
On Computing Plans with Uniform Action Costs

Alberto Pozanco, Daniel Borrajo*, Manuela Veloso
J.P. Morgan AI Research

{alberto.pozancolancho,daniel.borrajo,manuela.veloso}@jpmorgan.com

Abstract
In many planning applications, agents might be interested in
finding plans whose actions have costs that are as uniform
as possible. Such plans provide agents with a sense of stabil-
ity and predictability, which are key features when humans
are the agents executing plans suggested by planning tools.
This paper adapts three uniformity metrics to automated plan-
ning, and introduce planning-based compilations that allow
us to lexicographically optimize sum of action costs and ac-
tion costs uniformity. Experimental results in different bench-
marks show that the reformulated tasks can be effectively
solved in practice to generate uniform plans.

Introduction
Classical planning is the task of finding a plan, which is a
sequence of deterministic actions such that, when applied in
a given initial state, it results in a goal state (Ghallab, Nau,
and Traverso 2004). Each action is associated with a non-
negative cost, and the cost of a plan is defined as the sum of
its actions’ costs. Plans with minimal cost are called optimal,
and how to efficiently compute them accounts for a large part
of automated planning research.

However, the real-world is full of applications where the
sum of action costs is only one of the objectives that de-
fine an optimal plan (Stewart and White III 1991; Geißer
et al. 2022; Salzman et al. 2023). For example, in network
routing one might be interested in finding widest shortest
paths or shortest widest paths, in order to reduce bottlenecks
and provide better service (Sobrinho 2001). Or, in naviga-
tion domains, one can represent travel time as cost and be
interested in finding shortest quickest or quickest shortest
routes (Golledge 1995).

In this paper we introduce a novel objective that might
be relevant in many planning applications: that of finding
plans whose actions have costs that are as uniform as pos-
sible. Consider the navigation scenario shown in Figure 1,
where a car driver (located at position 1 0) is interested in
finding a plan to reach location G (located at 0 4). To do
so, the car can move in the four cardinal directions. The
color of each cell depicts the cost (travel time) of travers-
ing the cell: visiting green, yellow, orange and red cells have

*On leave from Universidad Carlos III de Madrid
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Navigation task where a driver wants to reach lo-
cation G. The color of each cell depicts the cost (travel time)
of traversing the cell.

a cost of 1, 2, 3, and 4 respectively. In this case, there ex-
ist several cost-optimal plans, all having a cost of 9, but re-
quiring to traverse a different number of congested areas,
with each of them having an associated congestion level.
Arguably, some drivers would prefer plans where they re-
duce the number or density of the traffic jams, thus being
able to drive at the same pace. Other drivers might even pre-
fer longer travel times sacrificing cost-optimality in benefit
of longer routes where they completely avoid traffic jams.
Moreover, not only drivers but also traffic authorities would
prefer vehicles to keep a constant velocity, as this reduces
congestions and CO2 emissions (Barth and Boriboonsomsin
2009).

Financial planning (Pozanco et al. 2023) is yet another
example where computing plans with uniform actions is rel-
evant. In financial planning, a person wants to save some
amount of money (e.g. $1, 000) in a given horizon (e.g. 4
months). The available actions are to save different quan-
tities at each month, with increasing costs associated with
higher savings levels due to the difficulty in saving more
money. People could prefer plans where they can save the
same money every month (e.g. $250 each month) rather
than plans where they should save very different amounts.
This preference can be justified by several reasons. Firstly,
a consistent savings plan provides individuals with a sense
of stability and predictability. Knowing exactly how much
they need to save each month allows them to budget and
plan their expenses more effectively. This stability can al-
leviate financial stress and provide a sense of control over
one’s financial situation. Secondly, a fixed savings plan pro-
motes discipline and consistency in saving habits. By com-

ar
X

iv
:2

40
2.

09
87

7v
2

 [
cs

.A
I]

 2
6

A
pr

 2
02

4

mitting to saving a specific amount each month, individuals
are more likely to develop a routine and stick to their finan-
cial goals (Hanna and Lindamood 2010).

We are interested in lexicographically optimizing both
objectives (in any order): sum of action costs and action
costs uniformity. There exist three main approaches to solve
such multi-objective planning problems in the literature.
The first one is using cost-algebraic A* (Edelkamp, Jab-
bar, and Lluch-Lafuente 2005), which proves that A* re-
turns an optimal solution in any cost algebra (or their pri-
oritized Cartesian product), not just in the traditional short-
est path setting. A cost measure is a cost algebra iff it is
strictly isotone, i.e., a solution that optimizes the cost mea-
sure is composed of optimal solutions to its subproblems.
Unfortunately, most uniformity measures do not satisfy this
property, so we cannot use standard A*. The second ap-
proach is to use multi-objective search algorithms such as
NAMOA* (Mandow and De La Cruz 2008) or BOA* (Ul-
loa et al. 2020; Hernández et al. 2023). These algorithms
extend A* to compute the set of Pareto-optimal paths. How-
ever, these algorithms are slower and consume more mem-
ory than standard A*, since they (i) need to explore the
whole state space to return all the solutions in the Pareto
front; and (ii) need to perform extra checks to prune dom-
inated paths. The third approach consists on reformulating
the original planning task so that plans that optimally solve
the new task are plans that lexicographically optimize the
two objectives. This approach allows us to use any planner
to solve such problems without the need of crafting domain-
dependent heuristics for each objective. For example, Katz,
Röger, and Helmert (2022) transform the action costs of the
original planning tasks in order to generate shortest cost-
optimal plans. Here, we will reformulate the whole planning
task, and not only its action costs, to generate uniform plans.

The main contributions of this paper are:

1. Introduction of a novel bi-objective planning task with
many real-world applications: finding cost-optimal plans
whose actions have costs that are as uniform as possible.

2. Adaptation of three dispersion metrics to automated
planning.

3. Three different compilations to produce plans that lexi-
cographically optimize sum of action costs and the given
dispersion metric.

4. New benchmarks for multi-objective planning (Salzman
et al. 2023).

Background
We formally define a planning task as follows:

Definition 1. A planning task can be defined as a tuple Π =
⟨F,A, I,G⟩, where F is a set of propositions, A is a set of
instantiated actions, I ⊆ F is an initial state, and G ⊆ F is
a goal state.

A state consists of a set of propositions s ⊆ F that are true
at a given time. A state is totally specified if it assigns truth
values to all the propositions in F , as the initial state I of a
planning task. A state is partially specified (partial state) if it
assigns truth values to only a subset of the propositions in F ,

as the conjunction of propositions G of a planning task. Each
action a ∈ A is described by a set of preconditions (pre(a)),
which represent literals that must be true in a state to execute
an action, and a set of effects (eff(a)), which are the literals
that are added (add(a) effects) or removed (del(a) effects)
from the state after the action execution. The definition of
each action might also include a cost c(a) ∈ N0 (the default
cost is one). We denote by c(A), min(c(A)) and max(c(A))
the set of action costs, minimum action cost, and maximum
action cost in the planning task, respectively. The execution
of an action a in a state s is defined by a function γ such that
γ(s, a) = (s\del(a))∪add(a) if pre(a) ⊆ s, and s otherwise
(it cannot be applied). The output of a planning task is a
sequence of actions, called a plan, π = (a1, . . . , an). The
execution of a plan π in a state s can be defined as:

Γ(s, π) =

{
Γ(γ(s, a1), (a2, . . . , an)) if π ̸= ∅
s if π = ∅

A state s is reachable iff there exists a sequence of oper-
ators π that when applied from I reach s, i.e., s ⊆ Γ(I, π).
With S we refer to the set of all reachable states of the
planning task. A plan π is valid if G ⊆ Γ(I, π). The plan
cost is commonly defined as c(π) =

∑
ai∈π c(ai), with

cπ = (c(ai), . . . , c(an)) denoting the action cost vector of a
plan. A plan with minimal cost is called optimal. In the rest
of the paper we assume plans are simple, i.e., they do not
have loops visiting the same state more than once. This is
the case for any cost-optimal plan.

Uniformest Cost-Optimal Planning Problem
While classical planning focuses on finding cost-optimal
plans, we seek plans that also optimize the uniformity of the
plans’ action costs. Like Katz, Röger, and Helmert (2022),
we are not interested in any form of weighting both objec-
tives, but in lexicographically optimizing them.

We seek to minimize two objectives , rather than minimiz-
ing plan’s cost and maximizing its uniformity. Therefore, we
will minimize action costs dispersion in order to find uni-
form plans. The dispersion of a plan, denoted by d(π), is
defined as the variability of its action costs. In other words,
a plan only composed by actions of the same cost will have a
lower dispersion, therefore being more uniform, than a plan
composed by actions with different costs. We denote by ≤d

the partial order of plans defined by their action costs dis-
persion, i.e., π ≤d π′ iff d(π) ≤ d(π′). Likewise, we denote
by ≤c the partial order of plans defined by their cost, i.e.,
π ≤c π

′ iff c(π) ≤ c(π′). We will use ⪯c,d when we want to
optimize cost, and break ties in favor of more uniform (less
disperse) plans. Formally, π ⪯c,d π′ if c(π) < c(π)′ or if
c(π) = c(π′) and d(π) ≤ d(π′). The same notation and def-
inition applies to the opposite case ⪯d,c, where we want to
optimize uniformity and break ties by cost.

Summarizing, for a given task Π in standard classical
planning we must identify a plan that is minimal among all
plans with respect to ≤c, or detect that the task is unsolvable.
On the other hand, in the uniformest cost-optimal planning
problem, we must find a plan for Π that is minimal among

all plans with respect to ⪯c,d (or ⪯d,c), or detect that the
planning task is unsolvable.

Dispersion Metrics
Dispersion, also called variability, is an statistical term that
refers to the spread between numbers in a data set. In this
case, we are interested in measuring the dispersion of vec-
tors of plans action costs. There exist many dispersion met-
rics: standard deviation, variance, range, or entropy, to name
a few. In this paper we will focus in the following three mea-
sures of statistical dispersion:
Definition 2. Number of different action costs of a plan π:
the cardinality of the set of plan’s action costs.

#(π) = |{cπ}| (1)

Definition 3. Delta of a plan π: the largest difference be-
tween the cost of any two adjacent actions in the plan.

∆(π) = max
(|π|−1⋃

i=1

|c(ai)− c(ai+1)|
)

(2)

Definition 4. Range of a plan π: the difference between the
largest and smallest values in the costs of its actions.

R(π) = max(cπ)−min(cπ) (3)

The reason why we select the above dispersion metrics
over others is two-folded. First, we seek diverse set of dis-
persion metrics. Well-known statistical measures such as
standard deviation or variance provide the same informa-
tion, while the three selected metrics have different seman-
tics. Range and Delta measure the difference between action
costs in the plan, but while the former focuses on the entire
plan, the latter only considers changes in two consecutive
actions. On the other hand, just measuring the number of
different action costs offers less information, but might be
easier to compute while still a good dispersion proxy. We
further investigate this in our evaluation.

Second, the above dispersion metrics have a nice prop-
erty that other measures do not have: their potential values
are bounded a priori by the available actions in the planning
task. While we can know all the possible values for Range,
Delta and the number of different action costs by just in-
specting the planning task, this is not possible for metrics
such as standard deviation or entropy because the number of
actions needed to achieve a goal is unbounded. As we will
discuss later, this is an important property that allows us to
generate tractable reformulations in practice.

Let us exemplify these dispersion metrics and the plans
we are interested in finding by using the navigation scenario
introduced in Figure 1. Table 1 shows four possible plans to
reach the goal in this scenario. Each plan is depicted by a
sequence of squares (from left to right) that show the path of
the driver from its initial state to the goal. Columns in this ta-
ble show the three dispersion metrics, i.e., Range, Delta, and
Number of different action costs, as well as the cost of the
plan. The plans in the first three rows are cost-optimal and
have an associated cost (travel time) of 9. However, these
plans are very different in terms of action cost dispersion.

π #(π) ∆(π) R(π) c(π)

3 3 3 9
3 1 2 9
2 1 1 9
1 0 0 11

Table 1: Four alternative plans to reach G in the scenario
shown in Figure 1. Plans are depicted by sequences of
squares (from left to right) that show the driver’s path from I
to G. Columns show dispersion and cost measures and cells
in the table indicate the metric obtained by each plan.

The first plan combines driving through extremely (red) and
slightly (green) congested areas, yielding the higher (worse)
values for all the dispersion metrics. This plan will not be to
the liking of drivers who prefer to maintain a steady pace.
The second plan has a lower Delta and Range, since the
change in congestion levels occurs more progressively and
extremely congested areas are not traversed. The third plan
has the lowest values for all the dispersion metrics along the
cost-optimal plans, and would be the one selected by drivers
that prefer more uniform driving experience while not sacri-
ficing cost (driving time). Finally, the fourth plan might re-
sult more appealing to drivers that might be willing to sacri-
fice cost-optimality in benefit of more uniform routes where
they can completely avoid traffic jams. Among all the plans
that minimize dispersion, this is the one with the lowest cost.

Computing Plans with Uniform Action Costs

We present three different compilations, one for each of the
dispersion metrics previously described. Although some of
the compilations could be represented more naturally using
conditional effects or numerical planning, we opted for clas-
sical planning compilations, as the resulting tasks can be ef-
ficiently solved optimally by a wider variety of planners. In
particular, unlike other compilations that take as input the
lifted planning task (represented in PDDL (McDermott et al.
1998)) and return a new lifted planning task (Gragera et al.
2023), our reformulation operates at the grounded (STRIPS)
level. We opted for this approach as in some planning tasks
the cost of the actions is not known at the lifted level, but
only after the task has been grounded.

The intuition behind all the compilations is to extend a
standard planning task with new propositions that keep track
of the action cost distribution. They also extend the original
planning task with actions that either (i) update these propo-
sitions; or (ii) increase the total cost depending on the value
of the dispersion metric induced by the plan. The cost of
these actions will depend on the objective function that we
try to lexicographically optimize. We will use ωd ∈ N to
weigh the importance of getting uniform plans.

Next, we introduce the compilations in increasing order
of complexity, according to the number of extra propositions
and actions they require.

Compilation 1: Number of Different Action Costs
This is the most naive dispersion metric, as it only considers
the cardinality of the plan’s action cost set. It also requires
the least complex compilation, as this metric is strictly iso-
tone (Edelkamp, Jabbar, and Lluch-Lafuente 2005). Given
a planning task Π, we extend F with a set of propositions
Fu =

⋃
i∈c(A){usedi}, which keep track of the costs that

have been used by a plan. We also update the set of original
actions A to associate each action a ∈ A a different cost de-
pending on whether that action cost has already been used in
the plan or not. We create two new actions for each original
action a ∈ A, effectively dividing actions into two sets, Au

and A¬u.

• Au, represents the original actions that can be executed
when their cost is already present in the plan. Each action
au ∈ Au is defined as follows:
– pre(au) = pre(a) ∪ {usedc(a)}
– eff(au) = eff(a)
– c(au) = c(a)

• A¬u, represent the original actions that can be executed
when their cost is not present in the plan yet. Each action
a¬u ∈ A¬u is defined as follows:
– pre(a¬u) = pre(a) ∪ {¬usedc(a)}
– eff(a¬u) = eff(a) ∪ {usedc(a)}
– c(a¬u) = c(a) + ωd

The difference between both sets of actions is that the
ones in A¬u set the unseen cost c(a) to used, and increase
the total cost with the weight ωd, thus effectively penalizing
the use of actions with different action costs to achieve the
goal.

The new planning task is defined as follows:

Definition 5. Given an original planning task Π, a com-
piled task Π# that lexicographically optimizes sum of ac-
tion costs and number of different action costs as disper-
sion metric is a tuple

Π# = ⟨F ′, A′, I ′, G, ωd⟩

where,

• F ′ = F ∪ Fu

• A′ = Au ∪A¬u

• I ′ = I ∪
⋃

i∈c(A){¬usedi}

This compilation generates |A′| = 2 × |A| actions, as
we need to have two versions of each action, depending on
whether its cost has already been used in the plan or not.

Proposition 1. If Π is solvable, Π# is also solvable.

Proof Sketch. Let π be a solution for Π. It is trivial to see
that there exists a plan π′ that solves Π# comprised by the
same sequence of actions as π, only varying their version,
i.e., if their cost has already been used in the plan (Au) or
not (A¬u). The applicability of these actions is equivalent to
their A counterparts, with the extra precondition of the used
proposition of that cost, which appear in I ′ and are updated
by the actions in A′.

Next we prove that ⪯c,d (or ⪯d,c) is preserved in the re-
formulated task. The proof is similar to that of (Katz, Röger,
and Helmert 2022), where the authors prove their reformu-
lated task can generate shortest cost-optimal plans. The main
idea is to set ωd so that for any plan, the extra cost incurred
by introducing new action costs does not surpass the sum of
action costs (or the opposite in case ⪯d,c).
Proposition 2. Let π and π′ be any two simple plans for
Π, and π# and π′

their counterparts in Π#. There exists a
value for ωd such that π ⪯c,d π′ iff π# ≤c π

′
#.

Proof Sketch. Since the plans are simple, the cost of any π
that solves Π is bounded by |S| ×max(c(A)). Let C− > 0
be smaller or equal to the smallest non-zero cost difference
|c(π) − c(π′)| between two plans that solve Π. Let D+ be
larger than the max different action costs difference |#(π)−
#(π′)| between two plans that solve Π. We define ωd :=
C−

D+ > 0.
We distinguish two cases. If c(π) = c(π′), then π ⪯c,d π′

iff #(π) ≤ #(π′). By our compilation we have that
c(π#) = c(π)+ωd#(π) ≤ c(π′)+ωd#(π′) = c(π′

#) (4)

so when c(π) = c(π′) this can be simplified to #(π) ≤
#(π′), iff π# ≤c π

′
#.

On the other hand, if π ⪯c,d π′ and c(π) ̸= c(π′) then
c(π) < c(π′). Since c(π′) − c(π) is non-zero, it must be
≥ C−. By the choice of D+, #(π)−#(π′) < D+. We get
that c(π′

#)−c(π#) = c(π′)+ωd#(π′)−c(π)−ωd#(π) =

c(π′) − c(π) − ωd(#(π′) − #(π)) > c(π′) − c(π) −
ωdD

+ = c(π′) − c(π) − C− ≥ 0. Overall we get that
c(π′

#) > c(π#), thus π# ≤c π′
#. In the opposite direc-

tion, if π# ≤c π′
#, then c(π#) ≤ c(π′

#). By (4), c(π) +
ωd#(π) ≤ c(π′)+ωd#(π′). Since #(π)−#(π′) < D+, it
holds that ωd(#(π′)−#(π)) < ωdD

+ = C−. By the defi-
nition of C−, C− > c(π)−c(π′). This implies c(π) < c(π′)
and thus π ⪯c,d π′.

As in the case of (Katz, Röger, and Helmert 2022), since
we only focus on integer action costs (C− = 1), it is suffi-
cient for the proof if |#(π#)−#(π′

#)| < 1/ωd. This guar-
antees that if we set ωd < 1/D+, ⪯c,d is preserved.

Analogously it is easy to see that if we set ωd > C+,
where C+ is the largest cost difference between two plans
(|S| ×max(c(A))), then π ⪯d,c π

′ iff c(π#) ≤ c(π′
#).

Compilation 2: Delta
Delta measures the largest jump in action costs in two con-
secutive actions in a plan. Minimizing it can be useful for
agents content with plans having disperse action costs, as
long as the cost changes are gradual rather than sudden. This
dispersion metric is not strictly isotone, so the compilation
to optimize it becomes more complex.

In this compilation we will use abs(c(A)) (or just abs) to
refer to the set of absolute values obtained after subtracting
all the cost pairs in the domain, i.e., all the possible Delta
values. These values are given by the following formula:

abs(c(A)) =
⋃

m,n∈c(A)∪{0}

{|m− n|} (5)

We cannot define a general formula based on the size of c(A)
to compute the size of abs, as it does not solely depends on
the number of possible costs, but also on the arithmetic re-
lationship of its elements. For example, c(A) = {0, 5, 10}
yields a set of possible Delta values abs = {0, 5, 10}, while
c(A) = {1, 5, 10} yields abs = {0, 1, 4, 5, 9, 10}. However,
we can upper bound the size of this set by the binomial co-
efficient

(
n+1
2

)
. In the worst case, all the pairs of the set will

yield a different absolute value, plus 0, since that is the result
of the subtraction of any pair (x, x).

Given a planning task Π, we extend F with the following
sets of propositions:

• Fprev =
⋃

i∈c(A){prev costi}, which is a set of proposi-
tions that keep track of the last executed action’s cost.

• Fδ =
⋃

i∈abs{deltai}, which is a set of propositions that
keep track of the Delta between the current and the pre-
vious actions executed in the plan.

• F∆ =
⋃

i∈abs{max deltai}, which is a set of proposi-
tions that track the largest Delta in the plan.

• check, which is a proposition used as a flag to indicate
when the max delta propositions should be checked and
updated.

• end, which is a proposition that represents the fact that
all goals have been achieved.

We also extend A with three types of actions. The first
type Aδ updates the original actions to keep track of the
prev cost counter and the current value of Delta between
the current and the previous action. Each action aδ ∈ Aδ

is defined as follows:
– pre(aδ) = pre(a) ∪ {prev costi,¬check}
– eff(aδ) = eff(a)∪

{¬prev costi, prev costc(a), delta|i−c(a)|, check}
– c(aprev) = c(a)

The second type of actions will appear interleaved in the
plan between the updated original actions. For each pair of
costs i, j ∈ c(A), if i > j, we generate a new action in a new
set A∆. Otherwise, we generate a new action in another new
set A¬∆. Since we are operating over the grounded task, we
can make the check when generating the compilation.

• A∆, which are new actions that update the counter when
delta is larger than max delta. Each action a∆ ∈ A∆ is
defined as follows:
– pre(a∆) = {check, deltai,max deltaj}
– eff(a∆) = {¬check,¬deltai,¬max deltaj ,max deltai}
– c(a∆) = 0

• A¬∆, which are new actions that do not update the
counter when delta is lower or equal than max delta, just
turn off the check flag, so Aδ actions can be executed
again. Each action a¬∆ ∈ A¬∆ is defined as follows:
– pre(a¬∆) = {check, deltai,max deltaj}
– eff(a¬∆) = {¬check,¬deltai}
– c(a¬∆) = 0

Finally, the third type of actions can only be executed at
the end of planning, i.e., once a goal state has been reached.

They increase the total cost of the plan depending on its
Delta (Definition 3), i.e., the value of the max delta proposi-
tion. We refer to this set of actions as Aend, and each action
aend ∈ Aend is defined as follows:

– pre(aend) = G ∪ {¬check,max deltai}
– eff(aend) = {end}
– c(aend) = i× ωd

The new planning task is defined as follows:
Definition 6. Given an original planning task Π, a com-
piled task Π∆ that lexicographically optimizes sum of ac-
tion costs and Delta as dispersion metric is a tuple

Π∆ = ⟨F ′, A′, I ′, G′, ωd⟩
where,

• F ′ = F ∪ Fprev ∪ Fδ ∪ F∆ ∪ {check, end}
• A′ = Aδ ∪A∆ ∪A¬∆ ∪Aend

• I ′ = I ∪ {prev costmin(c(A)),max deltamin(c(A))}
• G′ = {end}

This compilation generates a number of actions that is
given by the following formula:

|A′| =
(Aδ︷ ︸︸ ︷
|A| × |c(A)|

)
+

A∆,A¬∆︷ ︸︸ ︷
|abs|2 +

Aend︷︸︸︷
|abs|

The first part of the formula refers to the different possible
values of prev cost appearing in the precondition of the Aδ

actions. The second part refers to the actions that update the
max delta propositions, i.e., one action for each combina-
tion of deltai,max deltaj ,∀i,j∈abs. The third part refers to
the potential values of max delta at the end of planning. Fol-
lowing a similar reasoning as in Propositions 1 and 2, it is
easy to see that this compilation is also complete, sound, and
can preserve ⪯c,d or ⪯d,c if we set ωd as a relation between
the max/min Delta and cost differences between two plans.

Compilation 3: Range
Range is one of the most widely employed dispersion met-
rics, since it is easy to compute and is known to correctly ap-
proximate standard deviation σ under different distributions

by applying the formula σ ≈ Range
4 (Shiffler and Harsha

1980). This dispersion metric is again not strictly isotone.
Given a planning task Π, we extend F as follows:

• Fmin =
⋃

i∈c(A){min costi}, which is a set of proposi-
tions that keep track of the cost of the least costly action
executed in a plan.

• Fmax =
⋃

i∈c(A){max costi}, which is a set of proposi-
tions that keep track of the cost of the most costly action
executed in a plan.

• end, which is a proposition that represents the fact that
all goals have been achieved.

We also extend the original set of actions with two types
of actions. The first type updates the original actions to keep
track of the min and max counters. We divide them into the
following subsets of actions, which cover all possible ways
in which the counters can be updated. Like in the Delta com-
pilation, we can do this because we know all the action costs
combinations beforehand.

• Aboth, which are the original actions that update both
counters when the cost of the action is (i) lower than the
minimum, and (ii) greater than the maximum costs em-
ployed in the plan. Each action aboth ∈ Aboth is defined
as follows:
– pre(aboth) = pre(a) ∪ {min costi,max costj}
– eff(aboth) = eff(a)∪

{¬min costi,min costc(a),¬max costj ,max costc(a)}

– c(aboth) = c(a)

• Amin, which are the original actions that update the
min cost counter when the cost of the action is (i) lower
than the minimum cost, and (ii) lower or equal than
the maximum cost employed in the plan. Each action
amin ∈ Amin is defined as follows:
– pre(amin) = pre(a) ∪ {min costi,max costj}
– eff(amin) = eff(a) ∪ {¬min costi,min costc(a)}
– c(amin) = c(a)

• Amax, which are the original actions that update the
max cost counter when the cost of the action is (i) greater
or equal than the minimum cost, and (ii) greater than
the maximum cost employed in the plan. Each action
amax ∈ Amax is defined as follows:
– pre(amax) = pre(a) ∪ {min costi,max costj}
– eff(amax) = eff(a) ∪ {¬max costj ,max costc(a)}
– c(amax) = c(a)

• Anone, which are the original actions that do not update
any counter when the cost of the action is (i) greater or
equal than the minimum cost, and (ii) lower or equal than
the maximum cost employed in the plan. Each action
anone ∈ Anone is defined as follows:
– pre(anone) = pre(a) ∪ {min costi,max costj}
– eff(anone) = eff(a)
– c(anone) = c(a)

The second type of actions can only be executed at the end
of planning, i.e., once a goal state has been reached, and in-
crease the total cost of the plan depending on its Range. We
create one action for each possible value of abs (Equation
4). We refer to this set of actions as Aend, and each action
aend ∈ Aend is defined as follows:

– pre(aend) = G ∪ {min costi,max costj}
– eff(aend) = {end}
– c(aend) = (j − i)× ωd

The new planning task is defined as follows:
Definition 7. Given an original planning task Π, a com-
piled task ΠR that lexicographically optimizes sum of ac-
tion costs and Range as dispersion metric is a tuple

ΠR = ⟨F ′, A′, I ′, G′, ωd⟩

where,
• F ′ = F ∪ Fmin ∪ Fmax ∪ {end}
• A′ = Aboth ∪Amin ∪Amax ∪Anone ∪Aend

• I ′ = I ∪ {min costmax(c(A)),max costmin(c(A))}
• G′ = {end}

This compilation generates a number of actions that is
given by the following formula:

|A′| =

Aboth,Amin,Amax,Anone︷ ︸︸ ︷
(|A| × |c(A)|2) +

Aend︷ ︸︸ ︷
|c(A)|2

The first part of the formula refers to the different varia-
tions of the original actions that we create for each possible
value of the min cost and max cost counters. The second
part refers to the actions that achieve the end goal proposi-
tion. The number of these actions is given by all the com-
binations of the min and max counters values. Following a
similar reasoning as in Propositions 1 and 2, it is easy to see
that this compilation is also complete, sound, and can pre-
serve ⪯c,d or ⪯d,c if we set ωd as a relation between the
max/min Range and cost differences between two plans.

Evaluation
Experimental Setting
Benchmark. To conduct the evaluation, we need planning
tasks with at least two different action costs. We analyzed the
tasks in the Planning Domains repository1, and picked those
domains without conditional effects that have problems that,
after grounding, satisfy |c(A)| ≥ 2. In case some domains
were duplicated (either from different years or tracks), we
selected the problems of the latest optimal track. Table 2
summarizes our benchmark, which consists on 387 prob-
lems divided into 19 domains. The first column indicates the
domain, as well as the maximum number of different ac-
tion costs in any problem within the domain (max |c(A)|).
The second column represents the distribution of costs in
all the problems. Larger points along the segment indicate
the given cost is present in more problems. The last two
rows, FINANCE and NAVIGATION are the two novel domains
we discussed in the introduction for which we generated
the corresponding domain and randomly generated prob-
lems sets. They are thought to be challenging for uniformest
cost-optimal planning, as their problems have many more
different action costs than standard planning tasks.

Approaches. We evaluate the three compilations, namely
Π#,Π∆ and ΠR, on the above benchmark. Since most plan-
ners only accept integer costs, we perform a similar cost
transformation as in (Katz, Röger, and Helmert 2022) and
set the weights as follows. When solving ⪯c,d, we set c(a) =
c(a)× 106 and ωd = 1. Since 106 is a loose upper bound on
the maximum dispersion a plan can have in our benchmark,
we keep the theoretical properties. When solving ⪯d,c, we
set ωd = 2 × 106, which is again a loose upper bound on
the cost of the simple plans in our benchmark. Given a com-
pilation C, we will refer to these configurations as Πc,d

C or
Πd,c

C , respectively. We compare these 3×2 = 6 compilations
against two baselines. The first one uses a standard planner
solving task Π. We use this to understand the overhead in-
curred by the compilations compared to solving the simpler
task where only cost is optimized. The second one computes
all the optimal plans of the standard planning task, which we

1https://github.com/AI-Planning/classical-domains

Domain (max |c(A)|) Actions Costs Distribution
scanalyzer (2)

sokoban (2)
pegsol (2)

openstacks (2)
barman (2)

petri-net (2)
tetris (3)
gedit (3)

floortile (4)
woodworking (6)

agricola (6)
elevators (10)
cybersec (11)

organic-synthesis (19)
parcprinter (22)

transport (27)
data-network (33)

finance (41)
navigation (101)

Table 2: Actions costs distribution across our benchmark.

Π Πd,c
Πc,d

Πd,c
∆ Πc,d

∆ Πd,c
R Πc,d

R P(Π)
Coverage 225 167 204 100 115 105 125 115

Table 3: Number of problems solved by each compilation.

refer to as P(Π). We use this to understand if solving the
compiled planning tasks is faster than computing P(Π) and
then post-processing that set to find the most uniform plan.
These two baselines can only be used to compare against
the Πc,d compilations, since the Πd,c compilations are solv-
ing a different task. However, we put them together so we
can understand (i) which task is easier; and (ii) how far solv-
ing Πc,d is from the optimal dispersion achieved by solving
Πd,c.

Reproducibility. We solve all the planning tasks
(Π,Π#,Π∆ and ΠR) and their different variations using the
SEQ-OPT-LMCUT configuration of Fast Downward (Helmert
2006), which runs A∗ with the admissible LMCUT heuristic
to compute an optimal plan. For computing the set of
optimal plans P(Π), we use FORBIDITERATIVE (Katz et al.
2018) with a limit of 100, 000 plans to avoid disk overflows.
We chose this planner over other alternatives such as SYM-
K (Speck, Mattmüller, and Nebel 2020) because its search
process is more similar to that of SEQ-OPT-LMCUT, and
therefore comparing their results is more fair. Experiments
were run on an Intel Xeon E5-2666 v3 CPU @ 2.90GHz x
8 processors with a 8GB memory bound and a time limit of
1800s. Code and benchmarks are available upon request.

Results
Coverage and Execution Time Overhead. First, we want
to understand how hard solving our compiled tasks is. Ta-
ble 3 shows the coverage of each compilation and the two
baselines across all domains and problems. As expected,

d, c
#

c, d
#

d, c c, d d, c
R

c, d
R

()
100

101

102

103

Ti
m

e
Ov

er
he

ad
 Fa

ct
or

Figure 2: Distribution of the execution time overhead factor
T (X)
T (Π) for each approach X . Black dots represent the average.

solving the standard planning task where only cost is opti-
mized is easier, and the planner can find a cost-optimal plan
for 225 instances. Optimizing for cost and breaking ties in
favor of less disperse plans (Πc,d compilations) tends to be
easier than doing the opposite, regardless of the dispersion
metric. Taking a look to the specific metrics, minimizing
the number of different action costs (Π# compilations) is
somewhat comparable to standard planning, and definitely
more feasible than computing all the cost-optimal plans.
This is not the case when jointly optimizing cost and Delta
or Range, where we get slightly lower coverages than when
solving P(Π). This difference in coverage comes mainly
from domains such as FINANCE or NAVIGATION, which are
difficult for uniformest cost-optimal planning due to their
large number of different action costs, but easier for top-
quality planning, as they contain few cost-optimal plans.
However, by post-processing all the cost-optimal plans we
would only get those that optimize these metrics as a sec-
ond objective, i.e., plans generated by the Πc,d compilations,
and not those plans that prioritize uniformity (Πd,c compila-
tions).

In order to further understand the overhead induced by
our compilations, we compare the execution time T needed
by the planner to solve the new tasks X versus the time
needed to solve the standard planning task. We refer to this
as the time overhead factor, and formally define it as T (X)

T (Π) .
This execution time includes both the time needed to trans-
late (and ground) the task and the solving time. To make
the comparison fair, we only consider the 59 problems that
are commonly solved by all the approaches. Figure 2 shows
this analysis as a set of violinplots, which represent the dis-
tribution of these factors in log scale for each approach.
As we can see, minimizing the number of different action
costs hardly introduces any overhead compared to solving
the standard planning task, resulting into easier tasks in few
problems. On the other hand, the rest of the compilations
are much closer in execution time to computing all the cost-
optimal plans.

Is Solving Π Good Enough? With the coverage and exe-
cution time results at hand, one could arguably ask whether

d, c
#

c, d
#

d, c c, d d, c
R

c, d
R

1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

Di
sp

er
sio

n
Su

bo
pt

im
al

ity
 R

at
io

Figure 3: Distribution of the dispersion suboptimality ratio
d(π)
d(πd)

for each dispersion metric d.

solving the standard planning task Π is a good enough uni-
formity proxy. In order to refute this hypothesis, we com-
pare the dispersion metric d induced by the plan obtained
by the compilation that optimizes it, πd, against the disper-
sion metric induced by the plan obtained by solving the stan-
dard planning task, π. We refer to this as the dispersion sub-
optimality ratio, and formally define it as d(π)

d(πd)
. Figure 3

shows this analysis as a set of violinplots, which represent
the distribution of these ratios for each compilation. Here we
consider problems that were commonly solved by the given
compilation and the standard planning task. If we only focus
on cost-optimal plans, i.e., only in the Πc,d compilations, the
solution obtained by solving the standard planning task, π,
also minimizes the given dispersion metric in most of the
tasks. On the other hand, if we focus on uniformest plans,
i.e., only in the Πd,c compilations, we observe a larger sub-
optimality gap, meaning that π is not as uniform as it could.

Although these results might initially suggest that solving
the standard planning task provides uniform enough plans,
that would be a conclusion drawn from a myopic analysis.
This is because most planning tasks have few cost-optimal
plans involving very few different action costs. If we per-
form this analysis in tasks with plans that have different ac-
tion costs, we can clearly observe that cost-optimal plans
obtain dispersion metrics that are up to 3 times suboptimal.
Figure 4 shows the cost and number of different action costs
of the plans that solve Π, Πc,d

, and Πd,c
tasks in FINANCE.

As we can see, the cost-optimal plans (green squares) are the
cheapest, but often involve more action costs. On the other
side of the spectrum we have Πd,c

(blue points), which com-
putes uniformest plans, breaking ties in favor of less costly
plans. Solving the compilation allows us to get plans that,
although not cost-optimal in some cases, only contain two
different action costs. In this domain, this means the plan is
suggesting to always save the same amount of money ev-
ery month (one action cost), plus the last zero-cost action
that checks if the financial goal has been achieved. Πc,d

(or-
ange crosses) represent a good compromise between both
approaches, as the plans generated are cost-optimal and re-

2 3 4 5 6
#()

1300
1400
1500
1600
1700
1800
1900

c(
)

finance
d, c
#
c, d
#

Figure 4: Cost (y) and number of different action costs (x)
of the plans that solve Π, Πc,d

, and Πd,c
tasks in FINANCE.

#() () R() ()
Metric

d,
c

#
d,

c
d,

c
R

Ap
pr

oa
ch

1.00 1.12 1.07 1.08

1.07 1.00 1.04 1.01

1.01 1.04 1.00 1.01

1.00

1.02

1.04

1.06

1.08

1.10

Figure 5: Dispersion suboptimality ratio for each combina-
tion of compilation (rows) and dispersion metric (columns).
Lighter cells indicate better performance.

quire to use only three different action costs.

How Some Dispersion Metrics Approximate Others.
Finally, we want to understand whether optimizing for some
dispersion metrics allow us to get good values in other met-
rics. We perform this analysis with two objectives: (i) test
if more scalable compilations such as Π# also approxi-
mate Range or Delta; and (ii) test if some of these compi-
lations also approximate well-established dispersion metrics
for which we could not generate compilations such as stan-
dard deviation σ. Figure 5 shows the result of this analysis
as a heatmap, where we have the compilations that gener-
ate uniformest plans in the rows, and the three different dis-
persion metrics plus standard deviation in the columns. The
values in the cells of the heatmap indicate the average dis-
persion suboptimality ratio for each combination of compi-
lation and dispersion metric in the 90 instances that were
commonly solved by the three compilations. For example,
a value of 1.00 in the (#(π),Πd,c

) cell indicates that, as
expected, compilation Πd,c

was able to always find plans
with optimal #(π) values. On the other hand, the 1.12 in
the next column of the same row indicates that compilation
Πd,c

returned plans with an average suboptimality of 1.12
with respect to the Delta dispersion metric. Since we cannot

get the optimal standard deviation value for all the problems,
we compute its dispersion suboptimality ratio by using the
best σ value found by any compilation in the denominator.

Cells with a lighter background indicate better (closer to
the optimal) performance. If we analyze each approach (full
row), we can observe that all the compilations approximate
quite well all the dispersion metrics, including standard de-
viation. This makes sense, as all the compilations are in one
way or another restricting the variety of the action costs
used. In particular, Πd,c

∆ and Πd,c
R , the most complex com-

pilations, obtain the best results across all dispersion met-
rics. On the other hand, the more scalable compilation Πd,c

#

shows only a slightly worse behavior, which makes it a good
candidate as an affordable way of getting uniform plans.

Conclusions and Future Work
In this paper we have introduced a novel objective that might
be relevant in many planning applications: that of finding
plans whose actions have costs that are as uniform as possi-
ble. We have adapted three different dispersion metrics to
automated planning, and presented six different compila-
tions to produce plans that lexicographically optimize sum
of action costs and the given dispersion metric. Experimen-
tal results across a large number of existing and novel plan-
ning tasks show that our methods are able to generate plans
that optimally balance these two objectives. While some of
the compilations generate tasks that are hard to solve in prac-
tice, our compilations to generate plans with a low number
of different action costs are able to scale on par with the
standard planning task. The plans generated by solving these
more amenable compilations are also able to implicitly op-
timize more complex dispersion metrics, making them good
candidates to compute uniform plans in practice.

In this work we solely focused on computing optimal so-
lutions for uniformest cost-optimal planning problems. In
future work we would like to solve the compiled tasks us-
ing satisficing planners to study the trade-off between scala-
bility and suboptimality. Finally, we focused on actions cost
uniformity, as cost usually encodes the effort of executing
an action. Extending our compilations to other definitions
of uniformity such as preferring to use the same grounded
(lifted) action is straightforward, and we would like to eval-
uate the resulting plans as part of future work.

Disclaimer
This paper was prepared for informational purposes by the
Artificial Intelligence Research group of JPMorgan Chase
& Co. and its affiliates (“JP Morgan”), and is not a prod-
uct of the Research Department of JP Morgan. JP Morgan
makes no representation and warranty whatsoever and dis-
claims all liability, for the completeness, accuracy or relia-
bility of the information contained herein. This document is
not intended as investment research or investment advice, or
a recommendation, offer or solicitation for the purchase or
sale of any security, financial instrument, financial product
or service, or to be used in any way for evaluating the merits
of participating in any transaction, and shall not constitute a
solicitation under any jurisdiction or to any person, if such

solicitation under such jurisdiction or to such person would
be unlawful.

References
Barth, M.; and Boriboonsomsin, K. 2009. Traffic congestion
and greenhouse gases. Access Magazine, 1(35): 2–9.
Edelkamp, S.; Jabbar, S.; and Lluch-Lafuente, A. 2005.
Cost-algebraic heuristic search. In AAAI, volume 5, 1362–
1367.
Geißer, F.; Haslum, P.; Thiébaux, S.; and Trevizan, F. 2022.
Admissible Heuristics for Multi-Objective Planning. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 32, 100–109.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
planning - theory and practice. Elsevier. ISBN 978-1-
55860-856-6.
Golledge, R. G. 1995. Path selection and route preference in
human navigation: A progress report. In International con-
ference on spatial information theory, 207–222. Springer.
Gragera, A.; Fuentetaja, R.; Olaya, Á. G.; and Fernández,
F. 2023. A Planning Approach to Repair Domains with In-
complete Action Effects. In Koenig, S.; Stern, R.; and Val-
lati, M., eds., Proceedings of the Thirty-Third International
Conference on Automated Planning and Scheduling, July 8-
13, 2023, Prague, Czech Republic, 153–161. AAAI Press.
Hanna, S. D.; and Lindamood, S. 2010. Quantifying the
economic benefits of personal financial planning. Financial
Services Review, 19(2).
Helmert, M. 2006. The Fast Downward Planning System. J.
Artif. Intell. Res., 26: 191–246.
Hernández, C.; Yeoh, W.; Baier, J. A.; Zhang, H.; Suazo,
L.; Koenig, S.; and Salzman, O. 2023. Simple and efficient
bi-objective search algorithms via fast dominance checks.
Artificial Intelligence, 314: 103807.
Katz, M.; Röger, G.; and Helmert, M. 2022. On Producing
Shortest Cost-Optimal Plans. In Proceedings of the Inter-
national Symposium on Combinatorial Search, volume 15,
100–108.
Katz, M.; Sohrabi, S.; Udrea, O.; and Winterer, D. 2018. A
novel iterative approach to top-k planning. In Proceedings
of the International Conference on Automated Planning and
Scheduling, volume 28, 132–140.
Mandow, L.; and De La Cruz, J. L. P. 2008. Multiobjective
A* Search with Consistent Heuristics. J. ACM, 57(5).
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL - The
Planning Domain Definition Language.
Pozanco, A.; Papasotiriou, K.; Borrajo, D.; and Veloso, M.
2023. Combining Heuristic Search and Linear Programming
to Compute Realistic Financial Plans. In Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 33, 527–531.
Salzman, O.; Felner, A.; Hernandez, C.; Zhang, H.; Chan,
S. H.; and Koenig, S. 2023. Heuristic-Search Approaches
for the Multi-Objective Shortest-Path Problem: Progress and

Research Opportunities. In 32nd International Joint Con-
ference on Artificial Intelligence, IJCAI 2023, 6759–6768.
International Joint Conferences on Artificial Intelligence.
Shiffler, R. E.; and Harsha, P. D. 1980. Upper and lower
bounds for the sample standard deviation. Teaching Statis-
tics, 2(3): 84–86.
Sobrinho, J. L. 2001. Algebra and algorithms for QoS path
computation and hop-by-hop routing in the Internet. In
Proceedings IEEE INFOCOM 2001. Conference on Com-
puter Communications. Twentieth Annual Joint Conference
of the IEEE Computer and Communications Society (Cat.
No. 01CH37213), volume 2, 727–735. IEEE.
Speck, D.; Mattmüller, R.; and Nebel, B. 2020. Symbolic
top-k planning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, 9967–9974.
Stewart, B. S.; and White III, C. C. 1991. Multiobjective a.
Journal of the ACM (JACM), 38(4): 775–814.
Ulloa, C. H.; Yeoh, W.; Baier, J. A.; Zhang, H.; Suazo, L.;
and Koenig, S. 2020. A simple and fast bi-objective search
algorithm. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 30, 143–
151.

