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A protocol for regulating the distribution of quantum information between multiple parties is put
forward. In order to prohibit the unrestricted distribution of quantum-resource states in a public quan-
tum network, agents can apply a resource-destroying map to each sender’s channel. Since resource-
destroying maps only exist for affine quantum resource theories, censorship of a nonaffine resource
theory is established on an operationally motivated subspace of free states. This is achieved by using
what we name a resource-censoring map. The protocol is applied to censoring coherence, reference
frames, and entanglement. Because of the local nature of the censorship protocol, it is, in principle,
possible for collaborating parties to bypass censorship. Thus, we additionally derive necessary and
sufficient conditions under which the censorship protocol is unbreakable.

I. INTRODUCTION

As Shor’s algorithm for the efficient factoring of prime
numbers exemplified [1], quantum information can be
used to break certain cryptographic schemes [2, 3], be-
ing foundational for quantum [4, 5] and post-quantum
cryptography [6]. Because of the prospects that mod-
ern information societies will one day be dealing with a
quantum internet [7-10], in which quantum channels of
increasing complexity connect numerous senders and re-
ceivers, establishing certain restrictions on the sharing of
quantum resources becomes a subject of ever increasing
interest.

To prevent the unregulated spreading of quantum re-
sources, such as coherence and entanglement, to mali-
cious parties in their preparation of cryptographic attacks
on critical infrastructures, governmental agencies might
try to establish a form of quantum censorship. In such
a protocol, quantum information which is deemed be-
nign crosses a network unaltered while hazardous quan-
tum information is rendered classical (Fig. 1). A less
dystopian—but an information-processing equivalent—
scenario might be the censorship of a commercialized
network, with a provider offering free transmission of
classical information, but demanding premium fees for
sharing of quantum information.

In this work, we devise a protocol for such quan-
tum censorship applications. The protocol is based on
a network of multiple sender-receiver pairs, being con-
trolled by some dominant, protective agency (e.g., a
governmental authority, a commercial provider, etc.)
that applies a resource-destroying (RD) map [11] lo-
cally to each sender. This ensures that only free states
of a quantum resource theory (QRT) [12] are transmit-
ted over the network. RD maps distinguish themselves
from resource-breaking [13, 14], resource-annihilating
[15], and resource-erasing protocols [16, 17] in that
they destroy the quantum resource but do not alter free
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states. Moreover, RD maps are single-shot operations,
thus avoiding costly procedures such as tomography by
the agency.

The issue regarding RD maps is that they are not phys-
ically implementable for all QRTs. Indeed, only affine
QRTs can give rise to a linear RD map; necessary and suf-
ficient conditions for a QRT to have a (unique) RD map
were derived in Ref. [18]. Examples of affine QRTs that
possess RD maps include quantum coherence [19, 20],
quantum thermodynamics [21, 22], and quantum ref-
erence frames [23, 24]. On the other hand, there do
not exist linear RD maps for real-valued quantum me-
chanics (affine) [25, 26], quantum entanglement (con-
vex) [27-29], quantum discord (nonconvex) [30], and
non-Gaussianity (convex [31] and nonconvex [32]). At
first sight, this appears to set a fundamental limitation
to which resources a quantum censorship can be im-
posed. In the case of a nonaffine QRT, we identify affine
subspaces of free states on which a censorship can still
be enforced. Since these subspaces are operationally
motivated—while QRTs are physically motivated—, we
introduce the notion of a resource-censoring (RC) map,
being a generalization of RD maps.

Once the censorship protocol is established, the ques-
tion arises if the sending parties can use nonlocal re-
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FIG. 1. In the quantum censorship protocol, a dominant, pro-
tective agency oversees quantum communication in a public-
domain quantum network.
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sources, such as shared entanglement, to overcome the
censorship, meaning that a resource reaches the re-
ceivers. This is, in principle, possible because the agent
applies RC maps locally to each sender-receiver chan-
nel. Thus, we establish necessary and sufficient con-
straints on when collaborating parties can break the cen-
sorship. In particular, we find that a censorship that is re-
alized via an RD map is unbreakable. It follows that the
transmission of classical information (incoherent states)
and speakable information (reference frames) can be en-
forced perfectly by the censorship protocol. By contrast,
censorship of the (nonaffine) QRT of entanglement can
be overcome by using preshared entanglement between
multiple senders. Finally, the effect of noise on the pro-
tocol is discussed.

II. QUANTUM RESOURCE THEORIES

When trying to establish censorship on quantum infor-
mation, we first have to split the set of quantum states
into resource states, whose distribution one wants to pre-
vent, and free states, which propagate in the network
unaltered. Making this distinction is the subject of QRTs
[12]. Each QRT comes with an assigned set of free states
F(A), being a subset of the set of density operators,
which we denote as D(A). The set D(A) contains pos-
itive semidefinite, unit-trace operators p acting on the
(here, finite-dimensional) Hilbert space # 4 of a system
A.

A QRT is said to be affine, if the free states form an
affine space; i.e., for any o, € F(A), the state 0 =
Y ula0a, With t, € R and > t, = 1, is again a free
state. For F(A) C D(A), its affine hull is here defined as

Aﬂf(f):{ 3 taoa

Since an affine combination of states ¢® does not al-
ways yield a physical state, we made use of an intersec-
tion with the set of density operators D(A) in Eq. (1)
such that Aff(F) contains only physical states.For exam-
ple, this could be free states that admit a quasiprobabil-
ity representation [33] while resourceful states are non-
decomposable; see Ref. [34] for an experiment.

Similarly, a QRT is said to be convex if the resource-
free states form a convex set; i.e., for any o, € F(A), the
state 0 = ) 1,04, Witht, >0and ) ¢, =1,isagaina
free state. The convex hull of 7(A) C D(A) is

Conv(f):{ Z ta0q

T.€F(A), Zta:1} ND(4). (1)

a

aaef(A),Ztazl,tazo}. )

Note that Conv[F(A)] C Aff[F(A)] holds true because
convex sums are a special case of affine sums where 0 <
t, < 1is a probability.

We denote by D(A; ... Ay) the set of quantum states
of an N-partite composite system. The convex hull
Conv[D(4;) ® -+ ® D(Ap)] corresponds to the set of

N-partite, fully separable states [35, 36]. Note that we
here employ the following notation of tensor products of
sets: D(A1) ®@ --- @ D(AN) = {pa, @ -+~ @ pa,|pa, €
D(A1),...,pay € D(An)}. Further, we suppose that
the set of composite free states F(A; ... Ay) contains
at least F(4;) ® --- ® F(An) [12]. This means that
the independent preparation of free states by multi-
ple parties gives a free state on the composite system.
Moreover, discarding subsystems may not create a re-
source; i.e., for o € F(4; ... Ay), its marginals Tr, (o) €
F(Ay...Ag—1Auq1 ... An), for a = 1,... N, are free,
too. Therefore, if 7(A;),...,F(An) are affine, then one
defines

F(Ay...Ay) = Aff[F(A) @ @ F(AN)].  (3)
If F(Ay),...,F(An) are convex, then one has
F(A1...An) =Conv(F(41)®--- @ F(An)). B

And, for a general QRT, F(A;...Ay) 2 F(4)) ® -+ ®
F(An) holds true.

A. Resource-destroying maps and resource-censoring
maps

Physical operations are mathematically expressed as
quantum channels [37], i.e., linear maps A : D(A) —
D(B) that are completely positive and trace-preserving.
A quantum channel A is said to be RD, if it additionally
satisfies

() Vp € D(A) :
(i) Vo € F(A) :

A(p) € F(B), (resource-destroying)
Alo) =o. (freeness-preserving)

In Ref. [11], it was shown that the existence of a RD
map implies that F(A) is affine; see also Refs. [12, 18].
To see this, let 0 = ) t,0, ¢ F(A) be an affine combi-
nation, and o, € F(A) are free states. If an RD map A
would exist for a nonaffine theory, then A( Yo taaa) =
Yo taA(0,) has to be a free state by condition (i). On the
other hand, condition (ii) implies A(o,) = o, for all a,
thus A(o) = 0. However, o is not a free state by the ini-
tial assumption. Thus, we are left with a contradiction,
showing that such a map A cannot exist.

Nevertheless, for a nonaffine QRT, a generalization of
RD maps can be introduced, which we dub RC maps.

Definition 1. A channel A’ is said to be RC if it satisfies

Vp € D(A) : A(p) € F(B),
Vo € F'(A): A'(c) = o, (almost freeness-preserving)

(resource destroying)

where F'(A) C F(A) is a chosen affine subspace.

We emphasize that RC maps are not just RD maps be-
longing to a smaller QRT F'(A), with F'(A) C F(A),
since we do not demand an RC map A’ to map any
state p € D(A) onto a state in F'(B). Moreover, free



states F(A) of a QRT are commonly motivated by phys-
ical limitations while the set 7’(A) is motivated opera-
tionally. Simply speaking, F'(A) is a subset of free states
for which one can guarantee that these pass the chan-
nel unaltered while any resource p ¢ F(A) is destroyed.
The free states in F(A) \ F'(A) might also undergo
changes. Since F'(A;),...,F (An) are, by definition,
affine, 7/(A; ... Ay) is given by the affine hull in Eq. (3).
For an affine QRT, one has A’ = A, with 7/(4) = F(4).
On the other hand, for any nonaffine QRT F(A), one can
always find at least a minimal construction 7/(A4) = {c},
containing a single state o € F(A); then, A'(p) = Tr(p)o
is RC.

III. QUANTUM CENSORSHIP

In the following, the quantum censorship protocol is
introduced. Firstly, the protocol is studied for noise-
less channels. Secondly, we discuss under which circum-
stances multiple senders can coordinate their resources
to potentially overcome censorship. After the discussion
of important special cases, the effect of noise on the pro-
tocol is investigated.

A. Censorship over noiseless channels

Consider N senders A1, ..., Ay who have access to lo-
cal quantum resources, e.g., party A, can prepare any
state ps, € D(A,). In an unregulated network, each
sender is connected to one of the receivers By,...,Bx
via the noiseless channel id4,_, ,. However, in order to
prevent the transmission of resource states, an agent sits
in between each sender-receiver pair. The agent’s goal
is to limit the type of quantum states that can be shared
between parties to the free states F(A,) of a QRT. The
agent informs the senders that only the transmission of
free states in an affine subspace 7'(4,) C F(4,) is au-
thorized, the user agreement. To enforce that policy, the
agent can implement an RC map A’. Thus, the informa-
tion processing protocol of (noiseless) quantum censor-

ship is
A B,

Ay By.

As long as each sender Aj,..., Ay only has access
to local quantum resources, i.e., the composite system
is in a product state p4, ® --- ® pa,, receiving parties
By,...,By obtain A'(ps,) ® -+ ® A’(pa,), which is
a free state in F(B; ... By), as intended by the agent.
If, however, an initial state 04, ® --- ® 04, belongs to
F' (A1) ® - ® F'(An), it remains unchanged by the ac-
tion of (A")®N . This allows the users of the network to
carry out (undisturbed) communication only with mes-
sageso € F'(A1 ... An).

B. Breakable and unbreakable censorship

Clearly, a single sender cannot break censorship as
p € D(A) is mapped onto a free state A'(p) €
F(B). But sending parties Aj,..., Ay might coordi-
nate their actions to prepare a nonlocal resource state
p € D(A; ... An). In this case, the circuit is

A B
AN BNv

where the vertical line between the senders indicates pre-
shared entanglement (and randomness [12]) necessary
to prepare an arbitrary N-partite quantum state. Be-
cause of the local action of the agent’s operation A’, the
question arises if the censorship can be overcome in this
manner? Formally, we define the notion of breakable
censorship as follows.

Definition 2. A censorship is breakable if there exists a
state p ¢ F(A; ... Ay) such that (A)®*N(p) = p. Other-
wise, censorship is said to be unbreakable.

Simply speaking, censorship is breakable if a quantum
correlated resource state reaches the receivers unaltered.
The receivers can coordinate their actions to make use
of the resource. When censorship is unbreakable, ma-
licious users Ai,..., Ay cannot proliferate quantum re-
sources, thus making it easier to attribute the origin of
a cryptographic attack in places, wherever post-quantum
cryptography is not at its state-of-the-art. In a commer-
cial setting, where a provider demands premium fees for
sharing quantum resources, overcoming the censorship
creates a free-rider problem, in which users can transmit
quantum information without paying. This, in turn, de-
stroys a provider’s incentive to participate in the build-up
of a global quantum internet.

The following theorem establishes for which QRTs the
censorship can be overcome.

Theorem 1. A censorship is breakable, if and only if
F'(Ay...An)\ F(A; ... AN) is nonempty.

Proof. If F'(Ay ... An)\ F(A; ... Ay) is nonempty, then
there exists a resource state p ¢ F(A;...Ay) that is
stabilized by (A)®V, i.e., (A")®N(p) = p. This follows
from the linearity of A’ and the definition of the affine
hull 7/(A;... Ay); see Eq. (3). Hence, (A")®N(p) =
p ¢ F(B;...By) and censorship is breakable. Con-
versely, if censorship is breakable, then there exists a
state p ¢ F(A; ... Ay) such that (A")®N(p) = p. By the
above argument, p lies in /(41 ... An) \ F(A:1... An),
completing the proof. |

Intuitively, this breaking of the censorship can be un-
derstood as follows. The subset 7/(A) of the free states
F(A) was motivated operationally as a space on which



one could establish a censorship for a single sender-
receiver pair. However, its affine hull 7/(4; ... Ay) as
defined in Eq. (3) might contain states that are resource-
ful on the composite system.

C. Special cases

For the case A’ = A, being the (unique [18]) RD map
of a QRT, we have the following theorem.

Theorem 2. Let A be the RD map of a QRT. Then, the
censorship is unbreakable.

Proof. Since A is RD, the set of free states F(A) is affine.
Hence, F(A;...An) = F'(A; ... Ay), and by virtue of
Theorem 1, the censorship is unbreakable. |

In principle, the censorship protocol can be made un-
breakable for any QRT. This can be achieved by choosing
F'(A) = {0} as a single-state edge case. The RC map of
the theory is the replacement channel A'(p) = Tr(p)o.
Then, F/(A;...Ay) = F' (A1) ® -+ @ F'(An), which is
always contained in F(A; ... Ay). It follows from Theo-
rem 1 that censorship is unbreakable.

Next, suppose we are concerned with the censorship
of a convex QRT. The set F(4; ... Ay) as defined by the
convex hull in Eq. (4) contains free, N-partite separable
states. Thus, entanglement-breaking channels play a dis-
tinct role in the censorship of these resources. The chan-
nel A’ is entanglement breaking [13] if id4, .5, ® A’
maps any bipartite state p onto a separable state; i.e.,
(ida, - B, ®A")(p) is an element of Conv(D(B;)®D(Bs)).
As A’ is additionally RC, id4, 5, ® A’ is a projec-
tion onto Conv(D(By) ® F'(Bs)). For an entanglement-
breaking RC map, the following theorem holds true.

Theorem 3. If A’ is an entanglement-breaking RC map of
a convex QRT, then censorship is unbreakable.

Proof. Let A’ be entanglement breaking. Then, (A")®¥ is
a mapping from D(A; ... Ay) to the set Conv(F'(B;) ®
.-+ ® F'(By)). But since (A")®¥ stabilizes states in the
affine hull 7'(A; ... Ay) given by Eq. (3), it follows that

F'(A1...An) C Conv(F' (A1) @ -+ @ F'(An)) )
C F(A;r...An),

where the second line follows from F/(A) C F(A), and

because F(A; ... Ay) is defined via the convex hull in

Eq. (4). Hence, F/'(A;...Ayx) \ F(4;... Ay) is empty

and Theorem 1 implies unbreakable censorship. |

For the purpose of illustration, we can make use of the
minimal construction F'(A) = {0} in which o is a single
free state belonging to a convex QRT F(A). An RCmap is
given by the replacement channel A’(p) = Tr(p)o. Since
A’ is entanglement breaking, Theorem 3 ensures that the
censorship is unbreakable, which might also be obvious
from the form of the channel A’.

D. Censorship via noisy channels

So far, we have restricted ourselves to perfect commu-
nication; that is, each sender is connected to a receiver
via an identity channel. In realistic communication sce-
narios, however, we expect information transmission to
be performed over a noisy channel ® : D(A,) — D(A,).
While this is a well-known issue for any information pro-
cessing task, in the context of the censorship protocol,
we ought to be worried that the RC map A’ introduces
additional errors. Thus, we consider the noisy process ®
to occur before the operation A’. The protocol for the
noisy case reads

A HeHat— 5

av &b

Throughout, it is assumed that & is resource non-
generating [11, 12]; that is, for any free state o € F(A4,),
one has ®(0) € F(A,). This seems to be a reasonable
assumption because we rarely expect a noisy map @ to
create a resource from a free state. If censorship is es-
tablished via a RD map A’ = A, then A(¢) = o for any
o € F(A). This implies that the noise & commutes with
A on the set of free states, i.e.,

Vo € F(A) : (Ao ®)(0) = (& o A)(0). (6)

In this scenario, the censorship protocol does not in-
troduce additional errors through the RD map A. This
means that if a sender transmits only free states—as the
agent wants them to do—, their message o is obtained by
the receiver as ®(¢). Of course, noiseless communication
is infeasible in real-world settings, but the agent (e.g.,
a network provider) can aim at high-fidelity communi-
cation, avoiding the introduction of additional noise by
enforcing censorship via A.

The situation is more delicate if we consider censor-
ship using a RC map A’. The RC map stabilizes only
an affine subspace F'(A) C F(A). States in F(A) \
F'(A) could be altered by A’. Then, any resource-
non-generating ¢ that takes elements in 7'(A) to ele-
ments in F(A) \ F'(A) does not generate a resource,
but it might lead A’ to alter these states. The proto-
col then introduces additional changes to the state that
distort the sender-receiver experience in addition to the
already present noise generated by ®. Thus, in order
to ensure that customers can exchange free states in
F'(A) without interference caused by the RC map A/,
the provider must, in general, keep the sender-receiver
channels free of any noise process that is not an auto-
morphism &' : F'(A) — F'(A).

On the other hand, due to A’ being a projection onto
F’, there might be practical situations in which the ac-
tion of A’ has a correcting effect, i.e., A’(®(0)) is closer
(with respect to some metric) to o that the noisy message
d(0).



IV. CENSORSHIP OF SPECIFIC RESOURCES

In the following, the censorship protocol is illus-
trated for several resources including coherence, refer-
ence frames, and entanglement.

A. Censorship of coherence

In the QRT of coherence [20, 38], one quantifies the
amount of superpositions in a general mixed state with
respect to a fixed orthonormal basis {|z)},, the incoher-
ent basis. Free (likewise, incoherent) states admit a diag-
onal representation in that basis, o = > p, |z) (z|. This
QRT is affine since, by Egs. (1) and (2), the definitions
of convex and affine hull coincide in the example under
study. An RD map is given by the completely dephasing
channel [11, 12]

Alp) =) |z) (zl pla) (a] - ™)

Imposing censorship on coherence using A means that
only incoherent states (classical information) are pre-
served during the communication. Since A is RD, the
censorship is unbreakable, Theorem 2. This is a positive
result for any provider (agent) trying to reserve quantum
communication for specific costumers, while restricting
the general users of the network to classical communica-
tion only. Senders have to accept such policies as there is
no way of breaking the censorship.

A physical realization of the censorship can be im-
plemented by linear optics. The sender A prepares the
coherent superposition |¢)) = ay |H) + ay |V) in their
lab. Here, horizontal and vertical polarization |H) and
|V') define the incoherent basis, with |ag|? + |ay|? = 1.
To prevent the transmission of coherent quantum infor-
mation to B, the agent simply applies a polarization
filter to the state [¢)). This realizes a projective mea-
surement of |H) (H| or |V) (V|, depending on the filter.
Since the agent conceals which measurement was per-
formed, B’s best description is given by the incoherent
state o = |ag|? |H) (H| + |av|? V) (V].

B. Censorship of reference frames

Certain types of quantum information are, without a
common reference frame, of no use to the communicat-
ing parties in a network. For instance, in the QRT of
coherence, one can only decide if a given state is free
or not if the incoherent basis {|z)}, is known. Mathe-
matically, we describe a change of the reference frame
by a unitary operator U,, relating a sender’s state p
to a receiver’s state via UapU(I. However, if U, is un-
known, the description of the state is obtained by av-
eraging over all possible values in a group G = {U, },,

e, Alp) = ﬁzlﬂl U.pUl. The channel A is also

known as the G-twirling map [12]. If we consider a
lack of a shared reference frame to define the free states
F(A) = {A(p)|p € D(A)}, then A is a projection onto
F(A). In particular, due to F(A) being affine, it is the
RD map of the QRT. Thus, the censorship of reference
frames in unbreakable; see Theorem Note that the
same conclusion cannot be reached using Theorem
Even though F(A) is affine, and thus convex, A is gen-
erally not entanglement breaking.

C. Censorship of entanglement

In the QRT of entanglement [12, 28], the set of free
states F(A) contains all separable bipartite states of the
system A, i.e., Ha = X4®)Y4. A quantum state 0 € D(A)
is said to be separable if it can be written as a probabilis-
tic mixture of pure product states [35]

o= pe|7) (¥ x, @67) (¢"]y, » (8)

where p, > 0 and ) p, = 1. Mathematically, F(A) is
the convex hull of D(X4)®D(Y4). Since F(A) is convex,
but not affine, there is no RD map for the theory. How-
ever, if the agent informs a sender-receiver pair to agree
on a fixed orthonormal basis {|z)}, for their subsystems
X4 and Xp, a censorship between them can be estab-
lished. This is done on the affine subspace F’(A), con-
taining classical-quantum states 0 = ) p. |z) (|, ®
0%, [39], which are diagonal with respect to {|z)},
in X4, and we have arbitrary o}, . To see that F'(A)
is indeed affine, consider the affine combination ¢ =
Yo tao® of free states o = 37 pu 4 |2) (2], @ 037, Viz.

azqu |x) (1:|XA®W§;A c F'(A), @

where wi, =3" tapr,a0y /g taPeaand 32, taPra =
> . ¢z = 1. An RC map for entanglement is defined as

Ap) =3 (Ia) (], ©13,)p(J2) (aly, ©1y,). (10)

x

Note that A’ acts trivially on the subsystems )4, i.e.,
A" = A®idy, y,, with A being the dephasing channel,
Eq. (7). The channel in Eq. (10) can be used to impose
censorship on entanglement. To see this, note that A’
takes any bipartite state p € D(A) to a separable state in
F(B). However, not all free states o € F(A) are stabi-
lized by the map in Eq. (10), but only those in F'(A).

In the QRT of entanglement, F(A; ... Ay) is given by
the convex hull in Eq. (4). In contrast, the affine hull
F'(Ay...An), as defined in Eq. (3), contains states pos-
sessing entanglement between senders Aq,..., Ay. It
follows that F'(A; ... An) \ F(A;1 ... Ay) is nonempty,
and Theorem 1 thus implies that censorship can be bro-
ken. To see this explicitly, consider two senders A4; and



As sharing the state

paraz = Y Doy T) (@lx, ® ) Yle,, @05y, A1

where at least one p”? is entangled. The protocol for this
case is

It is not hard to see that A’y ® A’; leaves the states
p®Y unaltered. Thus, entanglement is passed on to the
receivers, and censorship has been broken. Note that the
agent might enforce an unbreakable censorship of entan-
glement by resorting to a (stricter) censorship on coher-
ence, using the RD map A®? from Eq. (7), and redefin-
ing F'(A) as the set of (bipartite) incoherent states. This
suffices because there cannot be entanglement without
coherence, and censorship of coherence is unbreakable.

In general, the RC map in Eq. (10) does not com-
mute with resource non-generating (i.e., non-entangling
[40, 41]) noise ® on the set of free states F(A). Thus,
the agent must be worried that their action A’ introduces
additional errors into the message, despite a sender A us-
ing the network permissibly, i.e., sending only messages
o € F'(A) according to the user agreement.

To illustrate the undesirable effects such noise can
have on a state o0 = ) p. |7) (2], ® 0F,,, consider a
swap channel ®(p ® 0) = 0 ® p. Clearly, the noise ®
is resource non-generating (non-entangling). After the
agent, applies the RC map in Eq. (10), a receiver B is
left with the incoherent state

(A/O(I))(U):sz <y| J%}A |y> ‘y> <y|XB®‘x> <.’E‘y3 : (12)

This leaves B without any quantum properties left in the
state. While a swap channel might be a non-intuitive
form of noise, mixing up a bit sequences is certainly pos-
sible, and it highlights some of the difficulties (quantum)
network providers (i.e., the agent) faces when trying to
establish a quantum censorship, while still keeping the
network operable.

A physical realization of the censorship can be devised
using linear optics. Two senders A; and A, prepare the
entangled state

paas = |H) (Hly, @ V) (V]y, ©167) (6%, 3, -

Here, horizontal and vertical polarization |H) and |V)
define the incoherent basis and |¢pT) = (|JHH) +

6

|[VV))/v/2 is a Bell state. The agent tries to prevent the
transmission of entanglement to receivers B; and By us-
ing the RC map (10). There, the agent performs a (non-
selective) polarization measurement on the subsystems
Xa, and X4,, thus realizing a dephasing with respect
to the states |H) and |V) [see Eq. (7)]. See also Ref.
[42] for experimental results on a controllable dephas-
ing channel. On the other hand, the agent does not ap-
ply any operation to the subsystems Y4, and Va4, [see
Eq. (10)]. It follows that the state pg, 4, is not altered
by the RC map A’y ®A/, . The entangled state [¢") (¢T],
thus reaches the receivers B; and Bs. The censorship has
been broken.

V. CONCLUSION

We introduced a protocol for quantum censorship.
Therein, an agent can apply RC or RD maps locally
to each sender-receiver connection, thus prohibiting the
distribution of resource states through the network at
will. By using such maps, the protocol avoids any mea-
surements of a state, which would render the network
unusable for quantum communication. Since RD maps
exist only for affine QRTs, RC maps were utilized to im-
pose censorship on an affine subspace of free states. Our
necessary and sufficient conditions reveal under which
censorship is unbreakable. This was the case for the QRT
of coherence and reference frames while the censorship
of entanglement could be overcome.

Quantum censorship protocol becomes especially ur-
gent once we are confronted with the emergence of a
widely accessible quantum internet. See, for instance,
Refs. [43, 44] for recent experimental progress in this
direction. On the one hand, quantum censorship allows
governmental authorities to prevent ill-intentioned par-
ties from quantum-cryptographic attacks. On the other
hand, commercial enterprises may offer free classical ser-
vices but want to charge premium fees for quantum com-
munication. Also, future studies of more advanced (pos-
sibly non-local) censorship protocols might be a worth-
while endeavor. We hope our work paves the way for a
discussion of quantum censorship as a previously unap-
preciated tool in quantum communication.
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