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Abstract—Level-index arithmetic appeared in the 1980s. One
of its principal purposes is to abolish the issues caused by
underflows and overflows in floating point. However, level-index
arithmetic does not expand the set of numbers but spaces out the
numbers of large magnitude even more than floating-point rep-
resentations to move the infinities further away from zero: gaps
between numbers on both ends of the range become very large.
We revisit level index by presenting a custom precision simulator
in MATLAB. This toolbox is useful for exploring performance
of level-index arithmetic in research projects, such as using 8-bit
and 16-bit representations in machine learning algorithms where
narrow bit-width is desired but overflow/underflow of floating-
point representations causes difficulties.

Index Terms—level-index arithmetic, floating-point arithmetic,
number systems

I. INTRODUCTION

In a level-index (LI) arithmetic of Clenshaw and Olver [1]

a positive number x ∈ R is represented with l ∈ N (a level)

and f ∈ [0, 1) (an index) as

x = ee
..
.e

f

. (1)

Here

f = ln(ln(· · · ln(x) · · · )). (2)

The exponentiation or the logarithm are taken l times. Num-

bers x < 1 could be represented by taking l = 0 and f = x,

but more of them can be represented by the symmetric level-

index (SLI) system by Clenshaw and Turner [3] which adds a

reciprocal sign to (1) used for x < 1. The term “symmetric”

presumably refers to the numbers of values represented in the

ranges x ∈ (0, 1) and x ∈ (1,+∞) being the same; the

ordinary LI arithmetic that does not use the reciprocal sign

is also symmetric, but with respect to zero when taking into

account the negative axis.

Formally, a nonzero real number x in the SLI systems

is represented by a number ζ = l + f and the following

relations [3]:

x = s(x)φ(ζ)r(x), (3)

where s(x) = ±1 is the sign of x, r(x) = ±1 is the reciprocal

sign defined by

r(x) =

{

+1, if |x| ≥ 1,

−1, if |x| < 1,
(4)

and

φ(ζ) =

{

ζ, if 0 ≤ ζ < 1,

eφ(ζ−1), if ζ ≥ 1.
(5)

Here (5) computes (1) given a LI number. Note that (5)

produces ⌊ζ⌋ = l exponentials, with the final exponent

ζ − ⌊ζ⌋ = f as required by the definition of the LI systems.

To construct ζ Clenshaw and Olver [1] propose

Ψ(x) =

{

x, if 0 ≤ x < 1,

1 + Ψ(ln(x)), if x ≥ 1,
(6)

which is similar to (2) except that the level is also included

with 1 being added on every recursive step.

Note that precision p does not come in anywhere in this

definition, unlike the floating-point representation that usually

contains p. Of course, p plays a role in implementing the

quantisation of the index f .

A. Previous results

Turner [13] demonstrates a Pascal software package that

simulates a SLI format with 3 level bits and 27 index bits.

Lozier and Olver [10], [8] show that LI system is closed

which means that, unlike in floating point, it is impossible to

produce numbers that lie outside the representable range with

the basic operations, except division by zero. The authors [10,

Sec. 3] also explain that levels beyond 6 bits will not be

entered in practice by addition, subtraction, multiplication and

division, and therefore that 3 bits are enough for the level.

Furthermore, Olver [10, Sec. 4] writes that LI systems are

free from “wobbling precision”, a feature of floating point

whereby a real number x rounded to a floating-point system

with precision p is fl(x) = x(1 + δ) and the error δ can be

anywhere between −2−p and 2−p. Olver also mentions that

LI is more precise than floating-point for x < 211 in 32 bits

and for x < 244 in 64 bits, but less precise beyond x > 218

and x > 270 for 32- and 64-bit representations, respectively.

Demmel [4] argues that LI and other similar arithmetics

such as the one by Iri and Matsui [9] that aim to remove the

possibility of overflow, overall do not result in improvements

since more care is needed when computing with very big

highly inaccurate quantities. This is in contrast with floating

point that returns infinities allowing to detect overflows.

Shen and Turner [12] explore a hybrid floating point and LI

arithmetic. They propose to do most computations in standard

binary64 [6] arithmetic, but switch to LI once certain bounds

are reached on the input arguments to the four basic arithmetic

operations.

Kwak and Swartzlander [7] propose a hardware implemen-

tation of LI arithmetic and demonstrate area reduction with a

minor increase in the timing of the circuit, compared with the

previous approach by Olver and Turner [11].

http://arxiv.org/abs/2402.02301v2
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Fig. 1. Layout of a possible 16-bit SLI encoding: sli-3.11.

II. THE ENCODING OF LEVEL-INDEX NUMBERS

We need to encode the LI numbers of (3) in a limited

precision word length for use on the digital computers. A sign

s(x) can be one bit, the reciprocal sign r(x) can also be one

bit, the level l, the authors recommend, does not have to be

more than 3 bits to “virtually abolish overflow from everyday

work” [1], and the index f can be as precise as possible and

represented in fixed point. We will refer to a sli encoding with

a k-bit level and a p-bit index as sli-k.p.

Figure 1 shows an encoding of a 16-bit binary SLI represen-

tation with a 3-bit level and an 11-bit index. We have placed

the reciprocal sign r(x) to the left of the level. This way the

sequence of representable numbers starts from the smallest

number, representing r(x) = −1 by setting the reciprocal bit

to zero. Then, when the encoding bit pattern is incremented

by 1, it transitions through the levels and eventually r(x) = 1
is set when the representation for number 1 is reached.

III. SMALL LEVEL-INDEX SYSTEMS

Here we compare an unsigned 5-bit SLI representation with

an unsigned 5-bit binary floating-point (“toy”) system used for

demonstration by Higham [5]. In the interest of saving space

we don’t include the negative axes—the representations are

symmetrical with respect to zero. In floating point, numbers

are represented with ±βe−p+1 × m. Here β is a base, p
is precision, and emin ≤ e ≤ emax is the exponent. The

exponent is usually encoded with a bias: E = e + emax. In

IEEE 754 [6] emin = 1 − emax. The significand m satisfies

0 ≤ m ≤ βp − 1, but the normalized nonzero numbers are

assumed to have m ≥ βp−1 whilst the subnormal values

have m ≤ βp−1 − 1 and a fixed exponent e = emin.

Stored significand M omits the most significant bit of m. We

will assume the IEEE 754 floating-point encoding, including

representing infinities, subnormals and not-a-number (NaNs).

For the 5-bit SLI representation, we consider 1 and 2 bits for

the level. Since the encoding for level zero is not required, we

use the level encoding 00 for representing level 1 and therefore

have levels 1 to 4. Similarly for 1-bit level SLI representations:

0 encodes level 1 and 1 encodes level 2. The authors of LI

mention that it could instead be used for representing special

values [3], perhaps values equivalent to NaNs or infinities in

floating point. For the reciprocal bit sign, we use 0 for r(x) =
−1 and 1 for r(x) = 1 and store it on the left of the level bits

in order to have small values represented by the lower half of

the set of representable binary patterns.

Figure 2 shows the layouts of 5-bit floating-point represen-

tation and two different 5-bit SLI representations. Table I lists

the 32 possible values representable by the three systems. The

following observations can be made from this table.
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Fig. 2. Layout of an unsigned 5-bit toy floating-point system [5] (top) and
two unsigned SLI systems: sli-1.3 (bottom left) and sli-2.2 (bottom right).

• SLI systems have two representations for 1 and no

representation for 0. One of the bit patterns for 1 could

be used for representing zero. We have used all zeros to

represent the zero.

• SLI systems represent decreasing numbers with the in-

creasing binary patterns from 00000 to 01111, which

happens because of the reciprocal rule for representing

small values below 1. This could be changed by inverting

the index bits on conversion to and from, if r(x) = 0.

Then 00000 could be used to represent the zero, with the

following number 00001, when inverted, representing the

smallest representable nonzero number. We did not im-

plement this in v0.1 of the toolbox to keep the encoding

closer to the definition (3).

• The SLI system with the 1-bit level does not offer a wider

dynamic range than the 5-bit floating-point system.

• The SLI system with the 2-bit level offers a wider

dynamic range than the binary64 [6] representation.

IV. ARITHMETIC WITH LEVEL-INDEX NUMBERS

The algorithms for LI arithmetic are shown by Clen-

shaw and Olver [2] while the modifications required for the

SLI systems are investigated by Clenshaw and Turner [3].

We provide key highlights to demonstrate what is involved in

implementing LI arithmetic; readers should refer to Clenshaw,

Olver, and Turner for complete algorithms.

Take X = l + f , Y = m + g, Z = n + h, X ≥ Y ≥ 0,

the LI numbers with corresponding levels l, m and n, indices

f , g and h, and φ(X) ± φ(Y ) = φ(Z). In the standard LI

arithmetic, addition and subtraction operations require three

sequences aj = 1/φ(X − j), bj = φ(Y − j)/φ(X − j), and

cj = φ(Z − j)/φ(X − j). Sequences terminate as soon as

cj < aj , and additional calculations on cj provide the level

and index values of the final result [2] (rounding or chopping

to required precision). These sequences are short because for

aj and cj j goes up to the level of X while for bj up to the

level of Y . Clenshaw and Olver [2] provide

al−1 = e−f , aj−1 = e−1/aj ,

bm−1 = am−1e
g, bj−1 = e−(1−bj)/aj (if m ≥ 1), and

c0 = 1− b0, cj = 1 + aj ln(cj−1).

If m = 0, we compute b0 = a0g instead of the expression

above. For addition c0 = 1 + b0. The sequence cj is stopped



TABLE I
ALL QUANTITIES ENCODED IN THE TOY 5-BIT FLOATING-POINT AND SLI

SYSTEMS OF FIGURE 2.

FP sli-1.3 sli-2.2

00000 0 (e0)−1 = 1 (e0)−1 = 1
00001 0.0625 (e0.125)−1

≈ 0.8825 (e0.25)−1
≈ 0.7788

00010 0.125 (e0.25)−1
≈ 0.7788 (e0.5)−1

≈ 0.6065
00011 0.1875 ∼ 0.6873 ∼ 0.4724

00100 0.25 ∼ 0.6065 (ee
0

)−1
≈ 0.3679

00101 0.3125 ∼ 0.5353 ∼ 0.2769
00110 0.375 ∼ 0.4724 ∼ 0.1923
00111 0.4375 ∼ 0.4169 ∼ 0.1204

01000 0.5 (ee
0

)−1
≈ 0.3679 (ee

e0

)−1
≈ 0.06599

01001 0.625 (ee
0.125

)−1
≈ 0.322 ∼ 0.02702

01010 0.75 (ee
0.25

)−1
≈ 0.2769 ∼ 0.0055

01011 0.875 ∼ 0.2334 ∼ 2.4× 10−4

01100 1 ∼ 0.1923 (ee
ee

0

)−1
≈ 2.6× 10−7

01101 1.25 ∼ 0.1544 ∼ 8.4× 10−17

01110 1.5 ∼ 0.1204 ∼ 1.7× 10−79

01111 1.75 ∼ 0.0908 ∼ 10−1758

10000 2 (e0)1 = 1 (e0)1 = 1
10001 2.5 (e0.125)1 ≈ 1.1331 (e0.25)1 ≈ 1.284
10010 3 (e0.25)1 ≈ 1.284 (e0.5)1 ≈ 1.6487
10011 3.5 ∼ 1.455 ∼ 2.117

10100 4 ∼ 1.6487 (ee
0

)1 ≈ 2.7183
10101 5 ∼ 1.8682 ∼ 3.6111
10110 6 ∼ 2.117 ∼ 5.2003
10111 7 ∼ 2.3989 ∼ 8.3062

11000 8 (ee
0

)1 ≈ 2.7183 (ee
e0

)1 ≈ 15.1533

11001 10 (ee
0.125

)1 ≈ 3.1054 ∼ 37.0085

11010 12 (ee
0.25

)1 ≈ 3.6111 ∼ 181.3313
11011 14 ∼ 4.2844 ∼ 4048.8237

11100 +∞ ∼ 5.2 (ee
ee

0

)1 ≈ 3.8× 106

11101 NaN ∼ 6.4769 ∼ 1.18× 1016

11110 NaN ∼ 8.306 ∼ 5.6387× 1078

11111 NaN ∼ 11.0108 ∼ 101758

when cj < aj , at which point n = j and h = cj/aj . If cj ≥ aj
for j = 0, . . . , l− 1, then n = l and h = f + ln(cl−1) [2].

Multiplication and division are straightforward [2]: with

extra manipulations of arguments we turn the operations into

addition or subtraction and therefore reuse the sequences

above. For example, if m > 0 then n > 0 and φ(X)φ(Y ) =
φ(Z) = eφ(X−1)eφ(Y−1) = eφ(Z−1) allows to write φ(X −
1) + φ(Y − 1) = φ(Z − 1). We can then do the addition and

increase the level of Z − 1 by one. Further details are in [2].

Arithmetic for SLI systems requires a few modifications

since there is no level zero and the reciprocal sign has to

be taken into account. These modifications are described by

Clenshaw and Turner [3].

V. MATLAB SYMMETRIC LEVEL INDEX SLI.M

We have implemented a simulator for the SLI arithmetic

[3] in MATLAB. Version 0.1 is available on GitHub1. The file

sli.m defines a sli object, with the following properties.

• level_bits: number of bits assigned to the level (pl).
By default it is set to 2.

1https://github.com/north-numerical-computing/level-index-simulator.git

• index_bits: number of bits assigned to the index (pi).
By default it is set to 12.

• sign: sign bit. 0 for s(x) = 1 and 1 for s(x) = −1.

• reciprocal: 1 for r(x) = 1 and 0 for r(x) = −1.

• level: level, stored as binary64, limited to [1, 2pl ]. Since

it is a positive integer it could be stored as a 64-bit integer.

• index: index, stored as binary64, rounded to a fixed-

point representation with machine epsilon ε = 2−pi using

MATLAB’s round() (round-to-nearest ties-to-away, a

default rounding mode). This value could be stored as a

64-bit integer in fixed-point representation.

• value: a binary64 image of the stored LI number,

constructed using (5).

Below is an example use of sli in MATLAB.

>> x=sli

[...]

>> x=x.set_val(pi)

x =

sli with properties:

level_bits: 2

index_bits: 12

sign: 0

reciprocal: 1

level: 2

index: 0.135253906250000

value: 3.141899100868418

>> x*x

ans =

sli with properties:

level_bits: 2

index_bits: 12

sign: 0

reciprocal: 1

level: 2

index: 0.828369140625000

value: 9.870807937639510

There are two ways to define a sli object: by specifying

a binary64 quantity or by explicitly specifying the level and

index values. The first method uses (6) to convert a binary64

value to a LI value, with rounding to nearest for fitting the

index into the specified number of bits. See the example code

within the repository for more detail.

VI. EXPERIMENTS

Figures 3 and 4 show the accuracy of a 16-bit SLI arithmetic

sli-2.12 compared with the binary16 and bfloat16 floating-

point representations, respectively. The accuracy was measured

by comparing with binary64 in a narrow range of numbers

around zero with a step size between the adjacent input

samples of 10−5, computing the relative error. The step size

was chosen so that it is small enough to capture many values

but big enough to visualize the errors in a plot.

Figure 5 and 6 show the relative backward error for

matrix-vector multiplication Ax with A drawn from the two

distributions shown and x ∈ (0, 1)n for n = [10, 104].
Binary16 demonstrates higher accuracy, but it overflows when

A ∈ (0, 100)n×n whilst sli-2.12 continues computing. On the

https://github.com/north-numerical-computing/level-index-simulator.git
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Fig. 3. Relative accuracy of binary16 and a 16-bit level-index representation
compared with binary64.
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Fig. 4. Relative accuracy of bfloat16 and a 16-bit level-index representation
compared with binary64.

other hand bfloat16 does not overflow in this particular ex-

periment; sli-2.12 has better or equivalent accuracy compared

with bfloat16.
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Fig. 5. Backward error in Ax with binary16 and sli compared with binary64.

VII. CONCLUSION

SLI arithmetic simulator is presented which enables the

community to experimentally study this number system. In

v0.1 we implemented most of the operators2 for the sli ob-

jects. Operators mrdivide, mldivide, power, mpower,

and, or, and not are not yet implemented; the toolbox does

not at present fully work in Octave. We plan extensions in

the future versions of the toolbox. Our goal is for the toolbox

to act as an easy method for testing the accuracy of modern

2https://uk.mathworks.com/help/matlab/matlab oop/implementing-
operators-for-your-class.html
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Fig. 6. Backward error in Ax with bfloat16 and sli compared with binary64.

algorithms in SLI arithmetic which in turn may drive hardware

architects to have another look at its implementation.
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