b̂† − ωq

2
. (12)

The excited state projection Ĥe = ⟨e| Ĥ0 |e⟩ can be ob-

tained from the expression for Ĥg [Eq. (12)] upon sub-
stitutions −χa → +χa, +χb → −χb and −ωq → +ωq.

We diagonalize the reduced Hamiltonians Ĥg and

Ĥe [Eq. (12)] via the following Bogoliubov transforma-
tions [50],

α̂g/e = ug/eâ+ vg/eb̂
†, (13)

β̂g/e = ug/eb̂+ vg/eâ
†, (14)

with Bogoliubov coefficients

ug = U (A− χa, B + χb) , (15)

vg = V (A− χa, B + χb) , (16)

ue = U (A+ χa, B − χb) , (17)

ve = V (A+ χa, B − χb) . (18)

Note that we use the labels g and e to denote the state
of the qubit. Applying the Bogoliubov transformations
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[Eqs. (13) and (14)], we obtain the following diagonalized
Hamiltonians

Ĥg =ωg
αα̂

†
gα̂g + ωg

β β̂
†
gβ̂g

+
1

2

(
ωg
α + ωg

β −A−B + χa − χb − ωq

)
, (19)

Ĥe =ω
e
αα̂

†
eα̂e + ωe

β β̂
†
e β̂e

+
1

2

(
ωe
α + ωe

β −A−B − χa + χb + ωq

)
, (20)

with eigenfrequencies

ωg
α = E (A− χa, B + χb) + ∆ (A− χa, B + χb) , (21)

ωg
β = E (A− χa, B + χb)−∆(A− χa, B + χb) , (22)

ωe
α = E (A+ χa, B − χb) + ∆ (A+ χa, B − χb) , (23)

ωe
β = E (A+ χa, B − χb)−∆(A+ χa, B − χb) . (24)

For later, it will be convenient to define the average fre-

quencies εg/e =
(
ω
g/e
α + ω

g/e
β

)
/2.

Similar to α̂ and β̂ discussed in Sec. IIA, the eigen-

modes α̂g/e and β̂g/e [Eqs. (13) and (14)] are spin-up and
spin-down TMSM. We obtain that their squeeze factors
are given by ξg/e = rg/ee

iϕ, having the same phase ϕ as
ξ for the uncoupled AFM in Sec. IIA. We find that their
respective absolute values rg/e are given by the relations

tanh
(
rg/e

)
=

∣∣vg/e∣∣
ug/e

, (25)

where we used Bogoliubov coefficients [Eqs. (15)–
(18)]. All of the Bogoliubov coefficients ug/e and vg/e
[Eqs. (15)–(18)] depend explicitly on the difference be-
tween the direct dispersive coupling strengths (χa − χb).
If the direct dispersive coupling strengths are the same
χa = χb then ug = ue = u and vv = ve = v. This
follows from the invariances U (x+ λ, y − λ) = U (x, y)
and V (x+ λ, y − λ) = V (x, y) [Eqs. (4) and (5)]. In-
serting the relations (A + B) = (ωα + ωβ) cosh(2r) and
|C| = (ωα + ωβ) |sinh(2r)| /2 [obtained from Eqs. (6),
(7) and (9)], one can show that ug/e and

∣∣vg/e∣∣
[Eqs. (15)–(18)] only depend on squeezing r and the ratio
(χa − χb) / (ωα + ωβ). Therefore, rg and re [Eq. (25)] are
functions of r and (χa − χb) / (ωα + ωβ) and have differ-
ent values if the direct dispersive coupling strengths fulfil
χa ̸= χb.

We denote α̂g and β̂g as ground state TMSM with
squeeze factor ξg and correspondingly the excited state

TMSM α̂e and β̂e with ξe. We conclude that the eigen-
states of Ĥg and Ĥe [Eqs. (19) and (20)] are given by

TMSM Fock states. We denote them by
∣∣∣ngα, ngβ〉g

sq

and
∣∣∣neα, neβ〉e

sq
, where ngα(β) is the number of spin-up

(spin-down) ground state TMSM excitations and neα(β)
the number of spin-up (spin-down) excited state TMSM
excitations. From this, one can see that the system

FIG. 3. Plot of (a) factors rg, re and reff and (b) contrast
vs. direct dispersive coupling in units of magnon frequency
(χa − χb)/(ωα + ωβ). (a) Ground state squeezing rg (solid
line), excited state squeezing re (dashed) and the difference
reff = rg − re (dashed-dotted) [Eq. (25)] for a bare magnon
squeezing of r = 1 (blue) and r = 1.5 (red). (b) Contrast c
[Eq. (30)] for several values of r.

ground state is given by the ground state TMSM vac-
uum |0, 0⟩gsq. Finally, we remark that the stability
of the ground state and excited state TMSM requires
2 |C| ≤ min [A+B − (χa − χb) , A+B + (χa − χb)] and

ω
g/e
α and ω

g/e
β have to remain positive. As a consequence

the Bogoliubov coefficients ug/e [Eqs. (15) and (17)] are
real and positive, such that rg/e [Eq. (25)] are real and
positive as well.

C. Quantum state-dependent excitation
frequencies

Our goal is to detect the equilibrium superposition that
comprises the nonclassical AFM ground state [Eq. (10)]
via qubit spectroscopy as depicted in Fig 2(c). In other
works such as [35, 37, 55], a qubit is coupled dispersively
to the eigenmode of a quantum system hosting bosons,
like a cavity or a magnet, while a nonequilibrium state
is injected into the quantum system. The dispersive cou-
pling induces boson-number-dependent frequency shifts
in the qubit, matching the boson number n conserv-
ing transitions |g⟩ |n⟩ → |e⟩ |n⟩. In the qubit spectrum,
the injected state reveals itself as excitation peaks at
the shifted qubit frequency representing each eigenmode
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number state contribution to the superposition compris-
ing the injected state. Here, the idea is that the qubit
couples dispersively to noneigenmodes – the sublattice

magnons â and b̂ – via
(
χaâ

†â− χbb̂
†b̂
)
σ̂z [Eq. (11)] in

order to resolve the noneigenmode composition of the
AFM ground state. As shown for ferromagnets [39],
the dispersive coupling to the noneigenmode leads to a
eigenmode-number-dependent frequency shift in the sys-
tem resonance frequencies. Qubit excitation |g⟩ → |e⟩ is
not eigenmode-number-conserving [see Fig. 2(b)]. In this
procedure, the qubit is driven by a weak monochromatic
drive, reading out the qubit excitation in the steady state
under the drive. This measurement is performed for a
range of frequencies in order to take the qubit spectrum
[Fig. 2(c)]. If squeezing is present in the magnet, the
qubit spectrum contains nontrivial peaks [39]. In the fol-
lowing, we demonstrate theoretically that this protocol
can also be used for AFMs and predict under which con-
ditions nontrivial peaks arise.

In Sec. II B, we theoretically demonstrate that the
ground state of Ĥ0 [Eq. (11)] is the ground state TMSM
vacuum |0, 0⟩gsq. Our goal is to find out into which states

the ground state |0, 0⟩gsq can be excited by driving the

qubit |g⟩ → |e⟩ with a monochromatic microwave drive.
We model the contribution of the qubit drive to the
Hamiltonian via Ĥd = Ωd cos(ωd) (σ̂+ + σ̂−) where Ωd

denotes the drive amplitude or Rabi frequency and ωd

the drive frequency. The Hamiltonian describing the full
driven system now reads Ĥfull = Ĥ0 + Ĥd.
As discussed in Sec. II B, there are two types of two-

mode squeezing if direct dispersive coupling strengths
have different values χa ̸= χb. If the qubit is in the
ground state |g⟩ (|e⟩) the two-mode squeezing is ξg(ξe)
[see Eq. (25) and the schematic in Fig. 2(b)]. As a conse-
quence, there exist two subspaces with a set of Fock states
each, namely the ground state (excited sate) TMSM Fock

states

{∣∣∣ng(e)α , n
g(e)
β

〉g(e)

sq

}
. As demonstrated in the ap-

pendix, the vacuum states |0, 0⟩gsq and |0, 0⟩esq are con-

nected by a two-mode squeeze operation [Eq. (8)] via

|0, 0⟩gsq = Ŝ2 (ξeff) |0, 0⟩esq. Here, the factor ξeff denotes

the relative squeezing between the vacuum states |0, 0⟩gsq
and |0, 0⟩esq. We find that it reads ξeff = reffe

iϕ with
the absolute value given by reff = rg − re. Choos-
ing the convention χa > χb results in rg > re, such
that the difference between the absolute values of the
squeeze factors is positive reff > 0. For small |χa − χb| ≪
min[

∣∣2ε2/(A+B)
∣∣ , ∣∣4ε2/(A+B + 2ε)

∣∣] this parameter
becomes approximately

reff = sinh(2r)
χa − χb

ωα + ωβ
, (26)

and is an odd function of χa − χb. In Fig. 3(a) we plot
the full expression of reff = rg − re [Eq. 25] as a function
of (χa − χb) / (ωα + ωβ) comparing it with rg and re.
Here we note, that the relatively simple relation

|0, 0⟩gsq = Ŝ2 (ξeff) |0, 0⟩esq is a result of the fact that

the phase ϕ is the same for ξg and ξe which simpli-
fies the Baker-Campbell-Hausdorff formula [39, 56]. In
Sec. IIA, we discuss that the vacuum state of the un-
coupled AFM can be expanded in the sublattice-magnon
basis [10, 20, 51], as presented in Eq. (10). We find that
a similar expansion of the ground state TMSM vacuum
|0, 0⟩gsq is possible in terms of excited state TMSM Fock

states
∣∣∣neα, neβ〉e

sq
, following from the relation |0, 0⟩gsq =

Ŝ2 (ξeff) |0, 0⟩esq. We obtain the following expression

|0, 0⟩gsq =
∑
n

cn |n, n⟩esq , (27)

with the factors

cn =

[
−eiϕ tanh(reff)

]n
cosh(reff)

. (28)

If reff = 0 then cn = 0 for n ≥ 1, trivializing the super-
position [Eq. (27)] into |0, 0⟩gsq = |0, 0⟩esq. In conclusion,
a nontrivial superposition will only occur if χa ̸= χb is
fulfilled.
As one can see from Eq. (27), there is a nonzero over-

lap between the system ground state |0, 0⟩gsq and the
excited state TMSM Fock states with an equal num-
ber of spin-up and spin-down magnons |n, n⟩esq, given

by cn = e
sq⟨n, n|0, 0⟩

g
sq [Eq. (28)]. This allows transi-

tions |0, 0⟩gsq → |n, n⟩esq from the ground state into an

excited state, if the qubit is driven |g⟩ → |e⟩ and the
drive frequency ωd is matching the energy difference be-
tween the states |0, 0⟩gsq and |n, n⟩esq [see the schematic in

Fig. 2(b)]. We denote the energy difference between the
states |0, 0⟩gsq and |n, n⟩esq as ωn and determine its value

via ωn = e
sq⟨n, n| Ĥe |n, n⟩esq− g

sq⟨0, 0| Ĥg |0, 0⟩gsq with Ĥg/e

[Eqs. (19) and (20)]. We obtain the expression

ωn = 2nεe + (εe − εg)− (χa − χb) + ωq, (29)

where we used 2εg/e = ω
g/e
α + ω

g/e
β . If the resonance

condition ωd = ωn is fulfilled, the transition |0, 0⟩gsq →
|n, n⟩esq occurs with probability pn = |cn|2 [Eq. (28)], al-

lowing to generate TMSM Fock states |n, n⟩esq. Since

tanh(reff) < 1, the probabilities pn are decreasing with
increasing n. If the qubit is driven continuously at
ωd = ωn, the qubit excitation reaches a steady state
⟨σ̂+σ̂−⟩ss which is proportional to pn. Sweeping over the
qubit frequency ωd therefore results in peaks at ωn whose
heights are proportional to the corresponding transition
probability pn [see schematic in Fig. (2)(c)]. We refer to
the described procedure as qubit spectroscopy [35, 37, 39]
and conclude that the superposition [Eq. (27)] reveals it-
self as nontrivial excitation peaks at transition frequen-
cies ω0, ω1, . . . [Eq. (29)]. To quantify the visibility of the

first nontrivial peak, we define contrast as c = |c1|2 / |c0|2
(with factors cn [Eq. (28)]) which reads explicitly

c = tanh(reff)
2
. (30)
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We plot contrast [Eq. (30)] against (χa − χb) / (ωα + ωβ)
for several values of squeezing r in Fig. 3(b). For small
|χa − χb| ≪ min[

∣∣2ε2/(A+B)
∣∣ , ∣∣4ε2/(A+B + 2ε)

∣∣],
the contrast [Eq. (30)] can be expanded resulting in

c ≈ sinh(2r)
2 (χa − χb)

2

(ωα + ωβ)
2 . (31)

This expression [Eq. (31)] shows explicitly the depen-
dence of contrast on χa − χb. This confirms that χa and
χb have to be finite but different (χa ̸= χb) in order to
observe nontrivial peaks in qubit spectroscopy. While the
ratio (χa − χb)/(ωα + ωβ) is expected to be small due to

large AFM frequencies, the factor sinh(2r)
2
in Eq. (31)

provides a squeezing-mediated amplification expected to
be large due to typically large AFM squeezing [25, 44].

Under the condition |χa − χb| ≪
∣∣2ε2/(A+B)

∣∣ the ex-
pansion of system excitation energies ωn [Eq. (29)] reads

ωn ≈ n [2ε+ cosh(2r) (χa − χb)]

+ 2 sinh2 r (χa − χb) + ωq. (32)

This expression [Eq. (32)] shows that the separation of
two peaks in qubit spectroscopy [Fig. 2(c)] is given by
the average TMSM frequency ∼ ε of the uncoupled anti-
ferromagnet.

To conclude this section, we demonstrated that the
qubit state can control the magnon squeezing if χa ̸= χb,
leading to nontrivial overlaps between the system ground
state |0, 0⟩gsq and excited states |n, n⟩esq. Driving the qubit

at frequencies ωd = ωn [Eq. (29)] enables the determin-
istic generation of TMSM Fock states |n, n⟩esq, where a
selection rule imposes that only states with an equal num-
ber of spin-up and spin-down magnons can be generated
from the ground state. Finally, we demonstrated that
nontrivial excitation peaks emerge in qubit spectroscopy
if χa ̸= χb enabling to resolve the nonclassical AFM
ground state.

III. PHYSICAL REALIZATIONS

In this section, we start by deriving the AFM Hamilto-
nian ĤAFM [Eq. (1)] from a spin model, taking hematite
(α-Fe2O3) as an experimentally available example. We
then continue to derive the dispersive coupling [see
Eq. (11)] from an interfacial spin exchange interaction
and discuss the role of the interface.

A. Hematite

Hematite is antiferromagnetic insulator. Its magnetic
properties stem from the iron ions while the oxygen ions
mediate the exchange between the iron ions [57]. Below
the Morin temperature TM ≈ 250 K hematite crystallizes
in the easy-axis antiferromagnetic phase [58] which is also
referred to as rhombohedral phase.

We consider the spin model with Heisenberg exchange
interaction, Dzyaloshinskii-Moriya interaction (DMI),
easy-axis single ion anisotropy in second and fourth or-
der and an external magnetic field along the easy-axis.
For simplicity, we only take into account the dominating
terms in the isotropic Heisenberg exchange interaction.
Choosing the z-axis as the easy axis, the spin Hamilto-
nian reads (ℏ = 1) [57, 59–61]

Hhem =
∑
l ̸=m

[
JlmŜl · Ŝm +Dlmẑ ·

(
Ŝl × Ŝm

)]
−
∑
l

[
K2

(
Ŝz
l

)2

+K4

(
Ŝz
l

)4

+ γµ0H0Ŝ
z
l

]
, (33)

where Ŝl denotes the spin operator at site l in the mag-
netic lattice, S the total spin on one lattice site, Jlm the
Heisenberg exchange integral and Dlm the DMI coupling
strength between lattice sites l and m, K2 and K4 denote
the second and fourth order single-ion anisotropy con-
stants, H0 is a constant magnetic field in the z-direction
and γ < 0 denotes the gyromagnetic ratio.

We transform the spin Hamiltonian Ĥhem [Eq. (33)]
into a bosonic form by using linearized Holstein-
Primakoff transformations [49, 60]. We also switch into
momentum space via Fourier transformation. Consid-
ering lattice sites i ∈A and j ∈B, the linearized spin
operators read

Ŝ+
i =

√
2S

N

∑
k

e−ik·ri â†k, (34)

Ŝ−
i =

√
2S

N

∑
k

eik·ri âk, (35)

Ŝz
i = −S +

1

N

∑
k,k′

e−i(k−k′)·ri â†kâk′ , (36)

Ŝ+
j =

√
2S

N

∑
k

eik·rj b̂k, (37)

Ŝ−
j =

√
2S

N

∑
k

e−ik·rj b̂†k, (38)

Ŝz
j = S − 1

N

∑
k,k′

e−i(k−k′)·rj b̂†kb̂k′ , (39)

where the spin ladder operators are defined by Ŝ±
i =

Ŝx
i ± iŜy

i and Ŝ±
j = Ŝx

j ± iŜy
j and N denotes the number

of sites in one sublattice. Here we assume that both sub-
lattices have an equal number of sites. Note that âk and

b̂k denote the sublattice-magnon modes (as discussed in
Sec. IIA) with momentum k and ri denotes the position
of lattice site i. Inserting the transformations Eqs. (34)–
(39) into Eq. (33) results in

Ĥ =
∑
k

Aâ†kâk +Bb̂†kb̂k + C∗
kâkb̂−k + Ckâ

†
kb̂

†
−k, (40)
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with the parameters

A = SzJ + Sz′J ′ + 2SK2 + 4S3K4 − γµ0H0, (41)

B = SzJ + Sz′J ′ + 2SK2 + 4S3K4 + γµ0H0, (42)

Ck = γkSz (J + iD) + γ′kSz
′ (J ′ + iD) , (43)

and with dominant exchange couplings J and J ′ from
third and fourth nearest neighbors [59], the DMI cou-
pling strength D, z(z′) being the number of coupled
third(fourth) neighbors and structure factors γk(γ

′
k) from

third(fourth) neighbors.
Here, we consider a small magnet. Due to the confine-

ment and its resulting boundary conditions, the magnon
modes exhibit standing waves with discrete spectrum
and modes with a finite k are well separated from the
k = 0 by a few GHz [17]. We will therefore keep only
k = 0 in the sum over k in the transformed Hamilto-
nian Ĥ [Eq. (40)]. The structure factors thus simplify to
γ0 = 1 and γ′0 = 1. We define the sublattice-magnon

modes as â ≡ âk=0 and b̂ ≡ b̂k=0. This way, we end up
with a Hamiltonian in the form of ĤAFM [Eq. (1)]. Us-
ing theoretical estimates on the exchange coupling and
single ion anisotropies from Mazurenko and Anisimov
[59] (z = 3, z′ = 6, J = 25.2meV, J ′ = 17.5meV,
S = 2, K2 = 112.8µeV, K4 = 1.1µeV) and the DMI
strength D (z + z′) = γ × 2.2T from [62], we estimate
that the parameters [Eqs. (41)– (43)] approximately read
(A + B)/4π = 87.46THz and |C| /2π = 87.34THz.
These values result in an average resonance frequency
of (ωα+ωβ)/4π = 4.53THz and a squeezing of r = 1.826
for the uncoupled AFM.

Here, we have employed the typical linearized Holstein-
Primakoff transformations for obtaining the magnon
Hamiltonian. For smaller system sizes, this ignoring of
the higher-order terms is harder to justify rigorously.
However, it is supported by various experiments finding
two-dimensional ordered magnets, for example. Hence,
we treat this as an uncontrolled approximation here. Fur-
thermore, it has recently been shown that the primary
effect of including the higher order terms is to induce
a dephasing of the magnonic states [63, 64]. We leave
a careful consideration of such decoherence effects to a
future study.

In conclusion, we were able to demonstrate that
hematite below the Morin temperature realizes the
Hamiltonian ĤAFM [Eq. (1)].

B. Role of the interface

In this section, we derive the dispersive interaction be-
tween the AFM and spin qubit from a spin model. We
consider an exchange coupling between the interfacial
spins of the AFM and the spin qubit. The Hamiltonian
of the interfacial exchange reads [17]

Ĥint = Jint,A
∑
l∈A

Ŝl · ŝl + Jint,B
∑
m∈B

Ŝm · ŝm, (44)

where Ŝl(m) denotes the spin operator at interfacial lat-
tice site l(m), ŝl(m) the spin operator of the qubit at in-
terfacial lattice site l(m) and Jint,A(B) are the exchange
coupling strength [65–68] to the qubit with interfacial
lattice site l ∈ A(m ∈ B).

The product between spin operators can be written as
2Ŝl · ŝl = Ŝ+

l ŝ
−
l + Ŝ−

l ŝ
+
l + 2Ŝz

l ŝ
z
l . Skogvoll et al. [17]

demonstrate that terms ∝ Ŝ+
l ŝ

−
l and ∝ Ŝ−

l ŝ
+
l result in a

coherent interaction. Here we consider a large detuning
between the AFM and qubit such that coherent interac-
tion is suppressed [39, 51] and will be neglected in the
further analysis.
Using the transformations [Eqs. (34)–(39)], the terms

∝ Ŝz · ŝz provide two terms up to second order in the

sublattice magnon operators â and b̂. As discussed in
[17] and [39], one of these contributions renormalizes the
qubit frequency ωq, whereas the other is proportional

to the sublattice-magnon number operators â†â and b̂†b̂.
Assuming a constant qubit wave function over the in-
terface, we obtain that the magnon number dependent
part leads to the direct dispersive interaction [17, 39]

Ĥdis =
(
χaâ

†â− χbb̂
†b̂
)
σ̂z, with the coupling strengths

χa =
Jint,A |ψ|2

2N
Nint,A, (45)

χb =
Jint,B |ψ|2

2N
Nint,B . (46)

Here |ψ|2 = 1/(2N) denotes the average qubit wave func-
tion over the interface [17] and Nint,A(B) the number of
interfacial lattice sites belonging to sublattice A(B).
From the expressions for χa and χb [Eqs. (45) and

(46)], we deduce that the direct dispersive coupling
strength depends on the size of the AFM (∝ 1/N) and the
structure of the interface. Assuming JA = JB , for a com-
pensated interface (Nint,A = Nint,B) the direct dispersive
coupling strengths are the same χa = χb whereas for un-
compensated interfaces (Nint,A ̸= Nint,B) the coupling
strengths are different χa ̸= χb. For perfectly uncom-
pensated interfaces, one coupling strength is maximized
while the other is zero [see Fig. 1(c) for illustration].

Semiconductor qubits implement the required ex-
change interaction [Eq. (44)] [69]. We therefore want to
estimate χa and χb for an AFM with 100 interfacial sites
and 6 monolayers coupled to such a qubit. We use an in-
terfacial coupling strength of JA = JB ≈ 10meV which
has been extracted from spin-pumping experiments [70–
72]. For a compensated interface, we calculate a direct
dispersive coupling strengths of χa = χb ≈ 2.11GHz. For
a perfectly uncompensated interface with Nint,B = 0 and
assuming that the layers are perfectly composed of either
sublattice A or B, we find χa = 4.22GHz and χb = 0.

In conclusion, the size of the AFM and structure of the
interface are crucial factors in determining the direct dis-
persive coupling strengths χa and χb [Eqs. (45) and (46)].
We also conclude that the protocol to resolve the non-
classical ground state composition of an AFM requires
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that the interface is uncompensated (χa ̸= χb). Finally,
our estimation resulted in a direct dispersive coupling
strengths in the GHz regime.

IV. DISCUSSION

Having derived the composition of the ground state
|0, 0⟩gsq in terms of excited state TMSM Fock states

|n, n⟩esq [Eq. (27)] and the excitation energies ωn

[Eq. (29)], we predict that qubit spectroscopy can reveal
nontrivial excitation peaks. Now, we want to discuss the
resolvability of spectroscopy peaks and requirements for
realistic systems.

As discussed in [39], the direct dispersive coupling
can be realized with spin qubits, such as semiconduct-
ing quantum dots [69] or NV centers. The latter interact
with other spins via dipole-dipole interaction [73, 74].
However, it has been shown in [39] that the direct dis-
persive coupling strength stemming from dipole-dipole
interaction is expected to be vanishingly small. As a
consequence, NV centers are not promising candidates for
resolving the nonclassical ground state composition of an
AFM. We also want to mention that coherent interaction
in the dispersive limit [51], as provided by superconduct-
ing qubits [35, 36, 75], is not able to resolve nonclassical
equilibrium states [39] and therefore not suitable for re-
solving the AFM ground state composition.

In Sec. III B, we estimated that the direct dispersive
coupling strengths χa and χb between an AFM and a
semiconductor qubit is in the GHz regime. This com-
petes with the resonance frequencies of AFMs up to
THz [3]. The difference of around 3 orders of magnitude
between the coupling strength and the AFM frequency
lowers the contrast in qubit spectroscopy. The expect-
edly low (χa − χb)/(ωα + ωβ) can be compensated by

large two-mode squeezing r via sinh(2r)
2
[see Eq. (31)].

For instance the estimated squeezing factor of r = 1.826
in hematite results in sinh(2r)

2 ≈ 371.00. However, this
is a given property and depends on the material. While
both squeezing r and magnon frequency ε depend on
the exchange integrals J and J ′, we find that the ra-

tio sinh(2r)/ (ωα + ωβ) ≈
[
4
(
2SK2 + 2S3K4

)]−1
is ap-

proximately independent of J and J ′ when considering J
and J ′ to be the dominant energy scales of the system.
From Eq. 31, we see that the contrast is approximately

given by c ≈ (χa − χb)
2/

[
16

(
2SK2 + 2S3K4

)2]
. Since

the anisotropy is typically in the GHz range, this further
suggests that a large enough contrast can be achieved.

Even for magnets with low squeezing r and low (χa −
χb)/(ωα + ωβ), there is the possibility of amplifying the
peak height of the nontrivial peaks at ω1, ω2, . . . by in-
creasing the drive amplitude Ωd [39]. The excitation pro-
cess into states |n, n⟩esq for n > 0 is suppressed by a factor

|cn|2 allowing for larger Ωd while still being in the linear
response regime. Since the peaks at ωn and ωn+1 are
well separated by the AFM resonance ∼ ε (∼THz), we

conclude that indeed large Ωd can be chosen without af-
fecting the resolvability with peak overlaps.
Our proposed protocol here is complementary to simi-

lar qubit-based proposals for detecting the quantum na-
ture of a ferromagnetic ground state [39] or the magnonic
excitation [17]. There are also recent proposals [42]
that exploit the magnon squeezing-mediated enhance-
ment of light-matter coupling and superradiant phase
transition for detecting the nonclassical properties of
these states using a photon cavity. Employing ultrafast
laser-induced magnetization dynamics has also been sug-
gested as a probe into the nonclassical magnonic prop-
erties [30, 31, 43]. These approaches complement each
other and offer different operation regimes as well as plat-
forms.
Lastly we want to discuss the requirement of the un-

compensated interface [see Fig.1(a)], as concluded from
the ground state composition [Eqs. (27) and (28)]. The
coupling strength is maximized by a perfectly uncom-
pensated interface. AFMs, can be grown with uncom-
pensated interfaces [76]. Some van der Waals materials,
such as bilayer CrI3 [77, 78], consist of ferromagnetic lay-
ers that are antiferromagnetically coupled and therefore
exhibit a maximized χa while χb = 0. Also hematite, dis-
cussed in Sec. III A can be grown in layers having uncom-
pensated spins at the surface [79]. We conclude that the
condition χa ̸= χb can be fulfilled by real systems. Since
the nontrivial excitation peaks depend on χa −χb, qubit
spectroscopy provides a measure of how compensated the
interface is. This is complementary to already existing
techniques of probing spin surface structures, such as
spin-polarized scanning tunneling microscopy [80, 81].

V. CONCLUSIONS

We have shown that the recently suggested protocol
for resolving the nonclassical ground state composition
of a single-mode squeezed vacuum in a ferromagnet [39]
can be adequately adapted for a similar probing of AFMs
exhibiting two-mode squeezing [10]. We have shown that
the qubit excitation peaks, that serve as the experimen-
tal probe of the quantum superposition, are well sepa-
rated by the typically large AFM resonance frequency
∼ ε. Furthermore, hematite below the Morin temper-
ature [57–59] realizes the bosonic two-mode squeezing
Hamiltonian [Eq. (1)] [10, 20] for the k = 0 mode. We
estimated that the direct dispersive coupling strength is
achievable to be in the range of ∼GHz suggesting small
contrast in qubit spectroscopy. However large squeezing
of the AFM ground state and optimizing the qubit drive
can amplify the qubit excitation peaks making them ex-
perimentally detectable. We therefore conclude that this
protocol has the potential to resolve the ground state
composition of AFMs.
The direct dispersive coupling to a spin qubit also

enables the deterministic generation of non-equilibrium
Fock states |n, n⟩esq by driving the qubit at ωd = ωn



10

[Eq. (29)]. The deterministic generation of magnon pairs
has the potential to furthermore enable use of the intrin-
sic entanglement. This could, for instance, be utilized to
realize magnonic Hong-Ou-Mandel effect [82, 83].
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Appendix: Derivation of ξeff

In this appendix, we demonstrate the relation
|0, 0⟩gsq = Ŝ2 (ξeff) |0, 0⟩esq with more mathematical detail.

The two-mode squeezed-magnon vacuum states |0, 0⟩gsq
and |0, 0⟩esq can be written in a common basis as

|0, 0⟩gsq = Ŝ2(ξg) |0, 0⟩sub , (A.1)

|0, 0⟩esq = Ŝ2(ξe) |0, 0⟩sub . (A.2)

where the squeezing factors ξg/e = rg/ee
iϕ have the

same phase given by ϕ and different absolute values rg/e.
Inverting the relation Eq. (A.2) results in |0, 0⟩sub =

Ŝ†
2 (ξe) |0, 0⟩

e
sq. Inserting this expression for |0, 0⟩sub into

Eq. (A.1) leads to the relation

|0, 0⟩gsq = Ŝ2(ξg) Ŝ
†
2 (ξe) |0, 0⟩

e
sq . (A.3)

Since Ŝ2(ξe) is an exponential operator, the hermitian

conjugate can be expressed as Ŝ†
2 (ξe) = Ŝ2(−ξe). Now

we can evaluate the product of operators in Eq. (A.3) as

Ŝ2(ξg) Ŝ
†
2 (ξe) = eX̂eŶ with the exponents

X̂ = ξ∗g âb̂− ξgâ
†b̂†, (A.4)

Ŷ = ξeâ
†b̂† − ξ∗e âb̂. (A.5)

In order to apply Baker-Campbell-Hausdorff for-

mula [56], we evaluate the commutator
[
X̂, Ŷ

]
. We find

[
X̂, Ŷ

]
=

(
ξgξ

∗
e − ξ∗gξe

) [
âb̂, â†b̂†

]
. (A.6)

Since ξg = rge
iϕ and ξe = ree

iϕ have the same phase ϕ,
the coefficient in front of the commutator in Eq. (A.6) is

equal to zero and Eq. (A.6) becomes
[
X̂, Ŷ

]
= 0. With

the Baker-Campbell-Hausdorff formula, we follow that
the operator product from Eq. (A.3) can be expressed as

Ŝ2(ξg) Ŝ
†
2 (ξe) = eX̂+Ŷ . This explicitly reads

Ŝ2(ξg) Ŝ
†
2(ξe) = exp

(
ξ∗eff âb̂− ξeff â

†b̂†
)
. (A.7)

where we defined ξeff = ξg − ξe. We note that ξeff =
(rg − re) e

iϕ and define reff = rg − re. Finally, we find
that Eq. (A.7) has the form of a two-mode squeeze op-
erator, such that relation Eq. (A.3) can be written as

Ŝ2(ξg) Ŝ
†
2 (ξe) = Ŝ2(ξeff). This leads to

|0, 0⟩gsq = Ŝ2(ξeff) |0, 0⟩esq . (A.8)

which is the relation employed in the main text.
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