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Abstract. Recently there has been increased interest in fitting generative graph models to
real-world networks. In particular, Bläsius et al. have proposed a framework for systematic
evaluation of the expressivity of random graph models. We extend this framework to
Geometric Inhomogeneous Random Graphs (GIRGs). This includes a family of graphs
induced by non-metric distance functions which allow capturing more complex models of
partial similarity between nodes as a basis of connection - as well as homogeneous and
non-homogeneous feature spaces. As part of the extension, we develop schemes for estimating
the multiplicative constant and the long-range parameter in the connection probability.
Moreover, we devise an algorithm for sampling Minimum-Component-Distance GIRGs whose
runtime is linear both in the number of vertices and in the dimension of the underlying
geometric space. Our results provide evidence that GIRGs are more realistic candidates with
respect to various graph features such as closeness centrality, betweenness centrality, local
clustering coefficient, and graph effective diameter, while they face difficulties to replicate
higher variance and more extreme values of graph statistics observed in real-world networks.

Keywords: Graph Theory, Geometric Inhomogeneous Random Graphs, Non-Metric GIRGs,
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1 Introduction

Many complex, large-scale datasets contain vast amounts of relational data, which can be leveraged
to model the dataset as a network. For some, like social, biological, or technological networks,
their connectivity information itself is often at the core of any data analysis. On the other hand,
real-world data tends to be noisy, incomplete, or should not be directly processed due to privacy
or data integrity concerns. Generative graph models offer a simple method for quickly generating
synthetic network data, preserving much of the structure of the real-world dataset of interest. On
the synthetic data, one can then perform experiments such as performance analysis of algorithms or
investigate stochastic processes in the network. In the best case, suitable embeddings can alleviate
severe congestion problems such as in internet routing [4]. The external validity of insights on
randomly generated graphs for practical instances depends however on the embedding quality [6].
Conducting research in this direction, Bläsius and Fischbeck found that the performance in the
idealized setting translates surprisingly well to real-world networks [5]. In particular, they find that
if increasing some parameter in the network models, for example locality, improves performance,
then we should also expect better performance for real-world networks with high locality. Many
real-world networks across various domains exhibit similar global properties [22]:

– Scale-free degree distribution: there is no typical (bounded) range for the node degrees -
they occur ”at all scales”. The most prominent example of this is the Pareto or power-law
distribution.

– Sparsity: the number of connections in the network scales linearly with the number of nodes.

ar
X

iv
:2

40
2.

03
83

7v
2 

 [
cs

.S
I]

  1
3 

M
ay

 2
02

4



2 Dayan, Kaufmann, and Schaller

– Clustering: two neighbors of a given node tend to be connected to each other as well, despite
the edge sparsity. This is often seen as an indication of the presence of geometry.

– Small-world property: polylogarithmically bounded average distance and diameter.

While graph models usually capture at least one of these properties well - Chung-Lu graphs
exhibit a scale-free degree distribution, as do preferential attachment graphs, Random Geometric
Graphs display clustering - they struggle or outright fail to capture all structural aspects simultane-
ously. Chung-Lu graphs as well as Erdős-Rényi graphs have vanishing clustering coefficient, while
Random Geometric Graphs have homogeneous degrees and large distances. A promising family of
versatile sparse graph models are Geometric Inhomogeneous Random Graphs (GIRGs) [10], which
combine the clustering of Random Geometric Graphs with the power-law degree distribution of
Chung-Lu graphs. It has further been shown that the choice of underlying distance function in
a GIRG can modulate the robustness of the graph - measured in the size of separators, that is,
edge sets whose deletion splits the giant component of the graph into two linearly-sized pieces [17].
Since it seems difficult to seamlessly represent large sets of networks perfectly with one model,
two approaches have been taken: either, one assesses models regarding how well they represent
larger collections of networks “on average” (to find a good one-size-fits-all model); or, one chooses
a specific model for a given network based on its most salient features [19]. In the latter case, the
first step is to determine what these features actually are [2,3,20]. Further examples of work in this
direction aim to detect the presence of geometry in the graph [11,16, 18]. If this is answered in the
positive, the next question is then to figure out the dimensionality of the underlying geometry [1].
This approach assumes implicitly that the parametric family of models considered is the best - or
at least suitable - to describe the real-world network. For GIRGs, recently Friedrich et al. have
found a linear-time algorithm which determines the dimension of the underlying space, leveraging
the exponential decay of the clustering coefficient in the dimension [13]. Under this model prior,
the examined networks exhibit low dimensionality (between 1 and 20 dimensions).

In the present work, we follow the one-size-fits-all approach. Building on the work of [8], we
extend the proposed framework to include GIRGs. In their experiments (cf. 3.3. in [8]), the authors
observed that the most difficult networks to model were social networks, in particular Facebook
graphs. In our experiments, we focus on this most difficult subset of real-world networks, which
makes up 104 out of the 219 networks analyzed in [8], with the hope that it is a set of graphs with
consistent structure.

Another key finding was the observation that hyperbolic random graphs (which turn out to be a
specific instance of GIRGs [10]) were the most realistic, outperforming the Chung-Lu, Erdös-Rényi
and Barabási-Albert graphs.

Our contribution We extend the framework introduced by Bläsius et al. in [8] to cover GIRGs
of dimension d between 1 and 7, including a range of different underlying non-metric distance
functions. In doing so, we provide techniques for estimating the leading constant c and the long-
range parameter α jointly in the connection probability (1). We further show how the power-law
parameter can be estimated from the degree distribution. For the class of Minimum-Component-
Distance GIRGs, we devise an O(dn) sampling algorithm, which improves upon the exponential
dimensional dependence of the linear-time sampling algorithm for metric GIRGs [10]. We also
extend the latter algorithm to enable sampling GIRGs equipped with the cube topology through a
simple coupling trick. We believe that these techniques will be useful to any practitioner who is
considering the deployment of GIRGs to model real-world network data. Our experiments provide
evidence that GIRGs are more realistic candidates for various graph features, including closeness
centrality, betweenness centrality, local clustering coefficient, and graph effective diameter.

2 Framework for Evaluating Generative Graph Models

In 2018, Bläsius et al. introduced a framework with the goal of serving as a systematic experimental
testbed for evaluating the ability of generative graph models to realistically synthesize any given
graph dataset [8]. They had several questions in mind:
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– Which characteristics of real-world networks are captured by a specific model, which are not?
– Do certain models fit specific types of real-world networks, i.e. technological or social, better

than others?
– Given two (asymptotically) similar models, do they generate graphs with similar properties in

practice? One example here are graph models with the small-world property, such as Chung-Lu,
preferential-attachment graphs, and GIRGs, in particular where the theoretically derived
bounds are not always known to be tight.

Their approach to address these questions can be summarized as follows:

1. Select a set of generative graph models.
2. Select a collection of real-world networks.
3. For each generative graph model and each network, estimate the parameters of the model

based on the network statistics.
4. Generate a set of synthetic graphs using the estimated model parameters.
5. Select a set of graph features and feed it into a classifier that aims to distinguish real-world

networks from synthetic networks of a particular generative model.

The authors’ intention was that their modular approach could be adapted by including further
generative graph models, additional parameters, and new real-world networks. The used machine
learning technique (classifier) should also be interchangeable. As a proof-of-concept, they inves-
tigated the following generative graph models: Erdös-Rényi, Barabási-Albert, Chung-Lu, and
hyperbolic random graphs. These were evaluated on 219 real-world networks retrieved from the
Network Repository [21]. In order to make the description of their approach self-contained, we
succinctly outline their methodology.

Network collections. First, choose a collection of real-world networks C = {G1, ..., Gc} with
c = |C|. Based on each model M - using its generative mechanism - and each graph Gi ∈ C,
generate an artificial graph GM

i which aims to mimic Gi as closely as possible. The exact fitting
procedure depends on the model but tends to be governed by choosing the model parameters to
match a small set of empirical graph statistics exhibited by the real networks. When the input
parameters are known to influence mainly one statistic of the generated graph and the relationship
is monotone, the parameters can be estimated with a binary search. The collection of graphs
generated using M is denoted by CM = {GM

1 , ..., GM
c }.

Network features and feature cleaning. Next, choose a set of relevant graph statistics
as a feature set F = {Φ1, ..., Φf}, which collectively define a feature vector of a graph, F (G) =
(Φ1(G), ..., Φf (G)). For an entire collection of graphs C, by slight abuse of notation, F (C) denotes
the collection of feature vectors. Note that the selection of features here crucially influences how
well the structural properties which distinguish different network types can be represented. In the
discussion of our experimental findings, we will comment on the expressivity of the chosen baseline
features and possible augmentations, in particular for GIRGs. All the features are computed on the
largest connected component of the graphs. Meaningless features are eliminated through numerical
cleaning (deletion of all features which are undefined or infinite for at least one of the networks),
variation cleaning (elimination of features with little predictive value because they assume similar
values on most networks) and correlation grouping. More precisely, for variation cleaning, features
are eliminated based on a normalized coefficient of variation 4 below a threshold of 1%. Correlation
grouping groups highly correlated features (having multiple very similar features does not add
any predictive value). For each group of correlated features, only the feature with the clearest
semantics (given by a manually predefined order) of the group is used. The grouping proceeds by
constructing a graph with features as nodes and edges connecting two features by an edge if their
absolute Spearman’s rank correlation coefficient is above 99%. Note that grouped features may
have a smaller correlation than the threshold of 99%, as having correlation larger than some fixed
threshold is not transitive, however being in the same connected component is.

4 For a given feature, let X be the vector containing the c values it assumes in different graphs. Let σ
and µ denote the standard deviation and mean. Then the feature’s normalized coefficient of variation is
defined as σ(X)

µ(X)
√
c−1



4 Dayan, Kaufmann, and Schaller

Distinguishing real and synthetic networks. Finally, we determine which pairs of collections
can be distinguished based on which features. The queries answered are as follows. The input
consists of a subset F of all features and of two collections of graphs, usually the collection C of real
networks plus one collection CM for some model M . We then want to know how well F (C) can be
distinguished from F (CM ). The classification task is as follows. The input for the classifier consists
of a feature matrix X ∈ R2c×f and a binary vector Y ∈ {0, 1}2c which classifies the features as
belonging to C (denoted by 0) or to CM (denoted by 1). The binary classification model is then
just a function M : Rf → {0, 1}. The predictions are then evaluated in terms of their accuracy,
that is the ratio of correctly classified examples. We use l−fold cross validation, that is we split
the data into l random subsets of equal size which generate l learned models. For each model, a
single subset is used as the test dataset, and all other subsets are used as the training data. More
precisely, we use stratified cross validation which ensures that the number of examples is the same
for both classes. The total accuracy of the cross-validation is then defined as the arithmetic mean
of the accuracies of all models. The classifiers used are support vector machines (SVMs) with the
Gaussian radial basis function (rbf) kernel. The parameters for the SVM and the rbf kernel are
selected by cross-validation using a grid search over the parameter space. The model with the
best average test accuracy is used as the final model. All features used in the SVM are normalized
to have zero mean and unit variance in the training data. The test set is scaled using the same
parameters.

Graph properties. The graph properties used can be divided into two categories. Single-value
features assign a single numerical value to a graph. The most basic among them include the number
of nodes, the number of edges, the diameter (maximum length of a shortest path between any
two nodes in the graph), and the effective diameter (upper bound on the shortest path lengths
between 90% of all node pairs). The other category of features is distribution over nodes. These
features assign a value to each node, leading to distributions over all nodes in the graph. For each
of these distributions we consider the arithmetic mean, the median, the first and third quartile, and
the standard deviation. The simplest such measure is the degree distribution. The local clustering
coefficient of a vertex v is the probability that two randomly selected neighbors of v are connected.
The k-core of a graph is obtained by successively removing all nodes with degree less than k.
This leads to the measure of core centrality, where each node is assigned the largest k such that
it is contained in the k-core. The betweenness centrality measures for each vertex v how many
shortest paths between pairs of other nodes go through v, and the closeness centrality of a node
denotes its average distance to every other node in the graph. The Katz centrality measures the
importance of a node by its number of neighbors and the distance of all other nodes to these
neighbors. Distinguishing real and synthetic networks using the higher number of data points from
distribution level features is too easy, and it is hence often hard to compare between generative
graph models. Thus for distribution type features we just use the mean value as input to the
classifier.

3 Graph Models

We will consider undirected graphs with vertex set V := [n] and edge set denoted by E.
Erdős-Rényi Graphs. As a classical baseline, we include the Erdős-Rényi random graph in

our framework, similarly to [8]. To generate the graph, each pair of vertices is connected by an
edge independently of the others with some probability p. Thus the expected number of edges

p · n(n−1)
2 can be chosen. Given a real network, n is set to the number of vertices and the connection

probability is set to p = 2m
n(n−1) , where m is the number of edges in the network.

Barabási-Albert Graphs. Here, a graph is generated from an initial fixed graph of size k,
to which n − k nodes are added sequentially, each connecting to k already present nodes with
probability proportional to their (current) degree. Since 2k is the expected average degree in the
graph, we derive k from the empirical average degree, and n is simply set to the empirical number
of vertices. In [8] two initial graphs were used, namely a complete graph and a cycle. However, the
results are very similar, so here we restrict to complete graph initializations.
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Hyperbolic Random Graphs. In this graph model, n nodes draw their positions randomly
in a disk within the hyperbolic plane, and pairs of vertices are then connected with a probability
decreasing in their hyperbolic distance (see Definition 4.1 in [10] for a precise definition). The
connection probability also depends on n and the target average degree. The degree distribution
then follows a power law whose exponent β can be specified as an input. The influence of the
hyperbolic distance is softened by a temperature parameter T ∈ [0, 1), which corresponds roughly
to the inverse of the α parameter in the GIRG model. The number of vertices n is then fit by
estimating the number of isolated nodes because the largest connected component of a generated
graph is typically smaller than n. The desired average degree is set to the empirical average degree.
The power-law exponent β is estimated based on the cumulative degree distribution. Finally, T is
fit by a binary search, using as a proxy the clustering coefficient which it influences - comparing its
values in the synthetic graph and the real network.

Chung-Lu Graphs. In Chung-Lu graphs [12], each vertex v ∈ V draws a weight wv inde-
pendently from a power-law distribution with exponent τ , and each pair of vertices {u, v} is then
connected independently with probability min{cwuwv/W, 1}, where W :=

∑
v∈V wv is the sum of

all weights and c > 0 is a constant. This results in a graph where the expected degree of a vertex is
proportional to its weight, and in particular the degree distribution follows a power-law with the
same exponent τ . We take τ ∈ (2, 3), which ensures both that the graph is sparse (i.e. |E| = Θ(n))
and has a (unique) giant component with high probability.

3.1 Geometric Inhomogeneous Random Graphs

We extend the experiments in [8] to include Geometric Inhomogeneous Random Graphs (GIRGs)
and variants thereof as graph models. GIRGs were introduced in [10] and combine the degree
inhomogeneity of Chung-Lu graphs with an underlying geometric space. The vertices are assigned
both a weight and a position in a given ground space. We will take the d-dimensional unit hypercube
[− 1

2 ,
1
2 ]

d as ground space, equipped with either the torus topology or the usual Euclidean subspace
topology. As distance functions we will use the classical max-norm ∥ · ∥∞ as well as various
non-metric distances - obtained by taking a sequence of minima and maxima of component-wise
distances - which we call Boolean distance functions and define below (note that this definition
includes the max-norm).

Definition 1. Let d ∈ N and consider the hypercube [− 1
2 ,

1
2 ]

d equipped with either the torus topology
or the usual Euclidean subspace topology. A function ∥ · ∥ : [− 1

2 ,
1
2 ]

d → R≥0 is a Boolean distance
function if it can be recursively defined as follows:

– For d = 1, ∥x∥ = |x|.
– For d > 1, there exists a nonempty proper subset S ⊂ {1, . . . , d} of coordinates such that either

∥x∥ = max(∥(xi)i∈S∥S , ∥(xi)i/∈S)∥S) or ∥x∥ = min(∥(xi)i∈S∥S , ∥(xi)i/∈S)∥S), where ∥ · ∥S :
[− 1

2 ,
1
2 ]

|S| → R≥0 and ∥ · ∥S : [− 1
2 ,

1
2 ]

d−|S| → R≥0 are Boolean distance functions.

Definition 2 (GIRG). Let d ∈ N and consider the hypercube [− 1
2 ,

1
2 ]

d equipped with either
the torus topology or the usual Euclidean subspace topology and a Boolean distance function
∥ · ∥ : [− 1

2 ,
1
2 ]

d → R≥0. For parameters τ ∈ (2, 3), α > 1 and c > 0, a Geometric Inhomogeneous
Random Graph is obtained by the following three-step procedure:

(1) Every vertex v ∈ V draws i.i.d a weight wv from a power-law distribution with exponent τ .
(2) Every vertex v ∈ V draws independently and u.a.r. a position xv in [− 1

2 ,
1
2 ]

d.
(3) Connect each pair of vertices {u, v} independently with probability

puv := min
{
c
( wuwv/W

V ol∥·∥(∥xu − xv∥)

)α

, 1
}
, (1)

where V ol∥·∥(r) denotes the volume (or Lebesgue measure) of a ball of radius r in [− 1
2 ,

1
2 ]

d

with respect to the chosen Boolean distance function ∥ · ∥, and W :=
∑

v∈V wv is the sum of
all weights.



6 Dayan, Kaufmann, and Schaller

In our experiments, we will consider GIRGs with different underlying Boolean distance functions
∥ · ∥ and/or of different dimensions d as different models. Each of these models therefore has three
parameters that need to be estimated: the power-law exponent τ , which influences the tail of the
degree distribution; the long-range parameter α, which controls the number of long edges between
small-weight vertices; and the constant c, which directly impacts the average degree.

After GIRGs were introduced in [10], several of their theoretical properties were established,
focusing on the torus topology and the geometry induced by the max-norm ∥ · ∥∞. The expected
degree of a vertex is proportional to its weight, so the degree distribution of a GIRG follows a power-
law with exponent τ , which also implies that |E| = Θ(n). GIRGs have a high clustering coefficient
(i.e Θ(1)) and a unique linear-size connected component, which has a polylogarithmic diameter and
a doubly logarithmic average distance. These properties (scale-free degree distribution, sparsity,
local communities, small world phenomenon) have been observed empirically in a wide range
of real-world networks, including social networks but also biological and technological networks.
This makes the GIRG model an ideal candidate to study real-world networks theoretically or
via computer simulations. On top of that, GIRGs can be generated quickly using a linear time
algorithm described in [10] and implemented in [7].

Cube vs. Torus. From a theoretician’s point of view the distinction of T-GIRGs (GIRGs
with an underlying torus topology) and C-GIRGs (GIRGs with the usual Euclidean topology of
the hypercube) is not crucial, since the two models have the same asymptotic properties as the
number of nodes grows to infinity. However, from a practitioner’s point of view this distinction is
relevant. Indeed, depending on the type of real-world network studied, the underlying topology
could be toroidal (e.g. transport networks at the planet scale) or cubic (e.g. social networks in a
given country, where geographic proximity has a huge influence on the friendship links between
people). Moreover, the topology has a clear influence on some properties of the graph at a fixed
size. For example, the diameter of a network will be smaller in a T-GIRG compared to a C-GIRG,
since edges that wrap around the hypercube’s boundary are present in the former but not in the
latter [5].

Non-metric GIRGs. Since it is a priori unclear for many networks if they are metric in
nature (i.e. if the triangle inequality holds for them), an evaluation of realistic distance functions
should include also non-metric distances such as the Minimum-Component-Distance as well as
more complicated disjunctive normal forms of the coordinate distances (see Definition 1). Of
particular interest are so-called outer-min distances which consist of taking the minimum of
arbitrary combinations of distance functions. Imagine for instance a social network where each node
is equipped with features that encode kinship, various aspects of employment, and membership in
one or several social clubs. It is plausible to hypothesize that at least some of these features - such as
sharing a parent - guarantee an edge between two nodes independently of all other features. Others
may not suffice to produce an edge by themselves, but if two or three among them each yield a
small component-wise distance, this again makes the existence of an edge very likely, independently
of all other features. For instance, two individuals may have the same (multinational) employer
and a workplace located in the same city - making it plausible that the two individuals work in
the same branch office and thus making it very likely that they know each other - irrespective
of their familial relation. Such cases are convenient to model with outer-min distances. Despite
their relevance, only little is known theoretically about such non-metric distance functions. Lengler
and Todorovic showed for instance that GIRGs equipped with the Minimum-Component-Distance
(MCD-GIRGs) are much more robust than their metric counterparts in that they do not contain any
sublinear separators – sublinear sets of edges which partition the giant component into linearly-sized
disconnected vertex sets [17]. In our experiments we further consider a range of outer-min distances
GIRGs for dimension d ∈ {1, 2, 3, 4, 5}.

4 GIRG Sampling and Parameter Estimation

In this section, we describe techniques for fitting the parameters of the GIRG model: the leading
constant c in the connection probability, the long-range parameter α, as well as the power-law
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exponent τ of the weight distribution. Note that for the final parameter of the model, namely
the dimension d, we take an orthogonal approach and evaluate the quality of fit for a range of
dimensions, treating d as a parameter to be chosen.

4.1 Power-Law Parameter

As shown in [9], we have E[deg(v)] = Θ(wv) in GIRGs for all vertices v ∈ V . Hence a GIRG’s
weights give a proxy for its degrees, which is why sampling those weights from a power-law
distribution replicates the power-law degree distribution commonly observed in real-world networks.

The empirical degree distribution of a graph at k ∈ N is defined as |{v∈V :deg(v)=k}|
|V | . This discrete

distribution’s tail can be approximated with statistical estimators of the power-law exponent τ , and
the weights are then generated from a continuous power-law distribution with that exponent. We
use the python package powerlaw, which finds a threshold xmin where the power-law tail begins,
and fits τ in the region [xmin,∞) using maximum likelihood estimation. The optimal xmin value is
simultaneously selected to minimize the Kolmogorov-Smirnov distance between the empirical and
estimated CDFs in [xmin,∞).

Degree-replicating weight sequence.

In general, the empirical degree distributions in our social network dataset only follow a
power-law distribution in their tails, hence classical GIRGs (whose weights follow a power law over
the whole range [1,∞)) will never perfectly replicate graph statistics closely tied to the degree
distribution. Motivated by this, [8] actually uses the degree sequence as weight sequence for the
Chung-Lu model. This however fails to make a fair comparison with power-law weighted GIRGs.
Therefore we fit two versions of Chung-Lu graphs and GIRGs, one using a degree-replicating weight
sequence and one with a power-law weight sequence.

4.2 Estimating c and α

The estimation of c ∈ (0,∞) and α ∈ (1,∞) in the edge probability formula (1) is done jointly.
The long-range parameter α monotonically influences the expected local clustering coefficient,
which has very low variance for large n. Similarly, c monotonically influences the average degree.
Since they also cross-influence, we iteratively approximate α, then c, then α again and so on until
the sequences converge. Each estimation is done using binary search, where each evaluation of a
parameter pair (α, c) involves generating a GIRG with this parametrization in order to inspect its
local clustering coefficient or average degree.

For T-GIRGs, an analytical formula for the expected average degree (for given c and α) allows
skipping the generation and inspection step in each estimation of c.

4.3 Sampling C-GIRGs from T-GIRGs

Bläsius et al. implement in [7] a linear-time sampling algorithm for generating T-GIRGs. As we
will demonstrate in section 5, C-GIRGs often yield more realistic synthetic graphs - Bläsius and
Fischbeck already observed that the choice of torus or cube topology can make a substantial
difference for the diameter [5]. Hence, it is useful to be able to sample C-GIRGs efficiently. This
can be achieved through an easy coupling, which can bootstrap any black-box T-GIRG sampling
algorithm, provided that the sequence of node weights and locations is available (in addition to the
graph edges), at a cost linear in the number of edges (which is Θ(n) for GIRGs) . As the connection
probabilities in T-GIRGs stochastically dominate those in C-GIRGs, we can inspect each edge

in the generated T-GIRG and determine with a Bernoulli trial with bias
pC
uv

pT
uv

whether to keep or

delete the respective edge in the C-GIRG, see Algorithm 1.
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Algorithm 1 Generating a C-GIRG from a T-GIRG via coupling

Require: n, d, c, τ , α
(G = (V,E), {xu}u∈V , {wu}u∈V ) ← T-GIRG(n, d, c, τ, α)
for uv ∈ E do

pTuv = min{1, c
(

wuwv/W
V ol(||xu−xv||T)

)α

}; pCuv = min{1, c
(

wuwv/W
V ol(||xu−xv||C)

)α

}; p ∼ U([0, 1])

if p >
pCuv

pTuv
then

delete edge uv from E

return (V,E)

4.4 Sampling Non-Metric GIRGs

The sampling algorithm for GIRGs introduced in [10] depends linearly on the number of nodes but
scales exponentially in the dimension. In practice, this makes the generation of even moderately
large graphs with n ≥ 10′000 nodes heavily computationally constrained already for dimensions
d = 4 and higher. To mitigate the problem, we propose an algorithm that allows sampling of an
MCD-GIRG in time O(dn) by combining d separately sampled one-dimensional GIRGs (1d-GIRGs)
sharing the same node weight sequence; each 1d-GIRG is individually generated using the O(n)
algorithm described in [10].

For illustration’s sake, consider the three-dimensional case. Let u, v ∈ V be two vertices
with weights wu, wv and positions xu = (x1

u, x
2
u, x

3
u), xv = (x1

v, x
2
v, x

3
v), and let r1 := |x1

u −
x1
v|, r2 := |x2

u − x2
v|, r3 := |x3

u − x3
v| be the coordinate-wise distances between u and v. The edge

probability puv defined in equation (1) can be viewed as the maximum of {p1, p2, p3}, where
pi := min{1, c

( wuwv/W
V olMCD(ri)

)α} (with V olMCD being the volume function corresponding to the MCD

geometry on [− 1
2 ,

1
2 ]

d). As r → 0, we actually have V olMCD(r) = Θ(r) for all dimensions d.
Therefore, up to constant factors, pi is equal to the connection probability of vertices u and v in
a 1d-GIRG where the positions of u and v are the ith coordinate of their position in the torus
(and their weights are the same, i.e. wu, wv). This gives rise to Algorithm 2, which generates a
d-dimensional MCD-GIRG from d one-dimensional GIRGs (note that in one dimension there is
only one possible choice for the distance function, see Definition 1).

The algorithm first generates d different 1d-GIRGs with the same weight sequence, and then
determines for each edge in which dimension the distance between its endpoints is the smallest.
Both parts have a runtime of O(dn), so the whole algorithm indeed runs in time O(dn).

Algorithm 2 Generating a d-dimensional MCD-GIRG from d one-dimensional GIRGs

Require: n, d, c, τ , α
V ← [n]; E ← {}
(wv)v∈V

i.i.d.∼ powerlaw(τ)
for i ∈ [d] do(

Gi = (Vi, Ei), (r
(i)
uv)uv∈Ei

)
← 1d-GIRG(n, c, α, (wv)v∈V )

for i ∈ [d] do
for uv ∈ Ei do

if i = argmini r
(i)
uv then

E ← E ∪ {uv}
return G = (V,E)
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5 Experiments

In this section we report on our experiments5. We fit 104 Facebook graphs whose sizes range
from n = 762 to n = 35′111 nodes, retrieved from the Network Repository [21]. We sampled
max-norm T-GIRGs of all dimensions d ∈ {1, . . . , 7} and MCD-GIRGs (with the torus topology)
of dimensions d ∈ {2, 3, 4, 5} (note that for d = 1 there is no difference between the max-norm
and the Minimum-Component-Distance). We also considered a subset of possible Boolean distance
functions in dimensions 3 and 4 to generate some other non-metric GIRGs (see Table 2 for details).
For C-GIRGs, computational constraints only allowed us to consider dimensions d ∈ {1, 2, 3} for
power-law distributed weights (which requires an estimation of the parameter τ), and dimensions
d ∈ {1, 2, 3, 4, 5} for degree-replicating weights.

The experiments were run on a High Performance Computing cluster with Intel(R) Xeon(R) CPU
E3-1284L v4 @ 2.90GHz CPUs. The main fitting, generating, and feature extracting experiments
with the whole range of generative graph models were done with 12 CPUs and 24 GB of RAM,
taking between 1 and 2 days to complete.

The feature combinations presented in Table 2 are a subset of those presented in [8] (there the
feature combinations were filtered using a process of numerical, variation, and correlation cleaning).

We further removed feature combinations that added little extra information (e.g. supersets of
the feature set ”n, m, diam”, since these three features are already enough to detect the synthetic
networks almost perfectly, and adding extra features to the set only made the misclassification rate
even smaller).

5.1 Discussion of the Results

The key finding can be summarized as follows: GIRGs perform similarly to other generative graph
models on non-geometric features, and perform significantly better on geometric features such as
closeness and betweenness centrality as well as the local clustering coefficient. Among the previously
examined generative graphs models, the only one that is not reliably classified as synthetic is
the hyperbolic random graph model [8], which is a special case of the GIRG model. Among the
different GIRG models, the degree-replicating GIRGs exhibit the best overall performance, in
particular when Katz centrality is taken into account. Slightly surprisingly, the degree-replicating
weight sequence, which can be seen as overfitting the degree sequence, does not seem to have
severe adverse effects on geometric features. This might indicate that GIRGs are in fact a viable
approach to modeling more general degree sequences when relaxing the (power-law) assumptions
on the weight distribution, which is an interesting research question in its own right, though
beyond the scope of the present study. C-GIRGs perform better than T-GIRGs, in particular
when diameter or effective diameter are used as features. On the other hand, models with an
underlying outer-min Boolean distance function (including MCD-GIRGs) seem to perform best
when closeness centrality is taken into account. Regarding the dimensionality of the considered
models, there is no clear monotone relationship between misclassification rate and dimension. One
may have conjectured that, at least for relatively small dimensions, the fit improves with increasing
dimension (since this yields more free parameters), but often the misclassification rate is already at
or near the peak for one- or two-dimensional models. It may well be that this is further evidence
for the inherent low-dimensionality of real-world networks. Friedrich et al. have recently shown
that, as the dimension goes to infinity, the GIRG model converges to the Chung-Lu model [14]
- which has mostly zero misclassification rate for the geometric features. It is possible that this
behavior is already visible at low dimensions and could explain the decreasing misclassification
rates for some of the geometric features. For example, it is known that the clustering coefficient
in GIRGs decays exponentially with the dimension [13], hence it is inherently difficult for such
models to produce a large clustering coefficient in high dimensions. One further shortcoming of
current GIRG variants seems to be the tightly concentrated graph statistics, such as the clustering
coefficient - a characteristic where practice and theory are at odds, since real-world networks

5 Our code is available on request.
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exhibit a much larger variance for most node-specific features. Another example of a significant
difference between synthetic graphs and real-world networks is the diameter, see Table 2. It turns
out that the diameters of all generated graphs are small (taking values between 3 and 5) compared
to real-world networks (where the diameters range from 6 to 12). These shortcomings demonstrate
the need for extended models which allow for better approximations of these features.

6 Conclusion

We extend the framework introduced in [8] by Bläsius et al. to cover a large class of Geometric
Inhomogeneous Random Graphs - both metric and non-metric - finding that they are effective at
approximating geometric features of real-world networks. To enable this extension, we devise a
joint estimation technique for the connection probability constant c and the long-range parameter
α, as well as two fast GIRG-sampling algorithms building on the well-known algorithm introduced
by Bringmann, Lengler and Keusch in [10]. Several exciting avenues of follow-up research extend
from here. As more high-quality real-world network data becomes available and new types of
networks emerge, it would interesting to see how well these novel networks can be modeled, by
GIRGs specifically and in the framework at large. In particular, we would like to see findings
for biological and technological networks. A natural next step would be to include disconnected
networks - whereby features such as diameter and average distance could be analyzed component
by component, or alternatively restricted to the largest connected component of each network. A
different and particularly promising perspective compares algorithmic performance on different
types of network models and real-world networks. This is not limited to classical algorithms such
as Breadth-First-Search and Routing Algorithms, but could extend to large classes of distributed
algorithms and even other stochastic processes such as epidemic models, rumor spreading and
opinion forming. We believe that here the investigation of further non-metric GIRGs, as well as so
called assortative and disassortative models (i.e. models exhibiting degree-degree correlations), will
provide valuable insight. In general, the framework extends easily to additional generative graph
models, such as (degree-corrected) stochastic block models and (spatial) preferential attachment
models, and comparing their performances would be a promising next step. Beyond the binary
classifier put forth in [8], a wealth of alternative architectures exist, namely approaches such as
Graph Neural Networks and Large Multimodal Models. Finally, once our models approximate the
networks sufficiently in terms of single-value statistics, their distributions should be investigated.

Acknowledgments. We thank Johannes Lengler for valuable discussions and feedback. M.K. and
U.S. gratefully acknowledge support by the Swiss National Science Foundation, grant number
200021 192079.
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