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Abstract

We present an innovative cluster-based method employing linear combinations of diverse cluster
mean-field (cMF) states, and apply it to describe the ground state of strongly-correlated spin systems.
In cluster mean-field theory, the ground state wavefunction is expressed as a factorized tensor product
of optimized cluster states. While our prior work concentrated on a single cMF tiling, this study
removes that constraint by combining different tilings of cMF states. Selection criteria, including
translational symmetry and spatial proximity, guide this process. We present benchmark calculations
for the one- and two-dimensional J1 − J2 and XXZ Heisenberg models. Our findings highlight two
key aspects. First, the method offers a semi-quantitative description of the 0.4 ⪅ J2/J1 ⪅ 0.6 regime
of the J1 − J2 model - a particularly challenging regime for existing methods. Second, our results
demonstrate the capability of our method to provide qualitative descriptions for all the models and
regimes considered, establishing it as a valuable reference. However, the inclusion of additional (weak)
correlations is necessary for quantitative agreement, and we explore methods to incorporate these extra
correlations.

1 Introduction
Hartree-Fock (HF) mean-field theory treats com-
plex systems using a wave function correct for
non-interacting electrons. When the correlations
between electrons are weak, this approach works
well. When those correlations are strong, however,
the HF treatment is inadequate. Cluster mean-
field (cMF1–9) theory generalizes this basic idea
but provides a more nuanced and flexible frame-
work. It also uses a wave function which is cor-
rect for non-interacting constituents, but where in
HF these constituents are the individual electrons,
cMF uses multi-electronic fragments. Crucially,
the wave function within each fragment (which we
usually refer to as a “cluster”, “tile”, “plaquette”
or “covering”) is correlated. That is, cMF has a
wave function which includes correlations within
a fragment but not between fragments. This ap-
proach seems particularly suited to systems where

correlations are in some sense localized, as seen in
lattice models with short-range interactions or in
systems of well-separated molecules.

In recent publications,2,3 we have successfully
applied cluster-based methodologies to address
strongly correlated spin systems, demonstrating
their effectiveness in dealing with the challenging
J1 − J2 and XXZ Heisenberg models. These in-
vestigations are extensions of our previous work,
where we introduced cluster mean-field theory
(cMF) for fermionic systems.1 One of the key
questions we must ask in cMF is what the indi-
vidual clusters should be. When the clusters are
sufficiently large, the details of the cluster size
and shape are not very important. However, be-
cause the computational cost of cMF scales ex-
ponentially with cluster size, practical considera-
tions require relatively small clusters, and when
the clusters are small, cMF is more sensitive to the
size and shape of the tiles. We can try to mitigate
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this dependence to some extent by using inhomo-
geneous plaquettes,10 but relying on a single un-
derlying tiling scheme with relatively small tiles
ultimately limits the accuracy of cMF.

Here, we consider a linear combination of cMF
states (LC-cMF), each of which uses a differ-
ent tiling scheme. This leads to a kind of cMF-
based nonorthogonal configuration interaction and
alleviates the dependence of cMF upon the tiling
scheme chosen. Moreover, our results show that
this LC-cMF approach provides significant bene-
fits for strongly-correlated systems for which cMF
with small tiles is inadequate.

The basic idea of combining several tiling
schemes is not a new one, but has mostly been
restricted to two-site tiles (“dimers”) often associ-
ated with valence bond theory.11,12 This approach
has found extensive applications in the exami-
nation of polymers and Heisenberg chains,13–17

and even square-planar lattices.18,19 Notably, res-
onating valence bond theory20 has been put for-
ward as a means to elucidate phenomena such as
high-temperature superconductivity, particularly
in cuprate compounds, rendering it even more rele-
vant in the context of addressing strong-correlation
effects.

A parallel endeavor was undertaken by Garcia-
Bach and Klein, as evident in works like Refs.
18,19, which are primarily concerned with singlet
ground states and are limited to dimer coverings.
In contrast, we expand our approach to accommo-
date diverse tile sizes and systems of varying S2

quantum numbers. This is motivated as we want to
explore both XXZ and J1 − J2 Heisenberg lattices,
mainly because the intermediate spin-liquid-like
region J2/J1 ≈ 0.5 of the square J1−J2 Heisenberg
model is very difficult for conventional methods to
describe and the XXZ model does not have S2 as a
symmetry and comes with a diverse phase spec-
trum. For a more comprehensive understanding
of the interplay between cMF and other advanced
methodologies, as well as insights into the advan-
tages of cMF relative to these approaches, readers
are directed to Refs. 1–3 and the associated refer-
ences therein.

Our focus here is on benchmarking cMF-based
methods for spin systems because they have
lower computational cost than do equivalently-
sized fermionic lattices and because exact or

nearly exact numerical results are readily avail-
able for relatively large spin lattices. It should,
however, be noted that cMF has previously been
shown to be effective for fermionic systems1,21 as
well as the spin systems which we are consider-
ing here. To assess the validity of our findings,
we compare our results for one-dimensional (1D)
systems to those obtained using the density matrix
renormalization group (DMRG),22 as it gives the
exact results in 1D with a manageable, large bond
dimension, and to those obtained using exact diag-
onalization (FCI) for two-dimensional systems.

Figure 1: Nearest (J1) and next-nearest neighbor
(J2) interactions.

2 Background

2.1 Heisenberg model
Spin lattices, particularly those represented by
Heisenberg models, possess considerable chem-
ical significance. An illustration of this is the
analysis of iron-sulfur clusters, such as ferredox-
ins related to nitrogen fixation or photosynthesis,
which have been simulated based on the Heisen-
berg model.23 Another instance involves single-
chain magnets, like Cobalt(II) Thiocyanate, which
have been modeled using the XXZ chain.24 Fur-
thermore, specific electrides, conjugated hydrocar-
bons, and superconductors exhibit features remi-
niscent of Heisenberg exchange interactions.25–27

In this study, we investigate the XXZ and the J1
- J2 Heisenberg models. Both models character-
ize an assembly of interacting spins on a lattice
with a finite size N. The XXZ model specifically
accounts for interactions solely between nearest
neighbors and incorporates anisotropic interac-
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tions that violate S2, whereas the J1 - J2 model en-
compasses both nearest and next-nearest neighbor
interactions with isotropic interactions, preserving
S2 as a symmetry. In the case of a one-dimensional
lattice, both models can be exactly solved using
Bethe ansatz.28,29 Although exact solutions are not
achievable for the 2D cases, extensive numerical
studies have been conducted (refer to, for instance,
Refs. 30–47 for the J1 − J2 Hamiltonian and Refs.
48–54 for the XXZ model). The Hamiltonian of
the XXZ Heisenberg model is

H = ∑
⟨i j⟩

[
1
2
(S+i S−j +S−i S+j )+∆Sz

i S
z
j

]
(1)

where S±i and Sz
i denote the standard spin-1

2 oper-
ators acting on site i, ⟨i j⟩ indicates nearest neigh-
bor interactions, and ∆ is the parameter signify-
ing the anisotropy of the model. The exact ground
state of the one-dimensional instance of this model
exhibits three distinct spin configurations:48 For
∆≳1, the magnetic correlations manifest as Néel
antiferromagnetic; for ∆ ≲ − 1, they are ferro-
magnetic; and for −1 ≲ ∆ ≲ 1, the system re-
sides in the XY phase characterized by gapless ex-
citations and long-range correlations.55 Notably,
at ∆ = −1, the system’s ground state is a max-
imally entangled, extreme antisymmetrized gem-
inal power (AGP) state,48,56 with an energy of
E =−N/4, where N denotes the number of spins.
Lastly, the ferromagnetic phase lends itself to rela-
tively straightforward perturbative treatment, start-
ing from a product state (HF-like) where all spins
align in the z-direction. Consequently, our focus
primarily centers on the more challenging region
of ∆ ≥−1.

The Hamiltonian of the J1 - J2 Heisenberg model
is

H = J1 ∑
⟨i j⟩

S⃗i · S⃗ j + J2 ∑
⟨⟨i j⟩⟩

S⃗i · S⃗ j (2)

where S⃗i represents the spin-1
2 vector operator at

site i, while J1 and J2 are the coefficients for
nearest-neighbor and next-nearest-neighbor (indi-
cated by ⟨⟨i j⟩⟩) couplings, respectively (refer to
Fig. 1). For the ensuing discussion, we restrict our
focus to the antiferromagnetic (AFM) scenario,
specifically when J1,J2 > 0. It is noteworthy that

in the one-dimensional scenario at J2/J1 = 0.5,
known as the Majumdar-Ghosh point,57 the ex-
act ground state is a uniform charge-density wave
of nearest-neighbor dimers (clusters of two sites).
Conversely, the two-dimensional (square) case is
more intricate. Over the past two decades, var-
ious methods have been employed to study this
model extensively. It has been established that
in the range 0 ≲ J2/J1≲ 0.4, the ground state
exhibits an AFM phase with Néel order, primar-
ily influenced by nearest-neighbor interactions J1.
For J2/J1 ≳ 0.6, the ground state demonstrates
an AFM phase with striped long-range order, pri-
marily due to the dominance of the next-nearest-
neighbor coupling J2 (see Fig. 2). In the range
0.4 ≲ J2/J1≲ 0.6, denoted as the paramagnetic
phase, the system encounters frustration as Néel
and striped orders compete. The precise nature
of this intermediate ground state remains a sub-
ject of debate, as do the type of phase transitions
and the corresponding transition points (for a more
comprehensive discussion, see Refs. 31,41,45,58–
66). The two extreme configurations are depicted
schematically in Fig. 2. In finite systems, similar
phenomena are observed, although without well-
defined transitions.

Figure 2: Néel (left) and striped (right) antiferro-
magnetic spin configurations of the square J1 − J2
Heisenberg model.

2.2 Cluster Mean-Field
The approach utilized in this paper for cluster
mean-field (cMF) is an extension of our group’s
prior work outlined in Ref. 1. For an in-depth in-
troduction to cluster-based methods, we refer the
reader to that reference. Here, we provide a gen-
eral overview of the framework and its current ex-
pansions.
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In conventional mean-field theory, the wave-
function is

|ΦHF⟩= ⊗
orbs

|φi⟩ (3)

where φi represents a state defined in the spin-
orbital i. Hartree-Fock optimizes the φi to min-
imize ⟨Φ|H |Φ⟩. A parallel approach can be
adopted to define the cMF wavefunction:

|ΦcMF⟩= ⊗
clusters

|φi⟩ (4)

In this case, φi denotes cluster wavefunctions cho-
sen to minimize ⟨Φ|H |Φ⟩. It is worth noting that
for SU(2) systems when the clusters consist of sin-
gle sites, cMF simplifies to standard mean-field
theory. However, for fermions, the optimization
of the the single-site “tiles” is necessary for this to
hold.1

Cluster mean field provides different results for
different clusterization schemes. For example, it
is generally more accurate for larger clusters. As
a result, specifying the clusterization scheme be-
comes important. To address this, we introduce a
notation system: cMF[m] signifies cMF with m-
site clusters in one dimension, while cMF[m× n]
denotes cMF with m × n clusters in two dimen-
sions, and so forth. When non-rectangular shapes
are used, distinct names will be employed to differ-
entiate them. Although cMF allows for clusters of
varying sizes, our current focus in this study cen-
ters on dimers (clusters of 2) and tetramers (clus-
ters of 4). These choices are favored due to their
lower computational demands.

Apart from being influenced by the size and con-
figuration of clusters, cMF also relies on the sym-
metry restrictions applied to these clusters. In
this study, we maintain the constraint that each
cluster represents an Sz = 0 eigenstate (where
we use the same symbol for the operator and
the eigenvalues), consistent with the principles
of both restricted (RcMF) and unrestricted cMF
(UcMF). Despite our previous findings,3 which
highlighted the nearly exact nature of generalized
cMF (GcMF) around ∆ =−1 for the XXZ model,
our current emphasis lies in broadening our ap-
proach by incorporating additional cluster cover-
ings rather than expanding the Hilbert space for
each cluster.

For 2-site clusters which are Sz = 0 eigenstates,
there are two configurations which we can separate
into singlet (S = 0) and triplet (S = 1) components:∣∣φi j

〉
S=0 =

1√
2
(
∣∣↑i↓ j

〉
−

∣∣↓i↑ j
〉
) (5)

∣∣φi j
〉

S=1 =
1√
2
(
∣∣↑i↓ j

〉
+

∣∣↓i↑ j
〉
) (6)

In RcMF, we choose each cluster wave function to
be a singlet. In UcMF, we can choose them to be
a linear combination of singlet and triplet, which
can also be equivalently defined as∣∣φUcMF

i j
〉
= ci j

↑↓
∣∣↑i↓ j

〉
+ ci j

↓↑
∣∣↓i↑ j

〉
(7)

with the requirement of the ci j coefficient opti-
mization. This increases the computational cost,
but provides much larger variational freedom. In
our work, we will use the former definition for
dimers and the more general approach (with co-
efficient optimization) for tetramers, for which a
complete basis cannot be straightforwardly de-
fined as we shall see in section 4.2.

2.3 Matrix elements and cMF opti-
mization

The computation of matrix elements in LC-cMF
follows a similar procedure to what we have
described in our prior publications.2,3 Calculat-
ing matrix elements involving states with distinct
tilings does not significantly increase the compu-
tational cost. The overall efficiency of this ap-
proach is contingent on the number of coverings
included and the optimization strategy for the co-
efficients (whether by selecting specific singlet and
triplet states or by concurrently optimizing the co-
efficients for each covering).

2.4 Computational details
In this study, our computations were conducted
using an in-house code, which utilizes the ITen-
sor67 library to construct the cMF states, simplify-
ing the computation of necessary matrix elements.
In the tetramer scenario, we initiated the cluster
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states with random configurations and employed
the conjugate gradient68 algorithm with numerical
gradients to optimize the energy. For conducting
the NOCI, we utilized the generalized eigenvalue
solver from the GNU Scientific Library (GSL).

As previously mentioned, we have employed
dimers (clusters of 2 sites) and tetramers (clus-
ters of 4 sites) in our research. These compact
clusters are computationally efficient in the cMF
framework and conveniently form the fundamen-
tal components of our lattices. It is worth noting
that the specific shapes of these clusters might not
always yield the lowest LC-cMF energy, primar-
ily due to finite-size effects. Nevertheless, when
the clusters reach a sufficient size, their shape be-
comes less significant.

All calculations utilized an equal count of up and
down spins within each cluster. This practice was
employed to ensure that the clusters represented
Sz = 0 eigenfunctions.

3 LC-cMF

3.1 A complete basis of dimer cover-
ings

A “covering” or “tiling” is defined as a product
of cluster states with non-overlapping indices. It
has been shown15 that a linear combination of
a combinatorial number of linearly independent
dimer coverings of valence bonds (RcMF[2]) with
optimized coefficients can give the exact singlet
ground state of Heisenberg lattices. Mathemati-
cally,

|ΨFCI⟩=
n

∑
a

ca |Ca⟩ (8)

where Ca is an RcMF[2] state for the a dimer cov-
ering. For the 1D case, n is given by

n =
N!

(N/2+1)!(N/2)!
(9)

where N is the number of sites. Finding these
dimer coverings is non-trivial and constitutes a
problem in graph theory and statistical physics.69

Below we will show the algorithm for the 1D case,
and for the interested reader, the 2D case is exten-

sively covered in Refs. 18,19.

Finding the dimer coverings for the 1D
case
There are many ways of finding the combinatorial
number of linearly independent dimer coverings,
but in this work, we focus on the following algo-
rithm, depicted in Fig. 3 with an example for 6
sites (5 dimer coverings):

1. We start by forming a bipartite lattice using
circles and squares.

2. We match circles to squares, but with one
caveat: the lines cannot cross.

If we include all coverings and perform a non-
orthogonal configuration interaction (NOCI) cal-
culation, we get the exact ground state energy.

Figure 3: All 5 dimer coverings for the 6-site
Heisenberg chain. Figure adapted from Ref. 15.

3.2 Truncating the covering basis
The full basis of all permitted coverings is identi-
cal in size to the S= 0 basis of the Hamiltonian and
therefore the NOCI has the same cost as the FCI in
the symmetry-adapted sector. In practical calcula-
tions for large lattices, we can only use a fraction
of the available covering patterns, and the question
then becomes how to best select a truncated basis
of coverings. In doing so, we will focus on the case
of dimer coverings, which are somewhat simpler,
but the ideas we discuss below can be extended to
other tile sizes. Regardless, the task is rather chal-
lenging because the optimal basis of tilings would
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be expected to vary depending on the specifics of
the Hamiltonian.

To address this issue, we begin by noting that
the Hamiltonian only directly couples nearest-
neighbor and next-nearest-neighbor sites. We
therefore expect the most significant correlations
to be relatively short range, suggesting that the
most important tilings should be fairly localized.
For this reason, we opted for a strategy involving
the selection of tilings characterized by relatively
short “bond lengths”, where “bond length” rep-
resents the summation of distances between sites
within each dimer for all the dimers in a given cov-
ering. Thus, a nearest-neighbor dimer contributes
a bond length of 1, a third-nearest-neighbor dimer
contributes a bond length of 3, and so forth (recall
that there are no next-nearest-neighbor dimers by
virtue of the bipartition of the lattice).

Once we have established the various tilings, we
can order them by their bond lengths. Table 1
shows the results of this process for the dimer cov-
erings in Fig. 3. We can then define a “bond level”
which denotes the position of the bond length
within this ordering. In the context of Fig. 3, bond
level 1 refers to tiling |s1⟩, bond level 2 refers to
tilings |s2⟩ and |s3⟩, and so on. We can now define
a truncation wherein we retain all tilings within a
certain bond level. Increasing the bond level in-
creases the number of tilings we include, and we
always include the most local tilings first. We
symbolize this truncation scheme as dLC-cMF[n],
where d refers to the bond level and n to the cluster
size. For example, 3LC-cMF[2] refers to a compu-
tation utilizing all dimer coverings (n = 2) with a
bond level of 3 or less (d = 3).

For 1D chains with open boundary conditions
(OBC), the number of dimer coverings with bond
level of 1 scales as O(N) while for bond level of
2 it scales as O(N2). For lattices with periodic
boundary conditions (PBC) and 2D lattices, com-
puting the bond length needs to take the period-
icity into account. For example, in PBC, the first
and the last site have only 1 site distance, the sec-
ond to last with the first only 2, etc., whereas, in
2D lattices, the length can be computed by using
the smallest bond length while moving along each
axis of the lattice. Again, the bond level is defined
similarly, regardless of the actual value of the bond
lengths.

Finally, we should note where cMF is extensive
(the energy scales linearly with system size), LC-
cMF as we have employed it here is not. While
extensivity is an important consideration for cal-
culations which seek to reach the thermodynamic
limit, it is less important for the relatively small
systems we have considered in this work. General-
izations of the schemes we have introduced here to
reduce or eliminate extensivity errors are of course
highly desirable and are under investigation.

LC-cMF[2] results for 1D
To demonstrate the effectiveness of the dimer cov-
ering basis, we begin our analysis by comput-
ing the ground state energy of a 16-site J1 − J2
Heisenberg chain with OBC. The results are pre-
sented in Fig. 4. We remind the reader that 2-
LC means we include the nearest neighbor tiling
and the N tilings with equivalent next shortest
bond lengths overall. As mentioned in Sec. 2, the
exact ground state at the Majumdar-Ghosh point
(J2/J1 = 0.5) is a nearest-neighbor dimer covering,
hence our method also ought to be exact. How-
ever, it is also evident that even with a minimal
bond level, our results exhibit qualitatively good
agreement with the exact ground state energy, par-
ticularly in the vicinity of J2/J1 = 0.5. Moreover,
the improvement in comparison to a UcMF[2] cal-
culation, where the coefficients are optimized, is
significant, underscoring the considerable poten-
tial of LC-cMF, which comes without the need of
any additional “correlation” methods; the correla-
tions are described by a simple linear combination
of tilings. Finally, it is worth noting that while
UcMF[2] has broken S2 symmetry, 2LC-cMF[2]
is an S2 eigenstate. Consequently, this energy im-
provement comes with the correct quantum num-
bers, in contrast to UcMF[2].

Table 1: Bond lengths of all dimer coverings of
Fig. 3.

Dimer covering Bond length
|s1⟩ 3
|s2⟩ 5
|s3⟩ 5
|s4⟩ 7
|s5⟩ 9
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Figure 4: Energy comparison of UcMF[2] (UcMF
with 2-site tiles) and 2LC-cMF[2] (a linear com-
bination of RcMF with 2-site tiles in 8 different
tiling schemes). The results are for the 16-site
J1 − J2 Heisenberg chain.

LC-cMF[2] results for 2D
To illustrate that dimer coverings can also be effec-
tively applied to 2D systems, we take the example
of the 4× 4 J1 − J2 Heisenberg square with PBC,
and our findings are presented in Fig. 5. An in-
triguing observation is that, once again, we achieve
remarkable accuracy for such a simple wave func-
tion, especially when compared to UcMF[2× 2],
which has the flexibility of coefficient optimiza-
tion. This underscores that, with relatively small
clusters, LC-cMF can outperform the results ob-
tained with larger clusters. In particular, LC-
cMF[2] excels in the non-magnetic J2/J1 ≈ 0.5 re-
gion, which is the region that is most difficult to
describe. This is probably a spin-liquid-like fea-
ture that this regime has, which can be captured by
this ansatz.

4 Correlation and non-singlet
cases

The methodology presented in the previous sec-
tion limits us to spin systems which have S2 as a
symmetry, because each tile, and therefore the sys-
tem as a whole, is an S2 eigenstate with S2 = 0. In
this section, we extend this methodology to sys-
tems which do not have this symmetry, and simul-
taneously incorporate correlations within the cMF
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Figure 5: Energy per site obtained in UcMF[2×2]
(UcMF with 2 × 2 tiles), 2LC-cMF[2] (a linear
combination of RcMF with 2-site tiles in 115 dif-
ferent tiling schemes) and FCI for the 4×4 J1−J2
Heisenberg lattice.

scheme, similarly to what is done for cluster-CI
(cCI).7–9

4.1 Dimer case
For non-singlet cases, we could consider a simple
linear combination of UcMF states (as defined in
Eqn. 7). This would require us to optimize the co-
efficients ci j

↑↓ and ci j
↓↑, in each tile, for each tiling

scheme in the linear combination. To simplify
the calculation and reduce the cost, we try a dif-
ferent approach. For a given tiling scheme, we
include the RcMF state and a handful of excited
states in which one or more clusters have been ex-
cited from the singlet configuration (Eqn. 5) to the
triplet (Eqn. 6). For Hamiltonians which do not
have S2 symmetry, such as the XXZ model, this
procedure is needed so that the wave function does
not have a symmetry it should not possess. For a
given tiling with N 2-site tiles, this gives us 2N

states. In practice we will generally wish to limit
the number of such excitations. In addition to the
RcMF state, we will include all cases in which one
or two tiles are in the triplet configuration, which
we refer to as “single” and “double” excitations,
respectively. This follows the usual terminology
for cluster-based configuration interaction where a
single excitation has one cluster not in its ground
state, a double excitation has two clusters not in
the ground state, and so on.
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We may choose to include higher excitations, but
if we do, we restrict the excited clusters to all be
adjacent to one another, similarly to Ref. 38. We
symbolize this truncation scheme as dLC-cMF[n]-
exc, where d refers to the bond level and n refers
to the cluster size as noted earlier, and exc refers
to the triplet states. For example, 3LC-cMF[2]-
sd refers to a computation utilizing all dimer cov-
erings with bond level of 3, with all the one-at-
a-time and two-at-a-time triplet cases. Lastly, we
note that for Hamiltonians with S2 symmetry, e.g.
the J1 − J2 Heisenberg model, we do not require
single excitations as they inevitably change the S2

quantum number.
To demonstrate the efficiency of this correlation

and truncation scheme, we present results for 1D
XXZ Heisenberg systems with OBC in Figs.6 and
7. In Fig.6, our results for the 16-site XXZ Hei-
seinberg chain with OBC are shown. As expected,
including only single and double excitations yields
results virtually indistinguishable from including
all excitations. This result is not exact because
each tile is still forced to have Sz = 0, and the
case where a given tile has Sz = ±1 has been to-
tally excluded. These extra tilings would be in-
cluded in a GcMF3 version of the theory, which
we elect not to pursue in the present work. Nev-
ertheless, this outcome is expected since the cru-
cial part of the wavefunction arises from the var-
ious tiling schemes, with triplet excitations intro-
ducing secondary effects. Additionally, given the
relatively small system size, we do not exclude
many excitations. As a result, for much larger
systems, we opt to include up to quadruple exci-
tations, but triple and quadruple excitations are al-
lowed only for contiguous dimers, as we have al-
ready noted. Our results for the 36-site XXZ chain
with OBC are summarized in Fig.7. Here, we
can achieve an accurate approximation to the ex-
act solution, especially for values of ∆ > 0, despite
the small bond length. The discrepancies around
∆ =−1 are not a significant concern, as our previ-
ous work3 has demonstrated how to obtain highly
accurate energy estimates in that regime. It is pos-
sible to imagine a linear combination of UcMF or
even GcMF states, which would come with greater
variatonal flexibility and should yield superior an-
swers albeit with a significantly greater computa-
tional cost. Alternatively, since a single GcMF suf-

fices for the region for ∆ <−1, we could also just
include this one GcMF state in our linear combi-
nation.
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Figure 6: Comparison of energy errors of different
bond levels and triplet excitations for LC-cMF[2]
(linear combinations of RcMF with 2-site tiles in
different tiling schemes). All calculations are per-
formed on the 16-site XXZ Heisenberg chain.

4.2 Tetramer case
In the present section, we delve into the explo-
ration of linear combinations involving larger clus-
ters, specifically focusing on tetramers due to their
viability for the systems we are examining. To
the best of our knowledge, there is currently no
readily available basis for tetramer coverings in
closed form. However, this is not a significant
constraint since our methods are designed with a
truncation approach in mind. Previous research1

has demonstrated that compact shapes generally
yield more accurate estimates of the ground state
energy. For this reason, we limit our consideration
to 5 tetramer tiles, akin to those depicted in Fig. 8,
which constitute the fundamental Tetris70 pieces.
Each of these 5 tetramer configurations employs
a single tile type, albeit with variations in inver-
sion, rotation, and reflection. While it is possible
to conceive shapes that, when considering the spin
configurations of the exact ground state for each
Hamiltonian, might yield lower energies, our ob-
jective is to establish a method that operates in a
black-box manner, and tiles with intricate shapes
can pose challenges.
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Figure 7: Energy per site obtained in UcMF[2],
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up to two-at-a-time triplets), 2LC-cMF[2]-sdtq (a
linear combination of RcMF with 2-site tiles in 18
different tiling schemes and up to four-at-a-time
triplets) and FCI for the 36-site XXZ Heisenberg
chain.

Figure 8: The 5 tetramer coverings used for 2D
square lattices.

.

An unrestricted tetramer contains
(4

2

)
= 6 Sz = 0

states and can be written as∣∣∣φUcMF
i jkl

〉
= ci jkl

↑↑↓↓ |↑↑↓↓⟩ + ci jkl
↓↓↑↑ |↓↓↑↑⟩ (10)

+ ci jkl
↑↓↑↓ |↑↓↑↓⟩ + ci jkl

↓↑↓↑ |↓↑↓↑⟩

+ ci jkl
↑↓↓↑ |↑↓↓↑⟩ + ci jkl

↓↑↑↓ |↓↑↑↓⟩

where dimers have only one singlet state, in
tetramers there are two (as well as three triplets
and a quintet). This means that even for a re-
stricted LC-cMF we would have to optimize the
linear combination of the two singlet states used
in each tile. We therefore decided to optimize
all six of the coefficients ci jkl for every tile in
every tetramer covering simultaneously. This in-
creases the variational flexibility in our LC-cMF
significantly, although with concomitant increase
in computational cost. We note, though, that the
excitation-based scheme we introduced in the pre-
vious section could be employed for tetramers as
well, except that where a dimer has only one ex-
cited state, a tetramer has five.

LC-cMF[4] results for 2D
Here we center our results on the 4 × 4 J1 − J2
Heisenberg square with PBC and the outcomes are
depicted in Fig.9. Notably, even with just 5 tilings,
we achieve reasonable precision once again. Par-
ticularly in the non-magnetic J2/J1 ≈ 0.5 region,
our results exhibit good accuracy, suggesting the
spin liquid-like character of this regime, is encap-
sulated within our model.

5 Discussion
In section 2, we explored the cluster mean-field
method for addressing strongly-correlated spin
systems. Building upon this foundation, in section
3 we introduced the linear combinations of cluster
mean-field formalism for singlet ground states. In
section 4, we extended this approach to arbitrary
S2, which further allowed us to incorporate addi-
tional correlations. Depending on the Hamilto-
nian, these extensions can be applied as variational
approaches for the ground state wavefunction, pro-
viding relatively accurate estimates for the energy.

9
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Our findings clearly illustrate that LC-cMF meth-
ods can qualitatively capture the essential aspects
of the ground state physics in benchmark mod-
els and can serve as valuable references for more
advanced correlated methods, with mild computa-
tional cost in an efficient code. In addition, they
offer compelling evidence that our method can be
employed for a semi-quantitative description of
the 0.4 ⪅ J2/J1 ⪅ 0.6 regime of the 2D J1 − J2
model, which is a particularly demanding regime
for established methodologies.

In our earlier work, we discussed the correla-
tion of GcMF, as detailed in Ref. 3, with the use
of Jastrow-like operators. These operators have
been applied previously in the context of the anti-
symmetrized geminal power (AGP) wavefunction,
as highlighted in references such as 71 and 72,
showcasing promising outcomes. The inclusion
of such operators has the potential to enhance the
accuracy of our cluster-based wavefunctions and
expand their applicability to more intricate sys-
tems. Lastly, we can use a similar approach to the
few determinant approximation (FED),73–78 but
instead of determinants we can utilize excited clus-
ter product states and optimize them in a NOCI
manner, similarly to the present work.

While our findings have been specifically fo-
cused on spin lattices, they strongly indicate the
promise of cMF for these complex model Hamil-

tonians. It is worth underscoring that the fun-
damental methodologies we have detailed in this
study can readily extend to broader chemical sys-
tems. For instance, one could envision utiliz-
ing distinct clustering schemes to represent vari-
ous functional groups within a sizable molecule,
where each group of atoms may fulfill unique roles
in a specific scheme. The outcomes we have pre-
sented here highlight the potential value of these
techniques across a wide range of applications.
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