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Abstract.

This paper introduces an innovative application of Large Event
Models (LEMs), akin to Large Language Models, to the domain of
soccer analytics. By learning the "language" of soccer — predicting
variables for subsequent events rather than words — LEMs facili-
tate the simulation of matches and offer various applications, includ-
ing player performance prediction across different team contexts. We
focus on fine-tuning LEMs with the WyScout dataset for the 2017-
2018 Premier League season to derive specific insights into player
contributions and team strategies. Our methodology involves adapt-
ing these models to reflect the nuanced dynamics of soccer, enabling
the evaluation of hypothetical transfers. Our findings confirm the ef-
fectiveness and limitations of LEMs in soccer analytics, highlight-
ing the model’s capability to forecast teams’ expected standings and
explore high-profile scenarios, such as the potential effects of trans-
ferring Cristiano Ronaldo or Lionel Messi to different teams in the
Premier League. This analysis underscores the importance of con-
text in evaluating player quality. While general metrics may suggest
significant differences between players, contextual analyses reveal
narrower gaps in performance within specific team frameworks.

1 Introduction

Effectively navigating decision-making in the sports domain, espe-
cially when substantial financial investments in players or managers
are at stake, presents a complex challenge. Despite the substantial
growth in using data to improve decision-making in recent decades
[14], its application often needs a comprehensive approach. An illus-
trative example highlighting this need is the assessment of compati-
bility between a specific player and a particular team. While various
companies in the market offer "Al-based solutions" for determining
this compatibility, there is a notable absence of published validation
studies for such solutions. Many of these solutions may be grounded
in a linear paradigm, whereas the complexity of the problem clearly
suggests the requirement for a non-linear method.

In the meantime, roughly 50% of soccer transfers fail [[17], which
can be linked to diverse factors (see Table[T). Certain aspects, such as
adaptability issues, might be beyond the control of sporting directors
or other decision-makers. We assert that it is possible to quantify
whether a specific player aligns with a particular playing style and
if his integration into a team ultimately proves beneficial, but this
cannot be achieved through traditional methods.
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Player not as good as thought.
Player doesn’t fit style.*
Played out of position.*
Manager doesn’t like.
Fitness/personal issues.
Current player is better.*
Table 1. Why transfers fail according to Ian Graham, compiled by Tom

Worville [17]. *Reasons that can be addressed in our framework.

In a broad sense, this study aims to evaluate a player’s impact on
a soccer team, thus aligning with various existing studies. Numer-
ous methods employ frameworks that assess events based on game
state value, commonly called possession value [[14]. One example
is the Valuing Actions by Estimating Probabilities (VAEP) model,
which treats the estimation of game state value as a machine learn-
ing challenge [1]. It calculates the probability of an action leading
to a goal within subsequent actions. Another approach involves the
expected threat (xT) metric, assigning values to different areas of the
pitch based on the likelihood of scoring from those zones [14]. These
methods go beyond event data, providing solutions for tracking data
[2]]. Furthermore, we can also see some relationship between our ap-
proach and models designed to estimate player transfer fees [6], valu-
ing players over extended periods [8]], and other related aspects. The
significance of these methods cannot be overstated. Research indi-
cates that following the Moneyball paradigm [5]], most teams rapidly
adopted this data-centric approach in their recruitment strategies [3].

However, the current approaches neglect to account for the impact
of contextual factors on the values they measure. This gap becomes
evident when addressing a fundamental question: How would these
values change if a player were to join a different team? Despite no-
table research on how VAEP varies with a player’s league [16] and
the influence of players on action outcomes [15], this particular ques-
tion remains largely unanswered.

Contrasting with conventional methodologies, we use Large
Events Models (LEMs) [12]. LEMs operate on principles similar to
Large Language Models (LLMs), predicting the next element in a
sequence by considering the existing context'. In LLMs, the subse-
quent element is a word influenced by preceding words. Conversely,
the next element in LEMs is an event shaped by the current game
state. The upcoming element can alter the present context in LEMs
and LLMs, enabling the models to generate large amounts of coher-
ent information from a given start point.

1 Context can refer to two different concepts over this paper: (1) context is the
input given to LEMs and LLMs that informs the models on how to forecast



This methodology addresses a specific issue: while LLMs excel
in creative tasks, they struggle in reasoning tasks [4]. For example,
LLMs face challenges in generating a concise list of players who
could improve a team. LEMs, on the other hand, enable the simula-
tion of diverse contexts and the potential behavior of a player within
those contexts. This capability facilitates informed decision-making
based on multiple Key Performance Indicators (KPIs). These include
anticipated contributions to the team in terms of points, shots, key
passes, crosses, and set-piece goals.

To answer these questions, we fine-tune LEMs to learn team and
player behaviors across different scenarios. Our analysis involves as-
sessing teams from the 2017/18 English Premier League (EPL) sea-
son, demonstrating LEMs’ capacity to capture distinct soccer team
behaviors. Additionally, we conduct a comparative analysis for each
Premier League team, evaluating the potential impact of acquiring
either Messi or Ronaldo. This comparison helps clarify our method-
ology’s strengths and limitations, providing insights into its accuracy
and areas of improvement.

While the availability of public data constrains our study, the
methodology we propose enhances the predictive depth beyond cur-
rent literature offerings. By leveraging LEMs, our approach facili-
tates a detailed analysis of a player’s potential impact when joining
a new team. This method outperforms the numerical summation of
player attributes, comprehensively exploring the outcomes of recruit-
ing a new player. The impact is assessable across a broad spectrum
of metrics, enriching knowledge and enhancing the effectiveness of
recruitment decisions.

The paper is structured as follows:

Section 2] provides the background knowledge on LEMs.
Section 3] describes the methodology used in this work, including
the data, parameter tuning, metrics, and limitations.

Section[d] presents and discusses the experiments performed.
Section[5]discusses the insights obtained in this work.
Section [f] presents the concluding remarks of this work.

2 Background
2.1 Large Events Models

LEMs draw inspiration from LLMs, applying their sequential predic-
tion approach to the domain of soccer [9]. LLMs utilize the context
provided by preceding words to forecast the subsequent word in a
text, with each new word modifying the context for continuous, co-
herent text generation. Similarly, LEMs utilize the current state of
a soccer game to anticipate the next event. This model aims to pre-
dict the forthcoming event in a series based on the current game state
(i.e., current result, previous events). Leveraging the sequential na-
ture of soccer event data, LEMs enable large-scale simulation of soc-
cer matches. These simulations are grounded entirely in data, with
the model perpetually updating the game state with each new pre-
dicted event, as depicted in Figure[T]

This approach provides many advantages over traditional machine
learning approaches. It can be used to infer basic statistical ap-
proaches like expected goals [11]] or to simulate large amounts of
data [7]]. Most relevant is that it offers a framework that uses the
same backbone to generate many insights through simulation. Even
smaller LEMs can be used to simulate a restricted version of the soc-
cer match, focusing only on key events [[13} [18].

the next token, and (2) context as the environment of a club, its players and
playstyle, which affects well a player performs on a team
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Figure 1.
context that contains all current information, it can forecast the next token.

LEMs and LLMs work on the same principle: given the initial

This token then updates the context iteratively until an exit criterion is met.
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ables we need to forecast are aligned. For example, if the following
action is a pass, then the likelihood of being an accurate action is
much higher when compared to being a shot. If we tried to forecast
the two variables simultaneously, the error would be much higher
than forecasting them sequentially. Therefore, the LEM sequentially
forecasts the variables in the following order:

1. Model Type forecasts the next event type.

2. Model Accuracy forecasts the accuracy of the next event and if
the next event is a goal.

3. Model Data forecasts the next event location, the time elapsed
until the next event, and if the home team performs the next event.

The LEM forecasts the probability distribution for each variable.
For example, the output of Model Type is the probability for each
possible event. In a simulation environment, and akin to LLMs, we
then sample the distribution using the aforementioned probabilities
to obtain the next event type. This means every forecast is proba-
bilistic, which means that, for the same context, the output will vary
according to the forecasted probabilities.

The features utilized in our LEMs are the following:

Event Type: A one-hot encoded categorical feature representing

the type of event, such as passes, shots, or fouls, with 33 distinct

types considered individually due to their unique distributions re-

lated to game context (e.g., location, score).

Period: A binary variable indicating the match period (first half =

0, second half = 1), excluding extra time or penalties.

e Minute: A normalized continuous variable indicating the time of

the event occurrence, adjusted to a 0-1 scale by dividing by 60.

X and Y: These are continuous features representing the spatial

coordinates on the soccer pitch, where the origin (0,0) is located

at the bottom left corner from the perspective of the attacking

team. The X-coordinate measures the horizontal location from one

team’s goal to another, while the Y-coordinate measures the ver-

tical location. Both coordinates are normalized to a range from O

to 1, ensuring a unified scale regardless of the actual pitch size.

This system ensures that actions are consistently recorded from

the perspective of the attacking team, thereby standardizing event

locations across different matches.

o IsHomeTeam: A binary indicator denoting whether the event was
performed by the home team (1) or the away team (0).

e IsAccurate: A binary indicator of whether the event was executed
accurately (1) or not (0).

e IsGoal: A binary indicator set to 1 if the event resulted in a goal,

otherwise 0.



e HomeScore and AwayScore: Normalized continuous variables
representing the scores of the home and away teams at the event
time, scaled to the interval [0,1] by dividing by 10.

The LEM forecasts the same variables as the inputs, with
some exceptions: (1) the model forecasts the TimeElapsed variable,
which quantifies the temporal distance between consecutive events,
rather than predicting Period and Minute, and (2) HomeScore and
AwayScore are excluded from prediction, as these scores are directly
influenced by the outcomes of other variables that the model fore-
casts (i.e. if an event leads to a goal, the score changes deterministi-
cally).

To generate insights, LEMs are used as a simulation environment.
Following the generation of predictions, an interpretation function
updates the game state variables (i.e., the context). The new context
is then used to generate the next event. This process can be repeatedly
applied to simulate the sequence of events throughout a game.

LEMs have advantages and limitations. The positives include their
foundational role in creating various metrics for soccer players, rang-
ing from general performance in a season to specific impacts on as-
pects like shooting quality in particular zones. Simulating numerous
games also allows for extracting patterns in the data, enabling com-
parison with baseline or affected patterns to create insightful metrics
[15]. However, a significant limitation is that the model simulates
generic football matches, as it was trained on data from all teams,
resulting in average game simulations. In Section[3} we will propose
a methodology to enable context-specific insights by fine-tuning the
models to replicate the behavior of specific teams and players to un-
derstand how changing a player’s context affects their performance.

Another large advantage of LEMs is that they can be built with
any scope of data. There are no differences in methodology to build
a LEM for women’s or men’s soccer, first tier versus non-league,
among others. Furthermore, similar methods can be applied to track-
ing data. This significant advance leads us towards a complete, gen-
eral model that can solve all problems in the game of soccer.

From a technical standpoint, LEMs use deep learning to learn the
models. In theory, most machine learning algorithms can model these
behaviors, with decision-tree-based ensembles performing the best.
However, from a practical aspect, the models require fast inference
times. This is where Deep Learning with GPUs comes in handy. The
inference time is magnitudes faster than any other.

We used PyTorch to build and fine-tune the models to the specific
data in this specific implementation. We provide the code to replicate
all the aspects of this work, including the training of the base LEMs,
at https://github.com/nvsclub/LargeEventsModel.

3 Methodology
3.1 Data

Event data in football refers to a structured record of specific occur-
rences during a match. These occurrences encompass a wide range of
actions, including passes, shots, fouls, tackles, and goals. Each event
is time-stamped and associated with various attributes such as player
IDs, event types, locations on the field, and outcomes. This granu-
lar level of data provides a comprehensive view of the dynamics and
flow of the game, allowing for in-depth analysis and insights into
team strategies, player performance, and overall match dynamics.
This study relies on the Public Wyscout dataset [10] as the pri-
mary source of football event data. This dataset encompasses fixtures
from top-tier leagues, including the Premier League (England), La
Liga (Spanish), Serie A (Italy), Bundesliga (Germany), and Ligue 1

(France), with a focus on the 2017/2018 season. It provides an exten-
sive range of events, from passes and shots to aerial duels and saves.
We opted for this dataset since it was the most extensive available
at the start of the project. Although the size of the dataset limits the
comprehensiveness of the study, it was important for us to provide an
open platform to incentive collaboration for further developments.

Our study used data from Ligue 1, encompassing 380 games, and
Bundesliga, with 306 games, as the primary training set for the foun-
dational Large Event Models (LEMs). For model validation, we em-
ployed data from 380 games in Serie A. To further refine and enhance
the models, we incorporated data from the Premier League and La
Liga (380 games each), using this additional information to extract
detailed insights.

3.2 Fine Tuning LEMs to Learn Different Contexts

Fine-tuning means adjusting a pre-trained model on a specific task or
dataset to improve performance. It involves further training a model
already trained on a large dataset, typically on a more specialized or
smaller dataset related to the task [[12]. The overall process can be
seen in Figure 2}

Training a general model using a
diverse dataset of games

Continue training with data from

a specific context, e.g., data Fine-tuning
from a team or from a player
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Figure 2. This figure depicts the two-stage process of developing a fine-
tuned LEM model: first, we use a large dataset to build a LEM, then we fine-

tung it yising SREGHICONEAROUOET fifgtune the models to reflect the
specific behaviors of the teams. In essence, we change the general
context-agnostic LEMs to perform another task. Instead of forecast-
ing the next event in an average game of soccer, it will forecast the
next event in a game within a predefined context. For this, we select
the subset of data that is of interest. For example, if we want to build a
model replicating the behavior of one team playing at home, we fine-
tune the model using data from that specific team playing at home.
Table |Z| presents the different types of contexts that we can learn in
LEMs. For each type of fine-tuning, we reshape the training data
to include exclusively some subsets of data, marked as "Includes".
Sometimes overlap occurs. For example in player replacement, when
including team data, it will necessarily include data from the player
being replaced. Therefore, if we want to remove the effect of the
player currently on the team that is going to be replaced by our tar-
get, we need to remove all data points related to the outgoing player.


https://github.com/nvsclub/LargeEventsModel

Fine-Tuning Team Opponent Player Player

T i W T 0 v
Type Replaced
Team Includes N/A N/A N/A Type 4233 [256] 0.0010 32 sigmoid
Player N/A N/A Includes N/A Accuracy 75 2 [128] 0.0410 1024 sigmoid
Player Addition Includes N/A Includes N/A Data 77 264 [64,256,256] 0.0063 1024  relu
Player Replacement  Includes N/A Includes  Removed
Team Face-off Includes Includes N/A N/A

Table 2. The types of fine-tuning that we can perform on LEMs. The type
"Team" focuses on replicating a single team’s behavior against the league
average. The type "Player" focuses on estimating the impact of the player on
the average team of the league. "Player Addition" includes data from a new
player in the context of the new team. "Player Replacement” does the same
but excludes data from the player being replaced. In the "Team Face-off" type,
we have the data of two teams: the home team and the away team.

This paper focuses on the first four types of fine-tuned LEMs. We
have excluded the "Team Face-off" model from this analysis. The ra-
tionale behind this exclusion is that "Team Face-off" primarily cen-
ters on evaluating potential tactical outcomes of two opposing teams
rather than providing insights into player recruitment, which is the
primary focus of this study.

3.3 Player Addition vs Player Replacement

Two categories can be used to measure a player’s performance within
anew context: "Player Addition" and "Player Replacement." The dif-
ference between both approaches is that Player Replacement actively
removes the data from a competing player in the squad. On top of
adding the influence of the incoming player, we remove the existing
influence of the previous player on our squad. Therefore, instead of
the training process slowly overwriting the data from the players, it
is removed, allowing the training process to start from a blank slate.
Table [3] shows the players chosen to be replaced. The criterion for
selection of these players was "the attacking player with the least
amount of game time from the top 11 most used players in the sea-

son .

Team Player Replaced
Man City L. Sané
Liverpool S. Mané
Tottenham Son Heung-Min

Arsenal A. Iwobi
Man United R. Lukaku
Chelsea V. Moses
Bournemouth J. Ibe
Huddersfield T. Ince
Newcastle Joselu
Everton D. Calvert-Lewin
Watford A. Carrillo
Leicester M. Albrighton
Southampton N. Redmond
Brighton S. March
Swansea S. Clucas
WBA J. Rodriguez
Burnley A. Barnes
Stoke City P. Crouch
Crystal Palace C. Benteke
West Ham M. Antonio

Table 3. The list of players that are replaced in the Player Replacement fine-
tuning.

3.4 Parameter Tuning

We replicate the procedure to build the general LEM from Mendes-
Neves et al. (2024) [9]], described in TableE[

Regarding the parameters used to fine-tune the models, we opted
to maintain the original parameters used to train the general LEM,
with the following exceptions:

e The maximum number of epochs is 25.

e The learning rate lowered to 1/10th of the original value.

e The batch size follows Equation[T] where n is the number of events
used for fine-tuning.

Batch Size = log(n?®), where 32 < Batch Size < 256 (1)

However, we recommend optimizing these parameters through
Bayesian optimization methods (same as the original LEM). We did
not incur on this process due to our computational constraints.

The definition of the batch size is the most critical parameter in this
work. Fine-tuning a model requires finding the right balance between
frequent updates through backpropagation and the training speed of
the models [12]. Iteratively, we found Equation(T]to provide the right
balance for our use case. The other relevant parameter we must set
is the number of simulations for each LEM. As visible in Figure 3]
the larger the number of simulations, the lower the variance of the
results. We opted for a value of 2500 simulations since it finds a
reasonable compromise between simulation time and low variance
in the results. Furthermore, we train 10 iterations for each model,
allowing us to evaluate the variability of the training process.
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Figure 3. This figure illustrates that the outcome variability originates from
the model’s training and fine-tuning rather than the simulation process. At
the threshold of 3000 simulations, a sequence of 10 consecutive wins is re-
quired to alter the expected points by a mere +0.01. Additionally, the figure
shows that the error distribution follows a normal curve, indicating that, over
an extended period, the average error in simulations is expected to converge
towards zero.

3.5 Limitations

This work is performed only for home games, but the work is ex-
tendable for away games. Since the methodology for away games is
a mirror image of the process used to generate the results for home



games, we opted to focus our analysis on the data from the home side.
The results for the away perspective can be replicated by changing
the flag “is_home” in the test setup to “False.”

4 Experiments

Our framework is difficult to evaluate because we do not have an ob-
jective ground truth regarding the replication of teams through simu-
lation. Therefore, our experiments aim to provide intuition into how
our framework provides insights.

4.1 Simulating the Premier League

Table [5] showcases the comparison of forecasts from the finetuned
LEM models against the actual end-of-season results for the league.
The table displays the expected positions as predicted by the model
versus the actual end-of-season positions for each team, both for the
full league and for home games only. The average displacement value
here represents the mean deviation of the predicted positions from
the actual positions, providing a measure of the model’s accuracy,
with a specific emphasis on the data from home games, as all models
are fine-tuned using this subset of data. This analysis allows us to
understand the model’s predictive capability and identify where it
has over or under-estimated team performances.

EoS
Exp. EoS Home
Team Place | Place Place

Man City 1 1 - 1 -
Liverpool 2 4 12 4 12
Tottenham 3 3 - 5 12
Arsenal 4 6 12 2 12
Man United 5 2 13 3 12

Chelsea 6 5 T1 6 -
Bournemouth 7 12 15 15 18
Huddersfield 8 16 18 16 18

Newcastle 9 10 Il 9 -
Everton 10 8 172 7 13
Watford 11 14 13 12 31
Leicester 12 9 13 10 12
Southampton 13 17 14 19 16
Brighton 14 15 11 8 16
Swansea 15 18 13 17 12
West Brom 16 20 14 20 14
Burnley 17 7 110 14 13

Stoke 18 19 Il 18 -
Crystal Palace 19 11 18 13 16
West Ham 20 13 17 11 19
Avg. Disp. 3,4 3,3
Top 6 Avg. Disp. 1,3 1,3

Table 5. Comparing the forecasts from the finetuned LEM models against
the end-of-season (EoS) tables. The average displacement (Avg. Disp.) is
the average number of team positions from the actual position. We compare
against the full and home tables, with the home table providing less displace-
ment since all models are finetuned using home game data.

Manchester City and Liverpool performed as expected, securing
the first and second positions, respectively. While Manchester City
won the Premier League with a record number of points, Liverpool
went to the Champions League final, which is missing from our
dataset but indicates the strength of the team. However, discrepan-
cies arise further down the list. It is noteworthy that in the top 6,
the average displacement is 1.3, while in the whole league, the dis-
placement increases to 3.4. The reason for this is that the Premier
League is extremely competitive. For example, there are cases in the
2017/18 Premier League where adding a win to a team could change
the team’s placement by up to 4 positions.

An in-depth analysis of the stats generated by fine-tuned models is
presented in Annex

4.2  Cristiano Ronaldo vs Lionel Messi

In Figures @] and [5] we explore the hypothetical influence of football
superstars Cristiano Ronaldo and Lionel Messi on the home perfor-
mance of teams. Utilizing fine-tuned predictive models, the violin
plots reveal the distribution of expected home points with the addi-
tion of either player to the teams. These distributions allow us to com-
pare the mean, variability, and shape of the teams’ points distribution
under the baseline conditions and the two alternative scenarios.

The "Team" data, indicated by the black and white violin, shows
the distribution of points without the influence of star players. There
is a noticeable variation between teams, with some, like Manchester
City and Liverpool, showing a higher median and denser distribu-
tion towards the top end of the scale, suggesting consistently high
performance at home games.

The overlay in blue shows the theoretical impact of Cristiano
Ronaldo on these teams. In cases such as Tottenham, there is a dis-
cernible increase in the average home points and the density towards
the higher end of the points spectrum. This suggests a positive impact
on the team’s home performance when Ronaldo is hypothetically part
of the team. The orange overlay indicates Messi’s hypothetical influ-
ence. Similar to Ronaldo, Messi’s presence elevates the home points.
However, their influence varies across different teams, indicating that
the impact is team-specific.

An interesting aspect of our results is that both players fail to im-
prove Manchester City. We believe this is to be expected. In our
dataset, Manchester City made a record-breaking season with 100
points. This represents a team executing at an exceptional level;
therefore, any change would likely disrupt the team’s currently opti-
mized routines.

There is a fact that we did not analyze in-depth, but it is of crucial
importance. Let us look at the cases of Watford and Leicester. Messi
performs much better than Ronaldo in Watford, while the opposite
happens in Leicester. The reason is largely attributed to the players
already performing in the roles they would fill. Messi is a much bet-
ter player when compared with Watford’s Roberto Pereyra or André
Carrillo than he is when compared with Leicester’s Riyad Mahrez.
For Ronaldo, he is a much better player than Leicester’s Demarai
Gray than he is when compared with Watford’s Richarlison. These
are the contexts that we aimed to bring with our LEMs. The current
state of a team and its players has a very high impact on the outcomes
measured.

The way players change the team’s behavior is also very important.
We present the results as distributions rather than absolute values be-
cause there are many aspects of the distribution of the results that are
interesting to analyze. For example, introducing Messi or Ronaldo
to the teams in the Premier League generally leads to a reduction
in the variance of the distribution. This is a result since decreasing
variance can be advantageous in certain situations. For example, the
likelihood of relegation can be decreased by changing the variance
of the team, even at the expense of decreasing the average outcome.

In player replacement analysis, the outcome suggests that we can
calculate it by adding the influence of the incoming player and sub-
tracting the influence of the outgoing player. This finding implies
that we might be able to combine individual player impact distri-
butions from separate simulations under specific conditions, which
could help reduce the time spent on simulations.
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Figure 4. The expected impact of adding Cristiano Ronaldo or Lionel Messi on the teams in the EPL. The figure presents the violin plots of the simulations

using the fine-tuned models.
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Figure 5. The expected impact of replacing a player for Cristiano Ronaldo or Lionel Messi on the teams in the EPL.

4.3 The importance of context

In Figure [6] we present the results of fine-tuning the models using
only data from the players. We observe that there are several unex-
pected results. To explore further, we analyze the impact of adding
the best and worst performers to the teams in the Premier League in

Figure[7]
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Figure 6. The impact on the baseline of the top 10 players of the 2017/2018
Seaﬁ?gu?ﬁﬁﬁlé?ﬁi‘msﬁ%f@écﬂ’i% role of explaining that context is every-

thing. Figure [6] presents the expected impact of players if they were
placed in the original context of the LEM, i.e., placed in a team that
is the average of all teams. Figure 9 shows why it is wrong to use this
general context. We observe that, when introducing the best (Illar-
ramendi) and the worst (Casemiro) performers from Figure |§| in the
teams in the Premier League, the difference between them is smaller
than first suggested. While Illarramendi still outperforms Casemiro
most times, the difference between the impact on the teams is lower
than expected.

5 Discussion

These results show that LEMs can play a fundamental role in sports
analytics, especially in evaluating players under context. LEMs can
understand and learn a team’s playstyle, enabling us to probe a player
in much more detail and across a wide range of metrics. While this
work is limited to analyzing the Points Per Game metric, many other
metrics can be derived from this method. Note that LEMs generate
event data; therefore, any metric based on event data can be used to
evaluate the player in the new context.

Nonetheless, several challenges need to be addressed. Measuring
context with event data is limited. It limits the data to the events
where the player interacts with the ball. Furthermore, we cannot
introduce more events, for example, passes received, because they
would be introducing information that is not exclusive to the player
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Figure 7. The expected impact of adding Casemiro or Illarramendi on the teams in the EPL.

but also from their teammates. We cannot completely isolate the
player from its current team context. Therefore, the results we present
are influenced in a certain amount by the current context of the player
and, at the same time, are missing some crucial information about the
player that is not captured in event data or, when captured, cannot be
used because it contains the context of multiple players. The frontier
between one player’s data and another is not clear-cut but rather a
fuzzy frontier.

From the practical standpoint, LEMs struggle to reason the poten-
tial changes that a player can bring to the play model of a team. For
example, if Messi went to Stoke City, they would avoid playing a di-
rect style of play. This is leading to an underestimation of the actual
value that these star players would bring to a team. For teams play-
ing a style that suits them, they provide enormous value. However,
for teams whose style fits less, they provide little value. This is not a
fault of the model but rather a limitation. LEMs are suitable to eval-
uate how a player would fit in the current context rather than in the
hypothetical context that the team will play when the player arrives.

Many aspects of the approach can be improved: training LEMs
with larger datasets, especially including more data from the tar-
get league, using multi-season datasets to validate the metrics ob-
tained across different transfers, increasing the context size of the
LEM, currently limited to 1 event but can be extended to a much
larger number of events, and test more deep learning architectures
such as using Transformers and Snapshot Ensembles to improve the
model accuracy. The improvement suggestions require two types of
resources: increasing the size of the datasets available and increasing
the computational power. Regarding the latter, it is also important to
explore potential computational efficiencies that can be used to gen-
erate faster results.

6 Conclusion

This study has demonstrated the effectiveness and limitations of
LEMs in soccer, particularly in the context of the EPL. We observed
that the baseline performances of teams like Manchester City and
Liverpool were highly predictable. In contrast, teams such as West
Ham and Stoke City presented more variability in match outcomes.
Adding star players like Ronaldo and Messi generally led to more
predictable outcomes, evidenced by a decrease in log-loss for most
teams. However, their impact varied depending on team dynamics
and playstyles. For instance, their inclusion did not notably improve
Manchester City’s performance, likely due to their already optimized

play.

Our findings suggest that LEMs are a valuable tool in sports an-
alytics, capable of understanding and learning team playstyles. This
allows for a detailed analysis of players in various contexts using
metrics derived from event data, allowing for insights that can in-
fluence the player recruitment strategy. However, limitations exist in
the current approach, particularly in isolating player influence from
team context and predicting changes a player might bring to a team’s
playstyle.

While LEMs show great potential in player and team performance
analysis, their effectiveness is contingent on the context and dynam-
ics of the team and league. As such, they represent an evolving tool in
sports analytics, with scope for significant advancements and broader
applications in the future.

Acknowledgements

This work is financed by National Funds through the Portuguese
funding agency, FCT - Fundac@o para a Ciéncia e a Tecnologia,
within project UIDB/50014/2020.

References

[1] T. Decroos, L. Bransen, J. Van Haaren, and J. Davis. Actions Speak
Louder than Goals: Valuing Player Actions in Soccer. In Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1851-1861, Anchorage AK USA,
July 2019. ACM. ISBN 978-1-4503-6201-6. doi: 10.1145/3292500.
3330758. URL https://dl.acm.org/doi/10.1145/3292500.3330758.

J. Fernindez, L. Bornn, and D. Cervone. A framework for the fine-
grained evaluation of the instantaneous expected value of soccer pos-
sessions. Machine Learning, 110(6):1389-1427, June 2021. ISSN
0885-6125, 1573-0565. doi: 10.1007/s10994-021-05989-6. URL https:
/Mink.springer.com/10.1007/s10994-021-05989-6.

J. K. Hakes and R. D. Sauer. An economic evaluation of the mon-
eyball hypothesis. Journal of Economic Perspectives, 20(3):173-186,
September 2006. doi: 10.1257/jep.20.3.173. URL https://www.aeaweb.
org/articles?1d=10.1257/jep.20.3.173.

J. Huang and K. C.-C. Chang. Towards reasoning in large language
models: A survey, 2023.

M. Lewis. Moneyball: The Art of Winning an Unfair Game. Business
book summary. W. W. Norton, 2004. ISBN 978-0-393-32481-5. URL
https://books.google.pt/books?1d=3DnUCW SnciOC.

I. G. McHale and B. Holmes. Estimating transfer fees of profes-
sional footballers using advanced performance metrics and machine
learning. European Journal of Operational Research, 306(1):389-399,
Apr. 2023. ISSN 03772217. doi: 10.1016/j.ejor.2022.06.033. URL
https://linkinghub.elsevier.com/retrieve/pii/S0377221722005082.

T. Mendes-Neves, J. Mendes-Moreira, and R. J. F. Rossetti. A Data-
Driven Simulator for Assessing Decision-Making in Soccer. In G. Mar-
reiros, F. S. Melo, N. Lau, H. Lopes Cardoso, and L. P. Reis, ed-

[2

—

(3]

[4

=

[5

—_

(6]

(71


https://dl.acm.org/doi/10.1145/3292500.3330758
https://link.springer.com/10.1007/s10994-021-05989-6
https://link.springer.com/10.1007/s10994-021-05989-6
https://www.aeaweb.org/articles?id=10.1257/jep.20.3.173
https://www.aeaweb.org/articles?id=10.1257/jep.20.3.173
https://books.google.pt/books?id=3DnUCWSnci0C
https://linkinghub.elsevier.com/retrieve/pii/S0377221722005082

itors, Progress in Artificial Intelligence, volume 12981, pages 687—
698. Springer International Publishing, Cham, 2021. ISBN 978-3-030-
86229-9 978-3-030-86230-5. doi: 10.1007/978-3-030-86230-5_54.
URL https://link.springer.com/10.1007/978-3-030-86230-5_54. Series
Title: Lecture Notes in Computer Science.

[8] T.Mendes-Neves, L. Meireles, and J. Mendes-Moreira. Valuing players
over time, 2022.

[9] T.Mendes-Neves, L. Meireles, and J. Mendes-Moreira. Towards a foun-
dation large events model for soccer. [Manuscript under revision at the
Machine Learning Journal], 2024.

[10] L. Pappalardo, P. Cintia, A. Rossi, E. Massucco, P. Ferragina, D. Pe-
dreschi, and F. Giannotti. A public data set of spatio-temporal match
events in soccer competitions. Scientific Data, 6(1):236, Dec. 2019.
ISSN 2052-4463. doi: 10.1038/s41597-019-0247-7. URL http://www.
nature.com/articles/s41597-019-0247-7.

[11] R. Pollard, J. Ensum, and S. Taylor. Estimating the probability of a
shot resulting in a goal: The effects of distance, angle and space. Int. J.
Soccer Sci., 2, 01 2004.

[12] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improv-
ing Language Understanding by Generative Pre-Training. 2018.
URL  https://cdn.openai.com/research-covers/language-unsupervised/
language_understanding_paper.pdf.

[13] I. Simpson, R. J. Beal, D. Locke, and T. J. Norman. Seq2Event:
Learning the Language of Soccer Using Transformer-based Match
Event Prediction. In Proceedings of the 28th ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining, pages 3898-3908,
Washington DC USA, Aug. 2022. ACM. ISBN 978-1-4503-9385-0.
doi: 10.1145/3534678.3539138. URL https://dl.acm.org/doi/10.1145/
3534678.3539138|

[14] Statsbomb. What is Expected Threat (xT)? Possession Value
models explained. URL |https://statsbomb.com/soccer-metrics/
possession-value-models-explained/.

[15] Tahmeed Tureen and SBH Olthof. “Estimated Player Impact” (EPI):
Quantifying the effects of individual players on football (soccer) ac-
tions using hierarchical statistical models. In StatsBomb Conference
Proceedings, Wembley, London, 2022.

[16] The Come On Man. Predicting the Success of a Transfer. URL https:
//thecomeonman.github.io/PredictingTransterSuccesses/.

[17] Tom Worville. How football’s finest are using analytics to find
an edge, 2021. URL https://theathletic.com/2882187/2021/10/12/
how-to-find-the-edge-examining- premier-league-analytics-trends- what-is-to-come/.

[18] C.C.K. Yeung, T. Sit, and K. Fujii. Transformer-Based Neural Marked
Spatio Temporal Point Process Model for Football Match Events Analy-
sis, Feb. 2023. URL http://arxiv.org/abs/2302.09276, arXiv:2302.09276
[cs].


https://link.springer.com/10.1007/978-3-030-86230-5_54
http://www.nature.com/articles/s41597-019-0247-7
http://www.nature.com/articles/s41597-019-0247-7
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://dl.acm.org/doi/10.1145/3534678.3539138
https://dl.acm.org/doi/10.1145/3534678.3539138
https://statsbomb.com/soccer-metrics/possession-value-models-explained/
https://statsbomb.com/soccer-metrics/possession-value-models-explained/
https://thecomeonman.github.io/PredictingTransferSuccesses/
https://thecomeonman.github.io/PredictingTransferSuccesses/
https://theathletic.com/2882187/2021/10/12/how-to-find-the-edge-examining-premier-league-analytics-trends-what-is-to-come/
https://theathletic.com/2882187/2021/10/12/how-to-find-the-edge-examining-premier-league-analytics-trends-what-is-to-come/
http://arxiv.org/abs/2302.09276

A Stats from Simulations

The accompanying Table [6] delves into a comprehensive set of per-
game statistics from our simulations, segmented into actions per-
formed by the team (home) and by the opponent (away). This break-
down provides insights into the teams’ performances in different set-
tings. Key metrics include the number of passes, attacking, defen-
sive, aerial duels, shots, and goals. Such a detailed statistical analysis
is crucial for understanding the dynamics of each team’s style and
strategies.

We see clear evidence that the LEM can learn a team’s playstyle
and patterns. Manchester City has the highest number of passes per
game, indicating a playing style emphasizing possession. At the same
time, teams like Burnley and Stoke City have lower pass counts, sug-
gesting a more direct style of play during games. Furthermore, the
latter teams are among the highest-ranked teams in terms of Aerial
Duels, emphasizing the direct style of the team. A high number of
passes with a corresponding high number of shots and goals sug-
gests a possession-based approach that effectively creates and uti-
lizes scoring opportunities. In contrast, teams with lower pass counts
but higher aerial duels and crosses might prioritize physicality and
set pieces as key elements of their game plan.



Attack | Attack Def. Def. Aerial | Aerial
Passes | Passes Duels Duels Duels | Duels | Duels Duels Shots | Shots | Goals | Goals
Team Home | Away Home Away | Home | Away | Home | Away | Home | Away | Home | Away

Man City 621 283 72 53 54 71 27 27 16 7 2.8 1.2
Liverpool 516 343 78 61 62 77 39 38 16 8 2 0.9
Tottenham 490 320 76 63 65 74 40 41 15 10 1.7 0.8
Arsenal 509 353 69 67 68 69 41 41 15 10 2.2 1.4
Man United 459 371 76 67 67 76 35 37 12 9 14 0.9
Chelsea 467 388 77 67 68 76 37 38 15 10 1.3 0.9
Bournemouth 379 391 70 68 69 70 47 48 12 11 1.3 1.2
Huddersfield 369 395 69 71 71 69 49 50 9 9 1 0.8
Newcastle 337 398 65 71 71 66 57 56 11 11 1 0.8

Everton 344 375 68 72 72 68 58 55 9 11 1.1 1
Watford 370 348 73 71 71 73 53 54 11 10 1.2 1.2

Leicester 365 361 72 71 71 72 48 48 10 10 1.1 1
Southampton 405 355 70 66 66 69 44 44 12 11 1 1.1

Brighton 365 421 62 67 67 62 49 51 10 11 0.9 1
Swansea 383 427 66 69 69 66 46 47 10 11 1 1.1
WBA 325 409 67 70 70 66 51 51 10 11 1.2 1.3
Burnley 331 363 60 62 62 61 59 61 10 11 0.7 0.7
Stoke City 305 384 64 68 68 64 57 54 10 12 1.1 1.3
Crystal Palace 343 385 76 77 76 76 44 46 11 11 1.1 1.3
West Ham 348 375 73 69 69 73 47 51 10 10 1 14

Table 6. Per game average of several team statistics in our simulations. The "Home’ columns detail the actions performed by the team, while the ’*Away’
columns represent the actions performed by the opposition teams
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