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Abstract. Existing work in fairness auditing assumes that each au-
dit is performed independently. In this paper, we consider multiple
agents working together, each auditing the same platform for differ-
ent tasks. Agents have two levers: their collaboration strategy, with or
without coordination beforehand, and their strategy for sampling ap-
propriate data points. We theoretically compare the interplay of these
levers. Our main findings are that (i) collaboration is generally bene-
ficial for accurate audits, (ii) basic sampling methods often prove to
be effective, and (iii) counter-intuitively, extensive coordination on
queries often deteriorates audits accuracy as the number of agents
increases. Experiments on three large datasets confirm our theoreti-
cal results. Our findings motivate collaboration during fairness audits
of platforms that use ML models for decision-making.

1 Introduction

Machine learning (ML) models are becoming an integral part of
many business and industrial processes, increasingly impacting vari-
ous facets of our lives [19]. Such models are increasingly employed
to drive decisions in high-stakes domains [4]. For example, many fi-
nancial institutions use AI-driven models in which several attributes
such as income, credit score, and employment history influence the
decision to issue a particular loan [27]. These models are also used to
automate the hiring process of certain companies, which would oth-
erwise be labor-intensive [16, 20]. Because these models may signifi-
cantly impact people’s lives, their fairness and regulatory compliance
have become increasingly important [32, 22].

Estimating the fairness of ML models is commonly done through
algorithmic audits by regulators [31]. However, auditors are not
granted unrestricted access to a ML model to protect trade secrets but
instead send queries to the model and use the query responses (i.e., a
black-box interaction) to detect fairness violations, bias or improper
data usage. For instance, [33] suggests investigating the illegal use of
some profile data in the model’s response in such a query-response
setup. It is common to impose a cap on the queries that are sent to the
black-box in order not to overload or interfere with the model being
audited [30, 37, 33].

As of today, an auditor performs her audit tasks on each attribute
of interest sequentially, one at a time, and independently of other au-
ditors. For example, if she wants to audit a bank’s ML model that
predicts whether it is safe to issue a loan [15], she begins by audit-
ing the fairness property of the gender attribute in a first step. In a
subsequent step, she independently audits the fairness property on

the race attribute. This procedure could result in a sub-efficient au-
diting scheme in terms of the amount of queries sent to the model.
Instead, a coordinated –or collaborative– auditing scheme, in which
information is shared between distinct audits, might have been more
effective. In other words, there is an opportunity to mutualize queries,
i.e., through collaboration between the different agents of an auditor.
While collaboration in a single audit task has recently been intro-
duced in the community [36], to the best of our knowledge, collab-
orative auditing for multiple tasks has not yet been studied. There-
fore, we pose the question: can an auditor benefit from collaboration
among individual audit tasks, e.g., by strategically constructing and
sharing queries and responses?

We answer this question by studying collaboration strategies for
independent auditing agents. Specifically, their common goal is to
enhance the efficiency and accuracy of auditing a target model for
one of the most studied fairness estimation tasks: demographic par-
ity (DP) [37, 34, 32]. To this end, we introduce and analyze two re-
alistic forms of multi-agent collaboration. In the a-posteriori collab-
oration, agents share their queries and the responses they receive. In
the a-priori collaboration, in addition, agents coordinate beforehand
on their queries to maximize the information that can be gathered.
Besides the types of collaboration, auditors need to wisely choose the
strategy for querying data points for estimating DP. These strategies
are the sampling methods that address the model’s input space that
are suitable to the audit black-box setup. Thus, the scientific chal-
lenge of this paper is to analyze the relevant combinations of collab-
oration strategies and sampling methods.

Contributions. This work makes the following contributions:

1. We propose a multi-agent setup in which agents collaboratively
perform fairness audits of ML models (Section 4). The collabora-
tions are driven using coordinated sampling methods on sensitive
attributes under audit and by sharing query responses.

2. We provide a theoretical analysis of the effectiveness of the a-
priori and a-posteriori collaboration strategies and their interplay
with different sampling methods (Section 5). First, we show that
collaboration is generally beneficial for audit accuracy compared
to conducting independent audits. Second, we derive that the ad-
vantages of sampling strategies vanish when the number of audi-
tors increases for a-posteriori collaboration. Third, we show that,
surprisingly, performing extensive coordination on queries when
the number of agents increases sometimes hurts audit accuracy.

3. Using three real-world large datasets (Folktables, German Credit,
and Propublica), commonly used in fairness studies, we empiri-
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cally confirm our main theoretical findings (Section 6).

This work is the first to explore the nuances and effectiveness of
collaboration between different fairness audit tasks of black-box ML
models. In summary, we find that collaboration among agents is a
successful setup for increasing query efficiency and detecting biases.

Related Work. We refer the reader to surveys such as [32, 6, 26]
for a general introduction to fairness. While the predominant focus
within this domain lies on the fair learning, existing work extends to
various subjects, including auditing black-box settings [1, 24].

The exploration of fairness in multi-agent systems using game-
theoretic frameworks has received relatively little attention [9]. Pre-
vious work on fairness in collaborative frameworks, like FAIR [36],
emphasizes data sharing and fairness between agents, but it does not
align with the objective of estimating fairness in specific black-box
models. FAIR focuses on fair collaboration between agents with dif-
ferent devices for scientific discovery, while our work focuses on
agents of equal importance studying the fairness of a common al-
gorithm.

Beyond technical considerations, legal dimensions also influence
the fairness landscape. Traditional legal protocols often constrain
inter-agency collaborations for assessing legal compliance, with ex-
ceptions such as the recent precedent set by [7]. [8] examines
the European Commission’s implementation of the Digital Markets
Act [14] in March 2024 and offers valuable insights and recommen-
dations for optimizing compliance mechanisms and resolving Big
Tech platform investigations effectively, along with recommenda-
tions for collaborative processes.

In conclusion, we expect our work to facilitate effective collabora-
tion between different agencies, streamlining regulatory efforts and
enhancing law enforcement while minimizing the burden (number of
queries) imposed on platforms.

2 Background: Sampling

Let us consider an auditor that wants to know the average value µ
of a particular numerical {xi}1≤i≤N value in a population of size
N , i.e., µ = 1

N

∑N
i=1 xi. In situations where this auditor can only

afford consulting a fraction R < N of such values, she has to resort
to an estimator µ̂. The Bienaymé-Chebyshev inequality states that
µ̂, a random variable, has finite variance V ar, the probability that µ̂
deviates from its mean by more than a standard deviation is bounded
by V ar. We hence use variances to characterize empirical errors.

Besides analyzing µ̂ for different sampling methods, this section
also highlights the sampling variance of the estimated mean µ̂, which
is important as a large sampling variance can lead to inaccurate fair-
ness measure estimates.

This work explores three sampling methods that auditors use to
construct queries: (i) uniform sampling, (ii) stratified sampling, and
(iii) Neyman sampling [3, 25]. While uniform sampling is a natural,
well-studied, and easy-to-implement choice, stratified sampling of-
fers a fairer method that an auditor can use in a black-box setting.
Neyman sampling will serve as an upper bound, as it is the most ac-
curate for an "omniscient" auditor (that would have white-box-like
information on the problem).

2.1 Uniform Sampling

The most straightforward approach to estimate µ is to select R mem-
bers of the population randomly. We refer to the sampled members as
x1, . . . xR. With uniform sampling, the allocation of queries mirrors

the real-world distribution of the population. The estimate of µ with
uniform sampling, referred to as µ̂uniform, is the mean of xi over
the sampled set: µ̂uniform = 1

R

∑R
i=1 xi.

Sampling Variance. The sample variance associated with uniform
sampling is: V ar(µ̂)uniform = 1

R

∑R
i=1(xi − µ̂)2.

2.2 Stratified Sampling

Uniform sampling often falls short of providing the most accurate
estimator, especially in heterogeneous populations. Stratified sam-
pling involves dividing the heterogeneous population into n sub-
groups, called strata, such that subgroups are non-overlapping and
homogeneous with respect to µ. Once the population is segmented
into these homogeneous strata, one selects Rj samples from each
subgroup j. All the samples drawn from each stratum constitute a
stratified sample of total size R =

∑n
j=1 Rj . Stratified sampling

can enhance precision by ensuring that all subgroups are adequately
represented, making it a more effective method when dealing with
diverse groups [3, 21].

We consider in this work disproportionate stratified sampling
which is a particular type of stratified sampling and in which an equal
amount of the query budget is allocated to each stratum. Specifically,
with n strata, Rj = R/n of the budget is spent on each stratum j.
This sampling strategy ensures that each stratum of a given attribute
is sampled using the same number of queries.

Sampling Variance. µ̂stratified is given by a weighted average of
the estimators by stratum sizes: µ̂stratified =

∑n
j=1 pj µ̂j , with pj

being the probability to be in the stratum j and µ̂j being the estimator
of µ in this stratum with Rj samples. It is possible to show that the
variance under stratified sampling is [25]:

V ar(µ̂)stratified =

n∑
j=1

p2j

(
1

Rj
− 1

pjN

)
V ar(µ̂j)

2 (1)

with V ar(µ̂j) =
1
Rj

∑Rj

i=1(µij − µ̂j)
2 being the sample standard

deviation of stratum j.
While disproportionate stratified sampling offers advantages in

terms of representation, it might not be the optimal strategy. In par-
ticular, in situations where strata are heavily unbalanced w.r.t. their
sizes, the resulting stratum may be of uneven interest to an auditor,
and a more nuanced sampling strategy might have been preferable.

2.3 Neyman Sampling

Neyman sampling is the optimal sampling strategy defined as
the stratified sampling strategy in which the allocation of queries
among strata yields the most precise estimate of µ [25]. It min-
imizes the variance in the estimation process defined in eq. (1):
(R∗

1, . . . , R
∗
n) = argmin (V ar(µ̂)stratified). Since Neyman sam-

pling is a specific instance of stratified sampling, its mean and vari-
ance estimates are identically constructed: µ̂Neyman =

∑n
j=1 pj µ̂j

and V ar(µ)Neyman =
∑n

j=1 p
2
j

(
1
Rj

− 1
pjN

)
V ar(µj)

2.
However, to compute the Neyman sampling allocation, one has to

know the standard deviation values of each stratum beforehand. This
assumption is unlikely to be met in practice, as an auditor knowing
those values could directly derive µ values. Nonetheless, despite its
lack of realism, Neyman sampling serves as an optimal baseline to
compare practical approaches against it and reveal the impact of au-
ditor’s missing knowledge on the precision.



Discussion. The exploration of sampling methodologies reveals a
spectrum of approaches, each with strengths and considerations. Uni-
form sampling is simple and provides unbiased estimates but may
not accurately represent unbalanced populations. Disproportionate
stratified sampling ensures fair representation but can also be limited
in unbalanced populations. Neyman sampling, although impractical
to implement, is considered optimal as it balances stratum size and
intra-stratum variance to minimize estimation variance and maximize
precision. In this paper, we emphasize the importance of choosing a
sampling method tailored to population characteristics for reliable
results and explores the interaction between these methods and col-
laborative strategies (Section 5).

3 Problem Statement: Collaborative Auditing

To provide a structured framework for our investigation, we formal-
ize the audit process and delineate its key components.

Auditing Fairness. We investigate a black-box algorithm
A : X 7→ {0, 1} (e.g., a ML model) deployed within a platform
setting. The input space X encompasses a set of m protected, binary
attributes denoted as X1, X2, . . . , Xm. Most of the work on fairness
in ML deals with binary classification problems, and we also adopt
this scenario for the sake of consistency [5, 1, 34]. While, most fair-
ness metrics for binary targets can be generalized to support multi-
class classification [10], this is beyond the scope of this paper.

In our context, m distinct agents A1, . . . , Am interact with the
same black-box algorithm A to scrutinize fairness attributes associ-
ated with specific attributes. Each agent Ai concentrates on assessing
a distinct protected attribute Xi. For example, in a loan attribution ap-
plication [15], some agent A1 could audit a fairness property of the
gender attribute (X1) and A2 could audit a fairness property on the
race attribute (X2). Each attribute Xi induces two groups in X: the
favored and unfavored groups. We call a stratum each intersection of
these 2m groups, i.e., with m agents, there are 2m strata.

In line with related work, we assume that an auditor can issue a
fixed total number of B queries, a common preamble in auditing
[37]. B is called the query budget. We assume that each agent can
send R queries to A where R = B/m is the per-agent query budget.

Independence Assumption. The attributes X1, X2, . . . , Xm are
considered protected due to their sensitive nature and potential im-
plications for fairness. In line with other works [23, 35, 28], we
assume that these attributes are independent of one another, i.e.,
the value of one attribute does not influence or depend on the val-
ues of other ones. In theoretical analysis, the assumption of inde-
pendence among protected attributes is crucial for clarity and in-
sights. However, real-world scenarios may involve interdependencies
among these attributes, which is a topic for future investigation.

Fairness Metric. The notion of fairness has been operationalized
in several different metrics such as disparate impact, demographic
parity, or equalized odds. We refer the reader to the recent survey of
Pessach and Shmueli [32] for a comprehensive overview of the topic.

Demographic parity (DP), mathematically denoted as D, has
emerged as a critical fairness metric for modeling social equal-
ity [4, 29, 37]. An algorithm satisfies DP if, on average, it produces
the same predictions across different protected groups. Despite its
simplicity, DP is a key measure of fairness, especially in high-stakes
areas such as finance and recruitment, where decisions can signifi-
cantly impact individuals’ lives. EU regulations also recognize DP
as a metric for detecting bias in algorithmic decision-making [12].

Definition 3.1. The demographic parity Di with respect to a binary

protected attribute Xi captures the impact of Xi on a prediction Y :
Di = P(Y = 1|Xi = 1)−P(Y = 1|Xi = 0).

Agent Ai can use her R queries to estimate DP on protected at-
tribute Xi by querying any x ∈ X . Let D̂i be a DP estimator:

D̂i = P̂(Y = 1|Xi = 1)− P̂(Y = 1|Xi = 0) (2)

For brevity, we will write Ŷi = P̂(Y = 1|Xi = 1) and Ŷī = P̂(Y =
1|Xi = 0).

According to the Digital Services Act [13], if Di = 0± 0.2, then
A respects demographic parity on protected attribute Xi. While de-
mographic parity could, in addition, be estimated relatively to each
stratum (as in intersectional fairness [17]), we focus in this paper on
attribute-level DP. DP is a group level fairness metric according to
the classification proposed by Pessach and Shmueli [32], which is
defined in opposition to individual-level fairness metrics.

While our work focuses on DP for concreteness, we argue that any
group-level metric requires an auditor to sample members of differ-
ent target groups to estimate the group property of interest and has
to deal with the convergence of empirical estimators. Our work can
hence be easily transposed to other group metrics. For instance, dis-
parate impact uses the ratio of group-level estimates rather than their
difference for DP (see eq. 2). Hence, while those two estimators will
have different variances, the strategy of minimizing the variance of
each subgroup is the same.

Objective of an Auditor. The goal of an auditor is to audit DP as
accurately as possible, i.e., by obtaining a DP estimate that is close
to the ground truth DP, which is the value that can be computed pro-
vided one has access to the whole dataset. An auditor is typically in-
terested estimating the DP for different attributes; in this paper, each
such attribute estimation is embodied and performed by an agent. We
consider the estimations of all attributes as equally valuable to the
auditor: the auditor’s goal is to have the average of DP variances,
i.e., the difference between her estimated DPs and the actual DPs,
as small as possible. Note that the choice of a regular average as the
metric is arbitrary, acknowledging that alternative metrics exist; for
instance, Xu et al. [36] proposes a metric ensuring fairness between
agents. However, in our context, where all agents share the common
goal of auditing and are controlled by a single auditor, this paper
strives for the lowest averaged DP variance.

Finally, we assume that agents are homogeneous: they all use the
same sampling and collaboration strategy. We leave the analysis of
collaboration among heterogeneous agents to future work.

4 Multi-Agent Collaboration
To estimate DP, an agent relies on (i) a sampling method that in-
fluences the way she constructs her queries, and (ii) a collabora-
tion strategy with other agents. We first introduce two collaboration
strategies and then derive the sampling variances of these strategies.

4.1 Collaboration Strategies

We introduce two natural collaboration strategies in a black-box audit
context and a baseline approach that does not involve collaboration.

No Collaboration (baseline). To quantify the effectiveness of
our collaboration strategies, we consider a non-collaborative setting
where each agent queries the black-box algorithm by itself and inde-
pendently of the others. This baseline is also used in [36] and repre-
sented in the left part of Figure 1.
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Figure 1: Possible collaboration strategies of an auditor with her two agents: no collaboration (left, baseline), a-posteriori collaboration where
agents share queries and responses (middle), and a-priori collaboration where agents also coordinate on queries to be sent (right).

a-posteriori Collaboration. The most natural collaboration
scheme involves sharing queries and their responses among agents.
In this approach, each agent independently queries the black-box al-
gorithm and then shares the queries and resulting responses with the
other agents so that all agents can access a pooled set of queries. This
is also visualized in the middle part of Figure 1. Even though a query-
response pair obtained by agent i might not have been optimized to
satisfy the interest of agent j, j might still be able to leverage the
information to obtain a more precise DP estimation on attribute Xj .

a-priori Collaboration. We introduce a second collaborative strat-
egy, aiming at a preliminary coordination of agents. With a-priori
collaboration, agents collectively implement a sampling strategy, ac-
counting for the estimation tasks of the other participating agents.
This is also visualized in the right part of Figure 1. More specifically,
all agents divide the input space into 2m strata and agree on the sam-
pling strategy of each stratum. This coordination allows for a more
integrated and strategic approach to querying, intending to enhance
the overall effectiveness of the audit.

Note that a-priori and a-posteriori collaboration strategies cover
the possible options in our black-box audit setting. Specifically, there
are only two ways to collaborate in a bulk query-response-based ap-
proach: before or after sending the queries. a-priori collaboration
has coordination before sending the queries, and a-posteriori shares
queries and their responses after they have been sent to the platform.

4.2 From Collaborations to Estimation Variances

The objective of an auditor is to use a budget of R per-agent queries
to derive an accurate estimator D̂i of the demographic parity Di of
their respective protected attribute Xi. Note that D̂i is a random vari-
able. Analyzing its distribution is key to understanding the charac-
teristics of the different estimators that result from the interplay of
sampling and collaborations employed. This section thus analyzes
the distribution of D̂i for our collaboration strategies.

As illustrated in Eq. (2), the demographic parity, D̂i, is determined
by comparing the two empirical probabilities Ŷi and Ŷī. Each empir-
ical probability is calculated as the proportion of positive or negative
responses collected from queries within the group of interest, e.g.,
Ŷi =

|Xi=1,Y =1|
|Xi=1| . The empirical probability Ŷī is defined by replac-

ing Xi = 1 by Xi = 0 in the previous equation.
As the probabilities Yi and Yī can be calculated as the average

number of positive answers on the strata verifying Xi = 1, respec-
tively Xi = 0, our study inherently accommodates the sampling
methodologies presented in Section 2.

By linearity of the variance and independence among the protected
attributes, the variance of the demographic parity Di is equal to the
sum of the variances of Yi and Yī: V ar(Di) = V ar(Yi)+V ar(Yī).

No Collaboration. In the absence of collaboration, agents priori-
tize their individual attributes regardless of other agents’ estimations.
More concretely, an agent i splits the input space into two distinct
strata based on their binary attribute Xi. These strata represent in-
stances where the attribute is present (Xi = 1) and absent (Xi = 0).
Within each stratum, homogeneity is assumed with respect to the
characteristic of interest (Y ), leading to the computation of average
positive responses denoted as Yi or Yī. Consequently, the variance
of the DP metric on attribute Xi, denoted as Di, in a setting without
collaboration can be expressed as:

V ar(D̂i)nocollab. =
1

Ri

Ri∑
j=1

(xj − Ŷi)
2 +

1

Rī

Rī∑
j=1

(xj − Ŷī)
2. (3)

Each agent’s ability to measure Di is constrained by the choice of
sample sizes Ri and Rī. The used sampling strategies determines
the values of Ri and Rī. All expressions of the total budget Ri and
Rī for different collaboration strategies and sampling methods are
summarized in Table 1 in Appendix A. Under uniform sampling, Ri

is typically set equal to piR, representing the probability of observ-
ing Xi = 1. Conversely, in stratified sampling, a uniform alloca-
tion strategy assigns Ri = R/2, ensuring an equal budget allocation
across all strata. However, Neyman sampling introduces a more nu-
anced approach, wherein Ri and Rī are strategically determined to
minimize the expression defined in Eq. (3). Depending on the extent
to which the division into two strata is relevant, Neyman sampling
can, for example, give a distribution close to uniform, close to dis-
proportionate sampling or something in-between [25].

a-posteriori Collaboration. Under a-posteriori collaboration,
agents face a similar situation regarding the variance of Di as when
not collaborating.

V ar(D̂i)a−posteriori =
1

Ri

Ri∑
j=1

(xj − Ŷi)
2 +

1

Rī

Rī∑
j=1

(xj − Ŷī)
2.

(4)
We note that Ri and Rī are expressed differently for the non-
collaborative and a-posteriori collaborative settings. The total budget
Ri allocated to each stratum is the sum of the budget allocated by
the agent i on the strata and the total budget allocated by the others
agents on the strata. Thus, as each agent homogeneously considers
its own attribute in its strata, an agent j ̸= i uniformly samples the
attribute Xi. The budget on strata Xi = 1 is pi(m − 1)R added to
the budget allocated by agent i on this specific strata.

In the case of stratified sampling, agent i spends half the budget
(R/2) on both strata. In total, Ri is thus equal to R/2+pi(m−1)R.
Similarly, with Neyman sampling, the agent i spends the optimal



budget R∗
i (obtained from Eq. (4)) in stratum Xi = 1. In total,

Ri = R∗
i+pi(m−1)R. While for uniform sampling, agent i samples

the strata uniformly as the others agents, resulting in Ri = pimR.

a-priori Collaboration. For a-priori collaboration with uniform
sampling, V ar(D̂i) is the same as for a-posteriori collaboration with
uniform sampling, as these situations are equivalent. We now analyze
a-priori collaboration with stratified or Neyman sampling. With a-
priori collaboration, each agent considers the n = 2m strata, encom-
passing all possible combinations of the protected attributes. Unlike
in a-posteriori collaboration, where agents treat their strata as homo-
geneous and uniformly sample them, in this scenario, Yi and Yī are
stratified, resulting in variances distinct from those observed in previ-
ous situations. Specifically, we can express this variance as follows:

V ar(D̂i)a−priori =

n∑
j=1

p2j

(
1

Rj
− 1

pjN

)
V ar(D̂j)

2 (5)

For stratified sampling, the budget on each stratum is Rj =
B/2m because all agents spend an equal amount of requests on
each stratum. For Neyman sampling, we have Rj = R∗

j with
(R∗

1, . . . , R
∗
n) = argmin (V ar(µ)a−priori). As the right-hand

side of Eq. 5 does not depend on i, the variance V ar(D̂i)a−priori

is the same for all agents i.
Having established variances for each agent auditing its own at-

tribute, we are now ready to compute the aggregate DP variance
across all agents of the auditor. We recall that our overarching goal is
to minimize the average variance in practical applications (see Sec-
tion 3). To globally assess the interest of collaboration, we rely on
the average DP variance realized by agents:

Definition 4.1. Average DP variance. According to Section 3, for a
set I of collaborative agents where each agent (Aj)j∈I audits a de-
mographic parity Di with variance V ar(D̂i), the average DP vari-
ance is:

V ar(D̂) =
1

m

m∑
i=1

V ar(D̂i). (6)

5 The Dynamics of Collaboration
We now outline the foundational principles behind the interplay be-
tween collaboration strategies and sampling methods. Building upon
our previous derivations, our main result comprises three theoretical
outcomes that provide guidelines for collaborative fairness audits.
Additional results and derivations are provided in Appendix B.

In the following,
∑

j(xj − Ŷi)
2 will be denoted as σ2

i for brevity
as each sample xj has an equal variance. This shorthand simplifies
expressions for clarity in mathematical formulas.

5.1 When Collaboration is Advantageous

We introduce two theorems that describe when collaboration leads to
a more accurate audit accuracy.

Theorem 5.1. Except for stratified sampling under a-priori collab-
oration, a-posteriori and a-priori collaboration leads to good re-
sults. Apart from one situation (see Theorem 5.3), collaboration is
always beneficial and is an effective approach to increase the accu-
racy of fairness audits, i.e. V ar(D̂)collab ≤ V ar(D̂)nocollab..

Below we provide the proof of this result for the a-posteriori col-
laboration with stratified sampling.

Proof. As seen in Section 4, the variance of the average DP esti-
mation V ar(D̂)a−posteriori in this setting can be written as:

V ar(D̂)a−posteriori =
1

m

m∑
i=1

(
σ2
i

R
2 + pi(m − 1)R

+
σ2
ī

R
2 + pī(m − 1)R

)
.

Since ∀i ∈ I, (m−1)piR > 0 and (m−1)pīR > 0, the previous
equation leads to the following inequality:

V ar(D̂)a−posteriori <
1

m

m∑
i=1

(
σ2
i

R
2

+
σ2
ī

R
2

)
︸ ︷︷ ︸

:=V ar(D̂)nocollab.

Combining Eq. 4 and Eq. 6, the right-hand side of the above inequal-
ity is exactly the definition of the variance of D̂ without collaboration
and stratified sampling (Eq. 3).

Thus, we have just proven that a-posteriori collaboration with
stratified sampling is always beneficial. In Appendix B, we prove
that all combinations of collaboration strategies and sampling meth-
ods (with the only exception of a-priori collaboration with strati-
fied sampling) are beneficial over no collaborations. We also show
in Appendices B.1.1 and B.2.1 that for all collaborative strategies
with uniform sampling, the variance on D̂ linearly decreases with
the number of collaborating agents. This linear reduction is also simi-
larly observed for a-priori collaboration with Neyman sampling (Ap-
pendix B.2.3).

Conclusions. Except in the case of a-priori collaboration with strat-
ified sampling, the gains from collaboration increases with the num-
ber of collaborating agents. The gains from collaboration can even
be linear on m. It is therefore recommended that agents collaborate.

Theorem 5.2. Under a-posteriori collaboration, stratified and Ney-
man sampling methods are asymptotically equivalent to uniform
sampling. The advantages of more advanced sampling methods van-
ishes with the increasing number of agents under a-posteriori col-
laboration: V ar(D̂)stratified ∼

m→+∞
V ar(D̂)uniform

and V ar(D̂)Neyman ∼
m→+∞

V ar(D̂)uniform.

Proof. We consider a-posteriori collaboration. Under stratified
sampling, the agent i splits equally her budget on the two strata: R/2
for Xi = 1 and R/2 for Xi = 0. This distribution does not depend
on m. The total budget on these strata with a-posteriori collaboration
with m agents is Ri = R/2 + (m − 1)piR. If m → +∞ then
Ri ∼ mpiR (and the same thing replacing i by ī). Thus:

V ar(D̂)stratified =
1

m

m∑
i=1

(
σ2
i

R
2
+ pi(m− 1)R

+
σ2
ī

R
2
+ pī(m− 1)R

)

∼
m→+∞

1

m

m∑
i=1

(
σ2
i

pimR
+

σ2
ī

pīmR

)
︸ ︷︷ ︸

:=V ar(D̂)uniform

which is exactly V ar(D̂)a−posteriori with uniform sampling.
Therefore, when using a-posteriori collaboration with a large num-
ber of agents, each agent can simply adopt uniform sampling for
its queries. The proof for a-posteriori collaboration with Neyman
sampling follows similarly, where R/2 is replaced by R∗

i (see Ap-
pendix C).



Conclusions. We know that without missing knowledge on A, the
best sampling method is Neyman sampling. As the variance with
Neyman sampling converges to that of uniform, the benefits of extra-
information on A vanishes with the increasing number of agents un-
der a-posteriori collaboration. Thus, if the number of agents collabo-
rating is large in a-posteriori collaboration, each agent can simply do
uniform sampling.

5.2 When Collaboration is Disadvantageous

We now highlight potential issues in the collaboration. This section
focuses on a-priori collaboration with stratified sampling, which in-
tuitively seems like a desirable candidate in practical settings. This is
because of its coordinated nature, with the fairest sampling method
that is compatible with black-box assumptions.

The forthcoming theorem leverages the following observation:

Observation 1. For any collaboration with m agents, there is a
stratum among the existing 2m that represents at least 1/(2m) of
the population. It is mathematically expressed as:

∃j∗, 1 ≤ j∗ ≤ 2m, pj∗ ≥ 1

2m
.

This observation formalizes that in collaborations involving m
agents, there will typically be certain subgroups or strata that rep-
resent a significant portion of the overall population. As the number
of agents m increases, the number of potential collaboration configu-
rations grows exponentially, reaching 2m. Yet, as m increases, strata
become unbalanced with some stratum being consistently larger than
the average 2−m fraction of the dataset. We verify this also within
the three classical datasets used for our experiments in Section 6.
Figure 2 shows the relative size of a largest stratum for each possible
assignment of m agents to the five protected attributes considered in
each dataset. Any point below the red line would violate Observation
1. Hence, all of the

∑5
m=1

(
5
m

)
= 31 configurations tested for each

dataset confirm Observation 1.
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Figure 2: The relative size of the largest stratum for all possible m
auditor configurations and three datasets. The red curve is y = 1
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Theorem 5.3. The a-priori collaboration can be disadvantageous.
The variance on the estimator using stratified a-priori increases with
the number of agents.

If ∀m > 0, ∃j∗, 1 ≤ j∗ ≤ 2m, pj∗ ≥ 1
2m

,(i.e. Observation 1
holds) then V ar(D̂)stratifieda−priori →

m→∞
+∞.

Proof. With a-priori collaboration and stratified sampling, the vari-
ance of DP is V ar(D̂) = 1

m

∑2m

j=1 p
2
j

(
2m

B
− 1

pjN

)
V ar(D̂j)

2.

It corresponds to Eq. (5) for Ri = B/2m summed of all agents. As
we are interested in show that the variance of the estimator increases,
we lower bound it: V ar(D̂) > 1

m

∑2m

j=1 p
2
j

(
2m

B
− 1
)
V ar(D̂j)

2.
In particular, under Observation 1, there is a stratum among the exist-
ing 2m that represents at least 1/(2m) of the population. That means

that ∃j∗, 1 ≤ i ≤ 2m, pj ≥ 1
2m

. The sum of the variances is at
least greater than the variance of each of its components: V ar(D̂) >
2m−2

Bm3 V ar(D̂j∗)
2. In the majority of cases, the decisions of A on

this stratum are not always the same, so V ar(D̂j∗) ̸= 0. Thus,
2m−2

Bm3 V ar(D̂j∗)
2 →

m→∞
+∞ and so does V ar(D̂).

Conclusions. Under Observation 1, Theorem 5.3 demonstrates that
the estimator variance tends to go to infinity with a-priori collabora-
tion and stratified sampling. Although this may appear as an appeal-
ing strategy, it turns out to be detrimental to the general audit accu-
racy in realistic settings where stratas are severely unbalanced. More
precisely, the strategy of allocating a constant number of samples per
strata turns out detrimental as m grows since the number of sam-
ples allocated to the majority stratum decreases exponentially with
m whereas its size (and hence its contribution to the overall estima-
tion variance) decreases only proportionally to m. While our theoret-
ical results characterizes the asymptotic behaviour as m grows, our
experimental results (see Section 6) already show this behaviour for
low values of m.

Counter-intuitively, we thus find that a-priori collaboration is not
the best strategy to consider. Its variance with stratified sampling in-
creases with the number of agents and its combination with Ney-
man sampling is impossible in practice. Besides, a-priori collabora-
tion with uniform sampling is equivalent to a-posteriori collaboration
with uniform sampling by definition. On the contrary, a-posteriori
collaboration exhibits advantages with all sampling methods. We
also showed that the advantages of advanced sampling methods van-
ish when the number of agents is large. So when agents collaborate,
if there are many, they have every interest in using a-posteriori col-
laboration with uniform sampling.

6 Experiments and Results

To empirically evaluate and understand collaboration with real-world
datasets, we implement a simulation framework. We leverage three
datasets: German Credit [18], Propublica [2] and Folktables [11] (full
description is deferred to Appendix D). We consider five attributes
on each dataset where each attribute is binary by default or binarized
by following a certain scheme (see Appendix D). The labels for the
prediction task in each dataset are also binary. To simulate black-
box models, we adopt a unique strategy by treating dataset labels as
responses from the ML model, avoiding the traditional need to train
specific models for each audit task. This approach views datasets as
extensive passive sampling sets of the target model, eliminating the
need to select a training algorithm and an ML model from diverse
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Figure 3: 2-agent collaboration with stratified sampling. We observe
that collaboration (a-posteriori and a-priori) can significantly im-
prove DP error. This is in line with Theorem 5.1.
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Figure 4: Different sampling methods with a-posteriori collaboration.
We observe that as more agents collaborate, all sampling methods
tend to converge. This is in line with Theorem 5.2.
choices. We open source all source code and documentation.1

Setup. We consider combinations of the three sampling meth-
ods described in Section 2 and the collaboration strategies described
in Section 4. The Folktables dataset is composed of 5 916 565 sam-
ples, German Credit of 1000 and Propublica of 6172 samples. We
run each experiment for 300 repetitions. These repetitions yield a
good balance between accuracy and computational efficiency. Our
experiments report the average DP error, which minimization is the
objective of an auditor (see Section 3).

6.1 Impact of Collaboration with Two Agents

We simulate different collaboration strategies with stratified sam-
pling for all three datasets and observe the average DP error for
different per-agent query budgets R. The query budgets are varied
depending on the dataset, ranging from 100 to 1000 for the Folk-
tables and the Propublica while for the German Credit dataset, we
vary from 50 to 250 given its small size. For this experiment, two
agents audit a particular attribute in each dataset; we consider gen-
der and marital status for the Folktables dataset, age and gender for
the German Credit dataset and lastly, gender and African-American
origin for the Propublica dataset. These results are shown in Figure 3
where each column represents a different dataset. Our first observa-
tion is that for all configurations, the average DP error decreases as
R increases since individual DP estimations become closer to the
ground-truth value. Secondly, we observe that a-posteriori or a-priori
collaboration always decreases the average DP error compared to
when not collaborating and therefore it is always beneficial to collab-
orate. This behaviour is consistent across all three datasets, providing
strong empirical evidence for Theorem 5.1. Furthermore, we observe
that both the collaborative strategies have similar performance in this
two-agent setting. We further extend this comparison in Section 6.3
while considering more agents.

6.2 Performance of Different Sampling Methods with
Multi-agent Collaboration

This experiment aims to observe how the average DP error changes
for different sampling methods as we increase the level of collab-
oration. We consider the uncoordinated collaboration i.e., the a-
posteriori strategy in this section and analyse the coordinated col-
laboration i.e., a-priori strategy in the following section. For each
dataset, we increase the number of collaborating agents (m) from

1Link omitted; it will be made public shall the paper be accepted.
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Figure 5: Different collaborative strategies with stratified sampling.
We observe that as more agents collaborate, the a-priori strategy can
be disadvantageous. This is in line with Theorem 5.3.

1 (no collaboration) to 5. When considering a particular m, we re-
port the mean across all combinations of m agent collaborations, for
instance, all two agent combinations of protected attributes when
m = 2. Each combination is still run several times with different
random seeds, as previously described. We set the budget R = 500
for the Folktables dataset, R = 100 for the German Credit dataset
and R = 250 for the Propublica dataset.

Figure 4 displays the results of all sampling methods across dif-
ferent datasets, with each column representing a distinct dataset. We
note that the average DP error for all methods decreases as collab-
oration increases, reinforcing Theorem 5.1. Stratified and Neyman
sampling consistently shows lower error rates than uniform sampling
when m is small, highlighting the advantages of stratification. How-
ever, as m increases, these advantages diminish, and the performance
gap with uniform sampling methods narrows significantly. This con-
vergence in performance, anticipated in Theorem 5.2 as m → +∞,
is observed empirically even at moderate values of m. For example,
at m = 5, the performance of uniform and stratified sampling is alike
for the Folktables dataset and closely matched for the other datasets.
This empirical evidence confirms Theorem 5.2. Lastly, we also note
that while Neyman sampling performs optimally, the empirical dif-
ference with stratified sampling is very low (< 0.001).

6.3 Performance of different collaborative strategies
with multi-agent collaboration

In this section we thoroughly examine the coordinated collaboration
strategy i.e., a-priori strategy in comparison to the uncoordinated
collaboration strategy i.e., a-posteriori. We keep the setup same as
Section 6.2 and observe the average DP error when increasing the
number of collaborating agents from m = 1 to m = 5. Figure 5 de-
picts our results for stratified sampling. We include the results with
Neyman sampling in Figure 6 (Appendix E). We observe that, un-
der stratification, the error of a-priori shows a decreasing trend as m
grows from 2 to 4 but then either reduces very little or exhibits an
increasing trend at full collaboration (m = 5). This is particularly
evident for the Folktables dataset. While Theorem 5.3 shows that the
estimator variance tends to infinity as m → +∞, we observe the
detrimental effects of a-priori collaboration with stratified sampling
even for m = 5 agents. On the other hand, the error of a-posteriori
under stratified sampling always decreases with increasing collabo-
ration. Thus contrary to expectations, extensive coordination using
the a-priori approach can be disadvantageous, whereas simpler, un-
coordinated collaboration consistently proves beneficial.



7 Conclusions and Future Work
Decision-making algorithms and models are now widespread on-
line and often lack transparency in their operation. Multiple regula-
tory bodies are, willing to conduct efficient fairness audits. However,
agents can only estimate fairness attributes since they have a hard
cap on the number of queries they can issue. This paper shows that
collaboration among previously independent audit tasks can yield a
substantial gain in accuracy under fixed query budgets. We observed
and analyzed an interesting case where prior agent coordination on
the queries causes worse outcomes than a non-coordinated collabo-
ration strategy. We also show that, in practice, the latter strategy per-
forms nearly as well as the (infeasible) optimal strategy, underlining
the relevance of that proposed collaboration strategy.

Future work directions include exploring the intersectional fair-
ness and review a-priori collaboration in this context [17]. Addition-
ally, collaboration using active approaches, like adaptive sampling,
could yield efficient and accurate audits. However, this may entail
higher synchronization costs.
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A Sampling Methods

In Section 4, the variance formulas have been driven of all sampling methods (uniform, stratified and Neyman) with all the collaboration
strategies (no collab., a-posteriori and a-priori). In particular, Equations 3 4 and 5 depend on the number of queries on each subpopulation. The
following table sums up the total queries allocation Ri for each subpopulation Xi = 1 with m agents. All budget Rī are the complementary
proportions of the total budget (R for no collab., B for a-posteriori and a-priori collaboration).

Ri

uniform stratified Neyman
no collab. PiR R/2 R∗

i
a-posteriori mPiR R/2 + (m− 1)PiR R∗

i + (m− 1)PiR
a-priori mPiR Rm/2 mR∗

i

Rī
no collab. R−Ri

a-posteriori B −Ri

a-priori B −Ri

Table 1: Number of queries Ri in the subpopulation Xi = 1 (left table) and Rī in the subpopulation Xi = 0 (right table). The notation R∗
i

stands for R∗
i = argmin

(
V ar(D̂P i)

)
.

B Proofs of Theorem 5.1

This section provides the proof of Theorem 5.1(in Section 5) and some complementary results in all cases.

Theorem 5.1. Except for stratified sampling under a-priori collaboration, a-posteriori and a-priori collaboration leads to good results.
Apart from one situation (see Theorem 5.3), collaboration is always beneficial and is an effective approach to increase the accuracy of fairness
audits, i.e. V ar(D̂)collab ≤ V ar(D̂)nocollab..

B.1 a-posteriori collaboration

Proof. As seen in Section 4, the variance of the average DP estimation V ar(D̂) with any sampling method and collaboration can be written
as:

V ar(D̂) =
1

m

m∑
i=1

(
σ2
i

Ri
+

σ2
ī

Rī

)

We refer to Table 1 for the budget expressions Ri depending on the sampling methods and collaboration.

B.1.1 uniform sampling

With uniform sampling, Ri = mpiR and Rī = m(1− pi)R. So

V ar(D̂)uniform
a−posteriori =

1

m

m∑
i=1

(
σ2
i

mpiR
+

σ2
ī

m(1− pi)R

)

By factoring by 1/m we find V ar(D̂)uniform
nocollab.:

V ar(D̂)uniform
a−posteriori =

1

m

(
1

m

m∑
i=1

(
σ2
i

piR
+

σ2
ī

(1− pi)R

)
︸ ︷︷ ︸

:=V ar(D̂)
uniform
nocollab.

)

Thus (m > 1), V ar(D̂)uniform
a−posteriori < V ar(D̂)uniform

nocollab.. We even demonstrate that using the uniform sampling, the variance of a-posteriori
collaboration decreases by a factor m compared to no collab..

B.1.2 stratified sampling

It is the same proof as in Section 5.
With stratified sampling, Ri =

R
2
+ pi(m− 1)R and Rī =

R
2
+ pī(m− 1)R. So

V ar(D̂)stratifieda−posteriori =
1

m

m∑
i=1

(
σ2
i

R
2
+ pi(m− 1)R

+
σ2
ī

R
2
+ pī(m− 1)R

)



Since ∀i ∈ I, (m− 1)piR > 0 and (m− 1)pīR > 0, the previous equation leads to the following inequality:

V ar(D̂)stratifieda−posteriori <
1

m

m∑
i=1

(
σ2
i

R
2

+
σ2
ī

R
2

)
︸ ︷︷ ︸
:=V ar(D̂)

stratified
nocollab.

Combining Equation (4) and Equation (6), the right-hand side of the above inequality is exactly the definition of V ar(D̂)stratifiednocollab. , or the
variance of the average DP without collaboration with stratified sampling.

B.1.3 Neyman sampling

With Neyman sampling, Ri = R∗
i + (m − 1)piR and Rī = (R − R∗

i ) + (m − 1)piR. We note The proof is identical to that of stratified
sampling.

The variance of the average DP estimation V ar(D̂)Neyman
a−posteriori can be written as:

V ar(D̂)Neyman
a−posteriori =

1

m

m∑
i=1

(
σ2
i

R∗
i + (m− 1)piR

+
σ2
ī

(R−R∗
i ) + (m− 1)piR

)

Since ∀i ∈ I, (m− 1)piR > 0 and (m− 1)pīR > 0, the previous equation leads to the following inequality:

V ar(D̂)Neyman
a−posteriori <

1

m

m∑
i=1

(
σ2
i

R∗
i

+
σ2
ī

R−R∗
i

)
︸ ︷︷ ︸

:=V ar(D̂)
Neyman
nocollab.

Combining Equation (4) and Equation (6), the right-hand side of the above inequality is exactly the definition of V ar(D̂)nocollab., or the
variance of the average DP without collaboration with stratified sampling.

B.1.4 Conclusion

Thus, a-posteriori collaboration is always beneficial whether with uniform, stratified or Neyman. We even demonstrate that using the uniform
sampling, the variance of a-posteriori collaboration decreases by a factor m compared to no collab..

B.2 a-priori collaboration

Let us now move on to the case of a-priori collaboration. We treat the uniform sampling and Neyman sampling. The case of stratified sampling
is a specific case leading to Theorem 5.3 which we will prove in Appendix B.1.

B.2.1 uniform sampling

As established in Section 4.2, the sampling variance of a-priori collaboration with uniform sampling, V ar(D̂)uniform
a−priori is the same as for a-

posteriori collaboration with uniform sampling, V ar(D̂)uniform
a−posteriori, as these situations are equivalent. The result proved in Appendix B.1.1

shows that V ar(D̂)uniform
a−priori < V ar(D̂)uniform

nocollab.. We even demonstrate that using the uniform sampling, the variance of a-priori collaboration
decreases by a factor m compared to no collab..

B.2.2 stratified sampling

It is the specific case leading to Theorem 5.3.

B.2.3 Neyman sampling

The sampling variance with a-priori collaboration is defined in Equation (5) as:

V ar(D̂i)a−priori =

n∑
j=1

p2j

(
1

Rj
− 1

pjN

)
σ2
j

With Neyman sampling, Rj = mR∗
j . The variance of the average DP estimation V ar(D̂)Neyman

a−priori can be written as:



V ar(D̂i)
Neyman
a−priori =

2m∑
j=1

p2j

(
1

mR∗
j

− 1

pjN

)
σ2
j

≤ 1

m

2m∑
j=1

σ2
j

R∗
j

The inequality is obtained by harsh bounds (∀j, p2j ≤ 1 and 1
pjN

> 0). It means that the sampling variance of a-priori collaboration with
Neyman sampling is lower than the unweighted sum of the sampling variance of the 2m stratas.

In the other hand, the sampling variance of no collab. with Neyman sampling is: V ar(D̂)nocollab. = 1
m

∑m
i=1

(
σ2
i

R∗
i
+

σ2
ī

R−R∗
i

)
(Equa-

tion (3) in Equation (6) with Ri and Rī defined with Table 1). The sum can be splits on the 2m strata considered in the collaboration (the
intersection of all possible subpopulation). In that case, all strata are counted once per agent so m times in the global sum: V ar(D̂)nocollab. =
1
m

∑2m

j=1 m
σ2
j

R∗
j

. We can thus write V ar(D̂)nocollab. = mV ar(D̂i)
Neyman
a−priori i.e. V ar(D̂i)

Neyman
a−priori ≤ 1

m
V ar(D̂)nocollab..

We even demonstrate that using the Neyman sampling, the variance of a-priori collaboration decreases at least by a factor m compared to
no collab..

B.2.4 Conclusion

a-priori collaboration is beneficial with uniform or Neyman. We even demonstrate that for those two sampling methods, the variance of a-priori
collaboration decreases by a factor m compared to no collab..

C Proofs of Theorem 5.2
Theorem 5.2. Under a-posteriori collaboration, stratified and Neyman sampling methods are asymptotically equivalent to uniform sam-
pling. The advantages of more advanced sampling methods vanishes with the increasing number of agents under a-posteriori collaboration:
V ar(D̂)stratified ∼

m→+∞
V ar(D̂)uniform

and V ar(D̂)Neyman ∼
m→+∞

V ar(D̂)uniform.

This theorem has been proven for a-posteriori collaboration with stratified sampling in Section 5. The proof is exactly the same for Neyman
sampling with a-posteriori collaboration by replacing R/2 by R∗

i in the proof:
Proof. We consider a-posteriori collaboration. Under Neyman sampling, agent i splits her budget on the two strata as follows: R∗

i for Xi = 1
and B−R∗

i for Xi = 0. This distribution does not depend on m The total budget on these strata, with a-posteriori collaboration with m agents
is Ri = R∗

i + (m− 1)piR. If m → +∞ then Ri ∼ mpiR (and the same thing replacing i by ī). Thus:

V ar(D̂)Neyman
a−posteriori =

1

m

m∑
i=1

(
σ2
i

R∗
i + pi(m− 1)R

+
σ2
ī

R−R∗
i + pī(m− 1)R

)

∼
m→+∞

1

m

m∑
i=1

(
σ2
i

pimR
+

σ2
ī

pīmR

)
︸ ︷︷ ︸

:=V ar(D̂)
uniform
a−posteriori

which is exactly V ar(D̂)uniform
a−posteriori. Therefore, when using a-posteriori collaboration and the number of agents is large, each agent can

adopt uniform sampling for its queries.



D Additional Notes on Experiment Setup
D.1 Description of the leveraged datasets

We conduct our study using three datasets: German Credit [18], Propublica [2] and Folktables [11]. In the German Credit dataset, the task
involves predicting the creditworthiness of loan applicants. Within the Propublica dataset, we consider the recidivism risk task, predicting
whether an individual will re-offend within two years after their initial criminal involvement. In the Folktables dataset, we consider the AC-
SPublicCoverage task that predicts whether low-income individuals, ineligible for Medicare, are covered by public health insurance. Attributes,
such as age, gender, and demographic information, among others, are employed in these prediction tasks. While some attributes are inherently
binary, we binarize others by grouping values. For instance, the marital status attribute in the Folktables dataset is binarized as 1 for married
and 0 for other statuses (widowed, divorced, separated, or never married). In total, after binarization, we have five attributes corresponding to
five auditing agents for each dataset. Lastly, the prediction labels for each of the above tasks are also binary. A comprehensive summary of the
adopted datasets and the binarization strategy for each attribute can be found in Appendices D.2 to D.4.

In practice, the agents audit a platform through a black-box model. To simulate such an audit, we must train a model for each task to be
audited later. In this work, we take a different approach and consider the labels in the dataset to be the response of the ML model when queried
with the corresponding attributes. In other words, the datasets can be interpreted as a large passive sampling set of the target model (in our
case, the real process that generated a given dataset). This strategy prevents the need of having to choose a training algorithm along with a ML
model, among the diverse array of choices that exist.

D.2 Folktables dataset

In the Folktables dataset [11], we address the ACSPublicCoverage task, predicting whether a low-income individual without Medicare eli-
gibility is covered by public health insurance. We consider the following five attributes for auditing: gender, marital status, age, nativity and
mobility status. Their binarisation scheme is detailed in Table 2.

Attribute Xi How was it binarized ? P (Xi = 1)

SEX Binary by default 0.43
NATIVITY Binary by default 0.85

MIG Class 1 is original value {1} and 0 for original values {N/A, 2, 3} 0.82
AGEP Class 1 is when age ≥ 25 and 0 when age < 25 0.66
MAR Class 1 is original value {1} and 0 for original values {2, 3, 4, 5} 0.37

Table 2: Attributes in the Folktables ACSPublicCoverage task. The value to description mapping for the original values can be found in [11].

D.3 German Credit dataset

The task in the German Credit dataset involves predicting whether a given individual is a good or bad credit risk [18]. We chose the following
five attributes for auditing: age, gender, marital status, whether the person has own telephone and employment status. Their binarisation scheme
is detailed in Table 3.

Attribute Xi How was it binarized ? P (Xi = 1)

Own telephone Class is 0 when original value is ‘none’ and 1 otherwise 0.40
Marital status Class is 0 for original value ‘single’ and 1 otherwise 0.45

Gender Class is 0 when original value is ‘female’ and 1 otherwise 0.69
Age Class is 1 when age > 25 and 0 when age ≤ 25 0.81

Employment status Class is 1 for original values ≥ 4 and 0 otherwise 0.42

Table 3: Attributes in the German Credit dataset. More information regarding the dataset can be found in [18].

D.4 Propublica dataset

The recidivism risk task in the ProPublica dataset involves predicting whether an individual will re-offend within 2 years after their initial
criminal involvement [2]. We consider the following five attributes for auditing: female, African-American origin, age below twenty five,
misdemeanor and number of prior crimes. Their binarisation scheme is detailed in Table 4.

Attribute Xi How was it binarized ? P (Xi = 1)

Female Binary by default 0.19
Misdemeanor Binary by default 0.36

African-American Binary by default 0.51
Age below twenty five Binary by default 0.22
Number of prior crimes Class is 1 if original value > 0 and 0 otherwise 0.66

Table 4: Attributes in the Propublica dataset. More information regarding the dataset can be found in [2].



E Additional Experiments
In this section we include the results for a-priori and a-posteriori collaboration with Neyman sampling, expanding on results in Section 6.3.
We observe that while a-priori strategy with stratified sampling can perform poorly (Figure 5), a-priori in combination with Neyman sampling
always performs optimally as expected. However, Neyman sampling is infeasible in practice as we discussed in Section 2.3.
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Figure 6: Different collaborative strategies with Neyman sampling. We observe that a-priori strategy with Neyman sampling performs optimally
as expected. However, it remains infeasible in practice.
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