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On probabilities in quantum mechanics

Inge S. Helland

Abstract

This is an attempt to clarify certain concepts related to a debate on the inter-

pretation of quantum mechanics, a debate between Andrei Khrennikov on the one

side and Blake Stacey and Rüdiger Schack on the other side. Central to this debate

is the notion of quantum probabilities. I first take up the probability concept in the

QBist school, and then give my own arguments for the Born formula for calcu-

lating quantum probabilities. In that connection I also sketch some consequences

of my approach towards the foundation and interpretation of quantum theory. I

discuss my general views on QBism as a possible alternative interpretation before

I give some final remarks.

1 Introduction

The current discussions on the foundation and interpretation of quantum mechanics

may be rather intense. Quantum probabilities, as calculated by the Born formula, are

central in many of these discussions. As a background for this, it may be useful to

look at the various derivations of the Born formula; see Campanella et al. (2020) for

some references. My own derivation is given in Helland (2021), and is related to my

approach towards quantum foundation, which now has reached its assumed final form

in Helland (2024a). This derivation will be repeated below.

This approach to quantum mechanics is a completely new one. It should be looked

upon as rather independent of the history of the field, and it is given in a series of articles

and books referred to in the reference list below. For the complete mathematical details,

I refer again to Helland (2024a).

The present article takes up a special aspect of my theory: My views on quantum

probabilities, and a derivation of the Born rule from a set of assumptions.

The Born formula is the central formula in quantum mechanics. It gives the basis

for calculation of quantum probabilities.

I will first argue that the Born formula for probabilities in quantum mechanics holds

under the following conditions:

1) There is a fixed physical context.

2) We have two discrete related maximal accessible variables θ a and θ b in this

context, and seek the probability distribution for θ b, given some value of θ a, that is, a

pure state involving θ a.

3) The likelihood principle of statistics holds.
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4) There exist an inaccessible variable φ related to the mind of the relevant observer

A with the following properties: a) θ a and θ b are functions of φ ; b) As a model φ can

be imagined to be accessible to the mind of a superior, perfectly rational being.

From these assumptions, the following formula will be derived below, partly fol-

lowing the derivation in Helland (2021).

P(θ b = vb
k|θ

a = ua
j) = |〈ψa

j |ψ
b
k 〉|

2. (1)

Here, |ψa
j 〉 is the state vector associated with the event θ a = ua

j , and |ψb
k 〉 is the state

vector associated with the event θ b = vb
k

The argument goes in several steps. The basic notion is that of a theoretical vari-

able, which may be a physical variable, but is also assumed to exist in the mind of

an observer, or in the joint minds of a group of communicating observers. Theoretical

variables may be accessible, possible to measure, or inaccessible. From a mathematical

point of view, I only assume the following: If λ if a theoretical variable, and θ = f (λ )
for some function f , then θ is a theoretical variable. And if λ is accessible, then θ is

accessible.

Define the following partial ordering among the theoretical variables, and also

among the accessible theoretical variables: θ is said to be ‘less than or equal to’ λ
if θ = f (λ ) for some function f . A basic assumption behind my theory is: There ex-

ists an inaccessible variable φ such that all the accessible variables can be seen as

functions of φ . This assumption can be easily motivated in simple physical situations.

Using such assumptions together with some specific symmetry assumptions, es-

sentially, the complete quantum formalism is derived in Helland (2024a). What is left

to prove, is the Born formula and the Schrödinger equation. The first issue will be

approached here, for the second, some arguments are given in Helland (2021).

As a special application of the partial ordering defined above: All accessible vari-

ables are dominated by φ . Therefore, using Zorn’s Lemma, maximal accessible vari-

ables always exist, variables that are just accessible. Physical examples can easily be

given, for instance the spin component of a particle in some given direction.

A few consequences of the general theory in Helland (2024a) should be mentioned.

A first theorem states assumptions under which all accessible variables have associated

with them self-adjoint operators. A basic assumption is the existence of two, really

different, maximal accessible (complementary) variables in some physical situation.

The eigenvalues of the operators in the discrete case are the possible values of the

variables. An accessible variable is maximal if and only if all eigenspaces are one-

dimensional.

The motivation for writing (a shorter version of) the present article, was a debate

between Khrennikov (2024) and two physicists that defined themself as QBists, arguing

for a special quantum interpretation of quantum probabilities called QBism, founded

by Chris Fuchs; see Caves et al. (2020). Briefly, the QBists regard themselves as sub-

jective Bayesians, where Bayesianism is a philosophy founded by a couple of statisti-

cians; see details in Section 2. The basic assumption of Bayesianism is the belief in the

existence of a prior probabilities. Always. Very few statisticians are complete subjec-

tive Bayesians today. For a diametric opposite foundation of statistical inference, see

Schweder and Hjort (2002).
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Taking a Theorem by Ozawa (2019) as his point of departure, Khrennikov (2024)

recently criticised the QBism interpretation of quantum mechanics. Based on an earlier

version of Khrennikov’s paper, this critque has been countered by Stacey (2023) and

Schack (2023). The discussion is centered around the probability concept. One main

purpose of this article is to look at this discussion as seen from my own standpoint.

2 Quantum probablities according to a QBist

I will start with the brief paper by Stacey (2023), who approaches the probability con-

cept from the point of view of a QBist. Here is a citation:

‘According to this school of thought, a probability for an event is nothing more or

less than a gambling commitment, a valuation by a specific agent of how much that

agent would stake on that event occurring.’

He continues by referring to Khennikov’s introduction of certain mathematical en-

tities to describe the situation where two remote observers measure the same variable:

Operators A, M1 and M2, a state vector |ψ〉 for the system and another |ξ 〉 for the en-

vironment (Khennikov uses |ξ1〉 and |ξ2〉 for the states of the measurement apparata),

plus a one-parameter famlly of unitaries U(t) to represent time evolution.

‘Any probability extracted from combining these quantities is necessarily, just like

any other probability in personalist Bayesianism, the possession of the agent who com-

mits to it. So there is no way to mix the ingredients A, M1, M2 and so forth to arrive at

a conclusion that the personal experiences of two agents will always agree, or that they

will always disagree, or anything in between.’

I will approach these statement, and any other statements made by physicists, from

the point of view of a statistician. The whole science of statistics is built upon proba-

bilies. Bayesianism is one school within statistics, but there are also other schools.

Statistics is also a science that can be explained to intelligent people using fairly

everyday terms. One of my own goals is that some day we will be able to do the same

with quantum physics.

So concentrate on ‘a probability for an event is nothing more or less than a gambling

commitment’. QBists seem to think in terms of gambling all the time; every time we

make a decision we make an internal bet. I will claim that ordinary people neither think

nor act in this way. We go through life making decision after decision, and very rarely

we think in terms of gambling when we make these decisions. So also when we make

statements of probabilities of events.

The concept of probability may be useful in many connections. Probabilities may

be based upon symmetries, like when throwing a die or evaluating an opinion poll, it

can be based upon subjective judgement, or it can be based on much data and long

experience, like when a meteorologist makes a probability statement. Only in the sub-

jective case, it is possible at all to talk about some internal gambling procedure. I will

claim that even in that case, people tend to make probability statements without having

any bets in mind.

So, in my view, even in the case of quantum probabilities, the QBist probability

concept as sketched above is unsatisfactory. For quantum probabilities, we in some

way will have to take a closer look at the background for the Born theorem.
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In a number of Sections I will now give my own arguments. They are based upon

my point of view as a statistician. One basic goal of my research has been to try to

build a bridge between the statistical culture and the quantum mechanical culture, and

a part of this goal has been to find a foundation of quantum theory that can be explained

to scientists like statisticians. This is very difficult with the existing formalism.

As a side remark, it should be said that my approach also seems to give simple

ways to discuss certain so-called peradoxes like Schrödinger’s cat and the two-slit ex-

periment, and it can be used to provide links towards relativistic quantum field theories

and quantum gravity; I refer to the forthcoming book Helland and Parthasarathy (2024)

3 The likelihood principle

The basis for nearly all statistical inference is a statistical model, a probability model

for the data z, given some defined parameter θ . In most cases, both z and θ are multi-

variate, i.e., can be seen as vectors. The model is then given by a probability function

for the data, given the parameter, p(z|θ ). In the continuous case, p is a probability

density, in the discrete case a point probability.

The likrlihood of the data is defined as L(θ |z) = p(z|θ ), the probability function

seen as a function of the parameter.

Statistical inference builds upon several principles. One of these is the likelihood

principle.. The principle says roughly that all relevant information in some experiment

is contained in this likelihood. The principle can be derived from other principles; see

Helland (2021), but it can also be argued for independently. A version of the likelihood

principle will be used below as a partly motivation of Born’s formula.

The Generalized Likelihood Principle Consider two experiments with equivalent

contexts τ , and assume that θ is the same full parameter in both experiments. Suppose

that two observations z∗1 and z∗2 have proportional likelihoods in the two experiments,

where the proportionality constant c is independent of θ . Then these two observations

produce the same experimental evidence on θ in this context.

The term ‘experimental evidence’ is here left undefined, and can be specified in any

desirable direction; see a closer discussion in Helland (2021).

Two contexts are said to be equivalent if one can establish a one-to-one function

between all variables involved. It is important for my development that the context

is kept fixed. This aspect makes the generalized likelihood principle weaker than the

principle as formulated in the literature, in particular in Berger and Wolpert (1988).

Paradoxes like what the ordinary likelihood principle seems to imply in the following

situation are avoided.

Example Suppose that s1,s2, . . . are independent, identically (iid) distributed vari-

ables with P(s = 1) = θ and P(s = 0) = 1− θ , in statistical language, iid Bernoulli

variables with parameter θ . In experiment E1, a fixed sample size of ten observations

is decided upon, and the important summary observation (in statistical language the

sufficient statistics) t1 = ∑10
i=1 si turns out to be t1 = 8. In experiment E2, it is decided to
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take observations until a total of 2 zeroes has been observed. Then assume that the suf-

ficient statistics t2 = ∑si also turns out to take the value 8. The two likelihoods are pro-

portional, but the contexts are different, so the intuition that the two experiments may

lead to different inference on θ is supported by my version of the likelihood principle.

For further discussion of this example, see Berger and Wolpert (1988) and references

there.

The introduction of a context makes my formulation of the likelihood principle far

less controversial than the ordinary formulation. According to the ordinary principle,

the way data are obtained is irrelevant to inference; all information is contained in

the likelihood. Thus sampling plans, randomization procedures, and stopping rules are

irrelevant according to a common interpretation of the ordinary principle. Furthermore,

common frequentist concepts like bias, confidence coefficients, levels and powers of

statistical tests, etc., are irrelevant, as they depend on the sample space, not only on

the observed observations. In my formulation, all these concepts are related to the

context. Also Bayesian priors, if needed, are contained in the context. Maximum

likelihood estimation can not be derived from the likelihood principle, but is obviously

permissible as a method of obtaining reasonable proposals for estimates in general.

An important special case of the generalized likelihood principle is when the pro-

portionality constant c is equal to 1. Then the two observations z∗1 and z∗2 have equal

likelihoods. Again an important special case is when the two experiments are identi-

cal. A consequence of the generalized likelihood principle is then that all experimental

evidence, given the context, is a function of the likelihood of the experiment, i.e, is

contained in the likelihood function.

From this point of view the situation is similar in quantum mechanics as in in ordi-

nary statistics. Here, in a given situation, we may have a model for the data z depending

upon the context τ and the theoretical variable of interest θ , expressed by a point proba-

bility or probability density p(z|τ,θ ). Thus, even though θ may be discrete, from a sta-

tistical point of view it acts as a parameter in the model. An eventual extra parameter η
in such a model will be assumed known from earlier experiments of the same type, and

may be included in the context. This gives a unique likelihood L(θ |z,τ) = p(z|τ,θ ).
And also in this situation the relevant discussion in Helland (2021) seems to imply that

the generalized likelihood principle above holds true.

The focused likelihood principle

In this section I assume a discrete quantum formulation. One can for instance think of a

spin component in a fixed direction to be determined. I assume a measurement situation

where the data contains some noise, hence a likelihood for the discrete parameter θ ,

given data z as L(θ |z) = p(z|θ ), where p is the probability density or point probability

of the data.

Assume now that the quantum mechanical system is prepared in some state and that

we want to do an experiment related to the unknown theoretical variable θ b. Given then

the focused question b, the theoretical variable θ b plays the role similar to a parameter

in statistical inference. Inference can be done by preparing many independent units in
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the same state. Inference is then made from data zb. All inference theory that one finds

in standard statistical texts like Lehmann and Casella (1998) applies. In particular, the

concepts of unbiasedness, equivariance, average risk optimality, minimaxity and ad-

missibility apply. None of these concepts are much discussed in the physical literature,

first because measurements there are often considered as perfect, at least in elementary

texts, secondly because, when measurements are considered in the physical literature,

they are mostly discussed in other terms.

Whatever kind of inference we make on θ b, we can take as a point of departure

the statistical model and the generalized likelihood principle of the previous Section.

Hence after an experiment is done, and given some context τ , all evidence on θ b is

contained in the likelihood p(zb|τ,θ b), where zb is the data relevant for inference on

θ b, also assumed discrete. This is summarized in the likelihood effect:

Fb(ub;zb,τ) = ∑
j

p(zb|τ,θ b = ub
j)|b; j〉〈b; j|, (2)

where the pure state |b; j〉 corresponds to the event θ b = ub
j .

Interpretation of the likelihood effect Fb(zb,τ):
(1) We have posed some inference question on the accessible theoretical variable.

θ b. (2) We have specified the relevant likelihood for the data. The question itself and

the likelihood for all possible answers of the question, formulated in terms of state

vectors, can be recovered from the likelihood effect.

The likelihood effect is closely connected to the concept of an operator-valued mea-

sure; see a discussion in Helland (2021). Since the focused question assumes discrete

data, each likelihood is in the range 0 ≤ p ≤ 1. In the quantum mechanical literature,

an effect is any operator with eigenvalues in the range [0,1].
Some qualifications must be made relative to the above interpretation, however, if

we want to be precise. We have the freedom to redefine the theoretical variable in

the case of coinciding eigenvalues in the likelihood effect, that is, if p(zb|τ,θ b = ub
j) =

p(zb|τ,θ b = ub
l ) for some j, l. An extreme case is the likelihood effect F(ub;zb,τ) = I,

where all the likelihoods are 1, that is, the probability of z is 1 under any consid-

ered model. One could have defined the likelihood effect from appropriate eigenvalue

spaces, but for the following mathematical result, the definition (2) is convenient.

We have the following result on the likelihood effects:

Proposition 1 Let two experiments b and c be given together with two data points

zb and zc of these experiments. Assume that b and c are such that

Fb(ub;zb,τ) = Fc(uc;zc,τ). (3)

Then we can order the states such that

(1) p(zb|τ,θ b = ub
j) = p(zc|τ,θ c = uc

j) for each j.

(2) Introduce the class of indices Ci such that p(zb|τ,θ b = ub
k) = p(zb|τ,θ b = ub

l )
whenever k, l ∈Ci, and these likelihoods are different when k and l belong to different

Ci-classes, similarly Di for p(zc|τ,θ c = uc
k). Then we have

∑
k∈Ci

|b;k〉〈b;k|= ∑
k∈Di

|c;k〉〈c;k|
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for all i.

On the other hand, if (1) and (2) are satisfied, then (3) holds.

The last part is fairly trivial. The direct part is proved in Appendix 1.

Return now to the generalized likelihood principle of the previous Section. Recall

that this principle is fairly reasonable in our setting, where we condition upon the con-

text τ . In statistics, the likelihood principle says the following: If two experiments have

proportional likelihood, with constant of proportionality independent of the parameter,

they produce the same experimental evidence about the parameter. Here experimental

evidence is left undefined. In my approach towards quantum mechanics, where one

focuses on a specific question, we must in addition demand that this focused question

is the same; that is, the set of corresponding projections must be the same.

The following principle follows:

The Focused Generalized Likelihood Principle (FGLP) Consider two potential

experiments b and c in some setting with equivalent contexts τ , and assume that the

inaccessible theoretical variable φ is the same in both experiments. Suppose that the

two observations zb
1 and zc

2 have equal likelihood effects in the two experiments.

Then

(A) The questions posed in the two experiments are equivalent in the sense that

one can use the same Hilbert space H to describe the results of the experiments, and

that the corresponding set of eigenvector spaces (i.e., the orthogonal resolution of the

identity) are equal. This implies a one-to-one relation between the theoretical variables

θ b and θ c.

(B) The two observations produce equivalent experimental evidence on the relevant

theoretical variables in this context and given this question.

Proposition 2 The focused generalized likelihood principle follows from the gen-

eralized likelihood principle.

Proof. The Proposition is trivial if we know that the theoretical variables are the same

in the two experiments. If not, we have a situation where Eq. (3) holds. Then θ b-

operator= ∑ub
kΠb

k , θ c-operator= ∑uc
kΠc

k, where the equality of the projection opera-

tors after a suitable ordering follows from Proposition 1, (2). The eigenvalues ub
k are

all different, similarly the eigenvalues uc
k. These are the answers to the questions con-

nected to θ b and θ c; the questions are equivalent since the set of projection operators

coincide. The conclusion (B) follows from Proposition 1, (1) and the ordinary (gener-

alized) likelihood principle.

Remark: Strictly speaking, this proof uses the assumption that p(zb|τ,θ b = ub
k) =

p(zb|τ,θ b = ub
j) implies ub

k = ub
j , and similarly for zc. This is in agreement with the

arbitrariness of θ b in relation to Fb discussed above. Below, in the proof of Born’s

formula, I will use FGLP in the very special case of a perfect experiments, where

observations can be taken to be equal to parameter values, and there this assumption is

trivial.
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Two contexts are considered equivalent if they are one-to-one functions of each

other. The principle FGLP says that both the question posed and the experimental

evidence are functions of the likelihood effect and the context of the experiment.

4 Rationality and experimental evidence

Throughout this Section and the next one, I will consider a fixed context τ and a fixed

epistemic setting in this context. The inaccessible theoretical variable is φ , and I as-

sume that the accessible theoretical variables θ b take a discrete set of values. Let the

data behind the potential experiment connected to θ b be zb, also assumed to take a

discrete set of values. I will assume throughout this Section and the next one that an

experimentalist B is in such a context partly determined by the fact that he previously

has performed an perfect experiment connected to a maximally accessible theoretical

variable θ a and obtained the answer θ a = uk, so that his state can be described by a

Hilbert space H and a vector |a;k〉 in H .

So let a single experimentalist B be in this situation, and let all theoretical variables

be attached to B, although he also has the possibility to receiving information from

others through part of the context τ . He has the choice of doing different experiments b,

and he also has the choice of choosing different models for his experiment through his

likelihood pB(z
b|τ,θ b). The experiment and the model, hence the likelihood, should be

chosen before the data are obtained. All these choices are summarized in the likelihood

effect Fb, a function of the at present unknown data zb. For use after the experiment,

he should also choose a good estimator θ̂ b, and he may also have to choose some loss

function, but the principles behind these latter choices will be considered as part of the

context τ .

If B chooses to do a Bayesian analysis, the estimator should be based on a prior

πB(θ
b|τ). We assume that he is trying to be as rational as possible in all his choices,

and that this rationality is connected to his loss function or to other criteria. What

should be meant by experimental evidence, and how should it be measured? As a

natural choice then, let the experimental evidence that we are seeking, be the posterior

probability for some fixed value of θ b, given the data. From the experimentalist B’s

point of view this is given by:

q = pb
B(θ

b = ub
j |z

b,τ) =
pB(z

b|τ,θ b = ub
j)πB(θ

b = ub
j |τ)

∑i pb
B(z

b|τ,θ b = ub
i )πB(θ b = ub

i |τ)
,

assuming the likelihood chosen by B and B’s prior πB for θ b.

Some Bayesians claim that their own philosophy is the only one which is consistent

with the likelihood principle. For my own view on this, see Helland (2021). In a

non-Bayesian analysis, we can let the concept of experimental evidence be tied to the

confidence distribution, given the context, see Schweder and Hjort (2002). This may

also give a conclusion in terms of a probability, in this case an epistemic probability, a

concept that is further discussed in Helland (2021). Also in such an analysis we must

assume B to be as rational as possible.
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In any case we fix b and j from now on, and take q = qb
j = P(θ b = ub

j |data), an

epistemic probability.

I have to make precise in some way what is meant by the rationality of the experi-

mentalist B. He has to make many difficult choices on the basis of uncertain knowledge.

His actions can partly be based on intuition, partly on experience from similar situa-

tions, partly on a common scientific culture and partly on advices from other persons.

These other persons will in turn have their intuition, their experience and their scientific

education. Often B will have certain explicitly formulated principles on which to base

his decisions, but sometimes he may have to dispense with some of the principles. In

the latter case, he has to rely on some ‘inner voice’, a conviction which tells him what

to do.

So in the case where B can not himself be seen as a perfectly rational Bayesian, a

case that I will concentrate on below, I will formalize this by introducing a perfectly

rational superior actor D, to which all these principles, experiences and convictions can

be related. I will assume that B in his actions is inspired by D, so in this sense, D has

some influence on B’s decisions. I may assume that D has priors, so that he can do a

Bayesian analysis. These priors can be based on symmetry considerations, but also on

other considerations. The experimental evidence will then be defined as the aposteriori

probability of the variable θ b from D’s point of view, say the probability q that θ b takes

some fixed value ub
j , given the data. By the FGLP this must again be a function of the

likelihood effect Fb.

B’s experimental evidence, related to D = q(Fb(ub;zb,τ)) (4)

under the assumption that the experiment connected to some variable θ b is to be done.

Alternatively, I may also asume that D is a frequentist, and that he has epistemic

probabilities connected to θ b as found from a confidence distribution. Again, by the

focused likelihood principle, these epistemic probabilities must be of the form (4).

In any case, for the derivation of Born’s formula below, I will make one more

crucial assumption: q as defined here gives the real probability that θ b takes the fixed

value ub
j in the given context.

The superior actor D represents the scientific ideals of the experimentalist B, and

my main point is that D should be perfectly rational,

In this article I have not tried to develop a theory of decisions. In Helland (2023a,d)

I have argued that there is a close connection between the foundation of quantum me-

chanics and quantum decision theory. Here one must be careful, however. Quantum

decision theory takes its departure in the ordinary mathematical formulation of quan-

tum theory, in particular in Born’s rule for calculating probabilities. Using this theory

here, where I am preparing to derive Born’s rule, will lead to circular reasoning. Instead

I will now take decision as a primitive concept.

An important point is that decisions made by our minds are not the same as straight-

forward computerlike calculations. Human decisions are based on the functioning of

and the interplay between conscious and subconscious processes in the brain.

As said, in a scientific connection we assume that D is perfectly rational. This

can be formalized mathematically by considering a hypothetical betting situation for

D against a bookie, nature N. A similar discussion was recently done using a more
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abstract language by Hammond (2011). But note: I do not see any human scientist,

including myself, as being perfectly rational in all situations. We can try to be as

rational as possible, but we have to rely on some underlyng rational ideals that partly

determine our actions.

So let the hypothetical odds of a given bet for D be (1− q)/q to 1, where q is

the probability as defined by (4). This odds specification is a way to make precise

that, given the context τ and given the question b, the bettor’s probability that the

experimental result takes some value, say ub
j , is given by q: For a given utility measured

by x, the bettor D pays in an amount qx — the stake — to the bookie. After the

experiment the bookie pays out an amount x — the payoff — to the bettor if the result

of the experiment takes the value θ b = ub
j , otherwise nothing is paid.

The rationality of D is formulated in terms of

The Dutch Book Principle No choice of payoffs in a series of bets shall lead to a

sure loss for the bettor.

For a related use of the same principle, see Caves et al. (2002). It is very important

that the principle is related to a fixed context; the hypothetical superior bettor D is

also bounded by this context. This has also consequences for my derivation of Born’s

formula below.

It is also important that this whole discussion is limited to a context where the

observer B during his decision has just two related maximal variables in his mind.

The superior, hypothetical bettor D must then also be related to such a context. This

is important in the derivation of Born’s formula below, and it is also important when

I later generalize to macroscopic decisions. Several recent articles discuss quantum

cognition as modeled by quantum probabilities; for a recent review, see Pothos and

Busemeyer (2022). In my opinion, such models could be based upon a derivation of

Born’s formula and a simple model for a person’s decisions. But this model should

then be limited to decisions between two related maximal variables. The superior,

hypothetical actor D must also be seen in this light.

Assumption 1 Consider in the context τ an epistemic setting where the FGLP is

satisfied, and the whole situation is observed by an experimentalist B whose decisions

are influenced by a superior actor D as described above. Assume that D’s probabilities

q given by (4) are taken as the experimental evidence, and that D can be seen to be

rational in agreement with the Dutch book principle.

A situation where Assumption 1 holds will be called a rational epistemic setting.

It will be assumed to be implied by essential situations of quantum mechanics. Later I

will discuss whether or not it also can be coupled to certain macroscopic situations.

Theorem 1 Assume a rational epistemic setting, and assume a fixed context τ . Let

F1 and F2 be two likelihood effects in this setting, and assume that F1 +F2 also is an

effect. Then the experimental evidences, taken as the epistemic probabilities related to

the data of the performed experiments, satisfy

q(F1 +F2|τ) = q(F1|τ)+ q(F2|τ).
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Proof. The result of the theorem is obvious, without making Assumption 1, if F1 and

F2 are likelihood effects connected to experiments on the same variable θ b. We will

prove it in general. Consider then two experiments 1 and 2, 1 with variable θ b and

likelihood effect F1, and 2 with theoretical variable θ c and likelihood effect F2, and let

B choose between these two experiments. Let z be the data of the chosen experiment,

and let the corresponding posterior probabilities /confidence probabilities connected to

D be q1 = P(θ b = ub
j |z,τ) = q(F1|τ) and q2 = P(θ c = uc

k|z,τ) = q(F2|τ) for some j

and k.

Assume that B does a randomized choice: With an unbiased coin he makes the

choice betwen the experiments 1 or 2. The likelihood effect connected to the whole

experiment, including the coin toss, is (F1 +F2)/2.

Let q0 be the posterior probability / confidence probability for D connected to this

full experiment, including the randomization. One might perhaps argue tentatively at

once that q0 must be equal to (q1 + q2)/2, but I will show in detail that this follows

from the Dutch Book Principle.

Let D make his bets, one for the experiment 1, one for the experiment 2, and one

for the full randomized experiment. Let the corresponding payoffs chosen by Nature

be x1,x2 and x0. Imagine that this, including the randomization, is repeated a large

number of times.

If experiment 1 occurs in the randomization, the payoff for the randomized exper-

iment is replaced by the expected payoff x0/2, similarly if experiment 2 occurs. The

net expected amount the bettor receives is then

x1 +
1

2
x0 − q1x1 − q2x2 − q0x0 = (1− q1)x1 − q2x2 − (1− 2q0)

1

2
x0

if experiment 1 is done and the conclusion is θ b = ub
j ,

x2 +
1

2
x0 − q1x1 − q2x2 − q0x0 =−q1x1 − (1− q2)x2 − (1− 2q0)

1

2
x0

if experiment 2 is done and the conclusion is θ c = uc
k,

−q1x1 − q2x2 − 2q0 ·
1

2
x0 otherwise.

This conclusion may be drawn from many repeated experiments.

The payoffs (x1,x2,x0) can be chosen by nature N in such a way that it leads to sure

loss for the bettor D if not the determinant of this system is zero:

0 =

∣∣∣∣∣∣

1− q1 −q2 1− 2q0

−q1 1− q2 1− 2q0

−q1 −q2 −2q0

∣∣∣∣∣∣
= q1 + q2 − 2q0.

Thus we must have

q(
1

2
(F1 +F2)|τ) =

1

2
(q(F1|τ)+ q(F2|τ)).

If F1+F2 is an effect, the common factor 1
2

can be removed by changing the likelihoods,

and the result follows.
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Corollary 1 Assume a rational epistemic setting in the context τ . Let F1, F2, . . . be

likelihood effects in this setting, and assume that F1 +F2+ . . . also is an effect. Then

q(F1 +F2 + . . . |τ) = q(F1|τ)+ q(F2|τ)+ . . . .

Proof. The finite case follows immediately from Theorem 1. Then the infinite case

follows from monotone convergence.

The result of this Section is quite general. In particular the loss function and any

other criterion for the success of the experiments are arbitrary. So far I have assumed

that the choice of experiment b is given, which implies that it is the same for B and

for D. However, the result also applies to the following different situation: Let B

have some definite purpose for his experiment, and to achieve that purpose, he has to

choose the question b in a clever manner, as rationally as he can. Assume that this

rationality is formalized through the actor D, who has the ideal likelihood effect F and

the experimental evidence q(F|τ). If two such questions can be chosen, the result of

Theorem 1 holds, with essentially the same proof.

5 The Born formula

5.1 The basic formula

Born’s formula is the basis for all probability calculations in quantum mechanics. In

textbooks it is usually stated as a separate axiom, but it has also been argued for by

using various sets of assumptions; see Helland (2008) and Campanella et al. (2020)

for some references. In fact, the first argument for the Born formula, assuming that

there is an affine mapping from set of density functions to the corresponding proba-

bility functions, is due to von Neumann (1927); see Busch et al. (2016). In Helland

(2006), Helland (2008) and Helland (2010) the formula was proved under rather strong

assumptions. Here I will use assumptions which are as weak as possible; I will base

the discussion upon the result of the previuos Sections.

I begin with a very elegant recent theorem by Busch (2003). For completeness I

reproduce the proof for the finite-dimensional case in Appendix 2.

Let in general H be any separable Hilbert space. Recall that an effect F is any

operator on the Hilbert space with eigenvalues in the range [0,1]. A generalized prob-

ability measure µ is a function on the effects with the properties

(1) 0 ≤ µ(F)≤ 1 for all F,
(2) µ(I) = 1,
(3) µ(F1 +F2+ . . .) = µ(F1)+ µ(F2)+ . . . whenever F1 +F2 + . . .≤ I.

Theorem 2 (Busch, 2003) Any generalized probability measure µ is of the form

µ(F) = trace(ρF) for some density operator ρ .

It is now easy to see that q(F|τ) on the likelihood effects of the previous Section

is a generalized probability measure if Assumption 1 holds: (1) follows since q is a
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probability; (2) since F = I implies that the likelihood is 1 for all values of the theoret-

ical variable; finally (3) is a consequence of the corollary of Theorem 1. Hence there

is a density operator ρ = ρ(τ) such that p(z|τ) = trace(ρ(τ)F) for all ideal likelihood

effects F = F(z). This is a result which is valid for all experiments.

The problem of defining a generalized probability on the set of effects is also dis-

cussed in Busch et al. (2016).

Define now a perfect experiment as one where the measurement uncertainty can

be disregarded. The quantum mechanical literature operates very much with perfect

experiments which result in well-defined states | j〉. From the point of view of statistics,

if, say the 99% confidence or credibility region of θ b is the single point ub
j , we can infer

approximately that a perfect experiment has given the result θ b = ub
j .

In our epistemic setting then: We have asked the question: ‘What is the value of

the accessible variable θ b?’, and are interested in finding the probability of the answer

θ b = ub
j though a perfect experiment. If ub

j is a non-degenerate eigenvalue of the oper-

ator corresponding to θ b, this is the probability of a well-defined state |b; j〉. Assume

now that this probability is sought in a setting defined as follows: We have previous

knowledge of the answer θ a = ua
k of another maximal question: ‘What is the value of

θ a?’ That is, we know the state |a;k〉. (ua
k is non-degenerate.)

These two experiments, the one leading to |a;k〉 and the one leading to |b; j〉, are

assumed to be performed in equivalent contexts τ .

Theorem 3 [Born’s formula] Assume a rational epistemic setting. In the above

situation we have:

P(θ b = ub
j |θ

a = ua
k) = |〈a;k|b; j〉|2. (5)

Proof. By Theorem 4 in the comments to Article 2 both the variable θ a and the vari-

able θ b have operators with non-degenerate eigenvalues. Fix j and k, let |v〉 be either

|a;k〉 or |b; j〉, and consider likelihood effects of the form F = |v〉〈v|. This corresponds

in both cases to a perfect measurement of a maximally accessible parameter with a def-

inite result. By Theorem 2 above there exists a density operator ρa,k = ∑i πi(τ
a,k)|i〉〈i|

such that q(F |τa,k) = 〈v|ρa,k|v〉, where πi(τ
a,k) are non-negative constants adding to

1. Consider first |v〉 = |a;k〉. For this case one must have ∑i πi(τ
a,k)|〈i|a;k〉|2 = 1

and thus ∑i πi(τ
a,k)(1−|〈i|a;k〉|2) = 0. This implies for each i that either πi(τ

a,k) = 0

or |〈i|a;k〉| = 1. Since the last condition implies |i〉 = |a;k〉 (modulus an irrelevant

phase factor), and this is a condition which can only be true for one i, it follows that

πi(τ
a,k) = 0 for all other i than this one, and that πi(τ

a,k) = 1 for this particular i. Sum-

marizing this, we get ρa,k = |a;k〉〈a;k|, and setting |v〉= |b; j〉, Born’s formula follows,

since q(F|τa,k) in this case is equal to the probability of the perfect result θ b = ub
j .

6 Consequences

Here are three easy consequences of Born’s formula:

1. If the context of the system is given by the state |a;k〉, and Ab is the operator cor-

responding to the variable θ b, then the expected value of a perfect measurement

of θ b is 〈a;k|Ab|a;k〉.
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2. If the context is given by a density operator ρ , and A is the operator correspond-

ing to the variable θ , then the expected value of a perfect measurement of θ is

trace(ρA).

3. In the same situation the expected value of a perfect measurement of f (θ ) is

trace(ρ f (A)).

Proof of 1.

E(θ b|θ a = ua
k) = ∑

i

ub
i P(θ b = ub

i |θ
a = ua

k)

= ∑
i

ub
i 〈a;k|b; i〉〈b; i|a;k〉= 〈a;k|Ab|a;k〉.

Proof of 2. Let ρ = ∑k πa
k |a;k〉〈a;k| and A = ∑ j ub

j |b; j〉〈b; j|. Then from 1.

E(θ ) = ∑
k

πa
k 〈a;k|A|a;k〉= trace∑

k

πa
k |a;k〉〈a;k|A.

A consequence of 3. above is that θ = θ b does not need to be maximal in order

that a Born formula should be valid; see also below.

As an application of Born’s formula, we give the transition probabilities for electron

spin. For a given direction a, define the variable θ a as +1 if the measured spin com-

ponent by a perfect measurement for the electron is +h̄/2 in this direction, θ a = −1

if the component is −h̄/2. Assume that a and b are two directions in which the spin

component can be measured.

Proposition 3 For electron spin we have

P(θ b =±1|θ a =+1) =
1

2
(1± cos(a ·b)).

This is proved in several textbooks, for instance Holevo (2001), from Born’s for-

mula. A similar proof using the Pauli spin matrices is also given in Helland (2010).

6.1 Perfect measurements

Measurements of theoretical variables is discussed in Helland (2021), here I will look

at the case of a perfect measurement. Assume that we know the state |ψ〉 of a system,

and that we want to measure a new variable θ b. This can be discussed by means of the

projection operators Π b
j = |b; j〉〈b; j|. First observe that by a simple calculation from

Born’s formula
P(θ b = ub

j |ψ) = ‖Π b
j |ψ〉‖2. (6)

It is interesting that Shrapnel et al. (2017) recently simultaneously derived both the

Born rule and the well-known collapse rule from a knowledge-based perspective. I say
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more about the collapse rule in Helland (2021), but in this article I will just assume this

derivation as given. Then, after a perfect measurement θ b = ub
j has been obtained, the

state changes to

|b; j〉=
Π b

j |ψ〉

‖Π b
j |ψ〉‖

.

Successive measurements are often of interest. We find

P(θ b = ub
j and then θ c = uc

i |ψ) = P(θ c = uc
i |θ

b = ub
j)P(θ

b = ub
j |ψ)

= ‖Π c
i

Π b
j |ψ〉

‖Π b
j |ψ〉‖

‖2‖Π b
j |ψ〉‖2 = ‖Π c

i Π b
j |ψ〉‖2. (7)

In the case with multiple eigenvalues, the formulae above are still valid, but the

projectors above must be replaced by projectors upon eigenspaces. One can show that

(6) then gives a precise version of Born’s rule for this case.

Proof. Look first at the case with unique eigenvalues. Then Born’s rule says

P(θ b = ub
j |ψ) = 〈ψ |b; j〉〈b; j|ψ〉.

Let then the eigenvalues move towards coincidence. Let Ck = { j : ub
j = vb

k}. Then by

continuity from the previous equation we get

P(θ b = vb
k|ψ) = ∑

j∈Ck

〈ψ |b; j〉〈b; j|ψ〉 = 〈ψ |Π b
k |ψ〉= ‖Π b

k |ψ〉‖2.

Note that in general P(θ b = ub
j and then θ c = uc

i |ψ) 6= P(θ c = uc
i and then θ b =

ub
j |ψ). Measurements do not necessarily commute.

7 Generalizations

Using a suitable projection, the formula can be generalized to the case where also the

accessible variables θ a is not necessarily maximal. There is also a variant for a mixed

state involving θ a.

First, define the mixed state associated with any accessible variable θ . We need

the assumption that there exists a maximal accessible variable η such that θ = f (η)
and such that each distribition of η , given some θ = u, is uniform. Furthermore some

probability distribution of θ is assumed. Let Πu be the projection of the operator of θ
upon the eigenspace associated with θ = u. Then define the mixed state operator

ρ = ∑
j

P(θ = u j)Πu j
= ∑

i
∑

j

P(η = vi|θ = u j = f (vi))P(θ = u j)|ψi〉〈ψi|, (8)

where |ψi〉 is the state vector associated with the event η = vi for the maximal variable

η .
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From this, we can easily show from (1) (assuming that the maximal ηa correspond-

ing to θ a also is a function of φ ) that in general

P(θ b = v|ρa) = trace(ρaΠb
v), (9)

with an obvious meaning given to the projection Πb
v .

An important observation is that this result is not necessarily associated with a mi-

croscopic situation. The result can also be generalized to continuous theoretical vari-

ables by first approximating them by discrete ones. For continuous variables, Born’s

formula is most easily stated on the form

E(θ b|ρa) = trace(ρaAθ b

). (10)

Note again that we in this formula do not assume that the accessible variable θ b

is maximal. Hence a corresponding formula is also valid for any function of θ b, for

instance exp(iθ bx) for some fixed x. The operator corresponding to a function of θ b

can be found from the spectral theorem. From this, the probability distribution of θ b,

given the information in ρa, can be recovered.

I can also generalize to the case where the final measurement is not necessarily

perfect. Let us assume future data zb instead of a perfect theoretical variable θ b. Strictly

speaking, for this case the focused likelihood principle is still valid under the following

condition: p(zb|θ b = u j) = p(zb|θ b = uk) implies u j = uk. This will not be needed

here. We can define an operator corresponding to zb by

Bzb

= ∑
j

p(zb|θ b = u j)Π
b
u j
, (11)

and, conditioning upon the events θ b = u j and following version (9) of the Born for-

mula, we obtain

p(zb|ρa) = trace(ρaBzb

). (12)

8 Intersubjectivity and QBism

Consider two remote observers O1 and O2 who perform joint measurments on a system

S . Let their observations at time t be θ1(t) and θ2(t), and let these correspond to

operators M1(t) and M2(t). Khrennikov (2024) considers this situation, and assumes

that [M1(t),M2(t)] = 0. Is this possible?

In my terminology it is only possible if θ1(t) and θ2(t), in some sense can be given

meaning at the same time, are both accessible. They can then not each be maximal, but

one can imagine a situation where the vector (θ1(t),θ2(t)) is maximal. At least it has

to be accessible to some agent.

Khrennikov then refers to a Theorem due to Ozawa (2019): Two observers perform-

ing the joint local and probabiliy reproducible measurements of the same observable

A on the system S should get the same outcome with probability 1. He says that this

challenges QBism.
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This last challenge is met by Schack (2023). His arguments are based on the quan-

tum formalism, and the QBist interpretation of this formalism. I will not here go into

his detailed mathematics, but only his interpretation of this mathematics. Here are two

citations:

‘The quantum formalism is a tool that any agent can use to optimize their choice of

actions.’

‘The quantum formalism does not describe nature in absence of agent, but instead

is normative, i.e., answers the question of how one should act.’

I agree completely that quantum probabilities should be attached to an agent (or

to a communicating group of agents), but here the agreement stops. First, I will allow

any agent, not only one that is familiar with the quantum formalism. Next, I look upon

quantum probabilities as descriptive, not normative. This is also my background for

interpreting Ozawa’s Theorem.

Here is a citation from Section 3 in Schack’s article:

‘As a mathematical result, Ozawa’stheorem says nothing about intersubjectivity

or different observers. To arrive at their interpretation, both Ozawa and Khrennikov

have to make the additional assumption that their scenario - two different observers

interacting with a system followed by measurements on the meters - describes two

different observers observers measuring the same system observable.’

He then goes on arguing that this assumption is incompatible with QBism. He

says that from a QBist perspective, Ozawa’s Theorem is about measurements that a

single agent, say, Eve, contemplates performing on a system and two meters. The

assumption that the theorem is about measurement results of two different observers

violates QBism’s key tenet that the quantum formalism should be viewed as a single-

agent theory.

If this is the case, I disagree with the main basis of QBism. In my view, one can

well imagine two observers O1 and O2 measuring the same system. But then it must be

done in such a way that the vector of results (θ1,θ2) is accessible to some agent. What

does this mean? As I see it, it means that a third observer - you may well call her Alice

- may be able to observe O1 and O2 during their measurements, and then able to record

their results all the time. So one can well regard quantum mechanics as a single agent

theory. From the point of Alice here, it can be taken to describe what she observes.

9 Interpretation and foundation of quantum mechanics

Unfortunately, there are many different, mutually incompatible interpretations of quan-

tum mechanics. The relevant Wikipedia article mentions 16 different interpretations.

QBism is one of them. There is a large literature on QBism, referred to in Schack’s

article. I agree of much that is written in this literature, but, as stated in the previuos

sections, I disagree with their views on quantum probabilities.

As I see it, any quantum interpretation should be coupled to a quantum foundation.

My views on the quantum foundation are now described in Helland (2024a). This nat-

urally leads to what I call a general epistemic interpretation of the theory. It is based

upon theoretical variables that are connected to an agent or to a group of communicat-

ing agents. Some of these variables are accessible to the agent, others are inaccessible.
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My first main theorem states that in a situation with two different accessible variables

that in this sense are maximal to the agent, there can be defined a Hilbert space H

such that all accessible variables are associated with self-adjoint operators in H. The

eigenvalues of an operator A coincide with the possible values of the associated vari-

able. An accessible variable is maximal if and only if the associated operator has only

one-dimensional eigenspaces.

In general, these results require some symmetry assumptions, but in the discrete

case, it seems as if these symmetry assumptions can be dispensed with, see Helland

(2024a).

In addition to these basic results, I need arguments for the Born formula and for the

Schrödinger equation. Both issues are addressed in Helland (2021). The assumptions

behind a simple version of Born’s formula are given above. More general versions of

the formula are derived under simple assumptions.

What are the prices payed for all this? First, some simple axioms are to be as-

sumed. Most of them are rather obvious, but one should be mentioned: There exists an

inaccessible variable φ such that all accessible variables are functions of φ . In several

physical examples, φ can easily be constructed. One can also discuss purely statisti-

cal applications (Helland, 2024b). As a very general axiom, valid for all agents in all

possible situations, one can take a religious perspective, see Helland (2023c).

A second price should be mentioned. The theory starts by constructing operators

associated with all accessible variables. Pure state vectors are then only introduced as

eigenvectors of some physically meaningful operator. This seems to impose a limita-

tion on the superposition principle. This can be discussed, and should be discussed.

On the good side, this version of the quantum theory leads to a simple understanding

of so-called quantum paradoxes, like Schrödinger’s cat, the two-slit experiment and

Wigner’s friend; see Helland (2023b).

10 Conclusions

‘The discussion of quantum foundation and quantum interpretation will probably con-

tinue. I have presented my own views in several articles. This leads to a consistent

theory, and a theory that also can be explained to outsiders. I see that as a great advan-

tage. In particular, the theory can easily be explained in the discrete case, which has

many applications, and is treated in very many textbooks. The continuous case can be

approached by taking limits from a discrete construction; see again Helland (2021).

The introduction of quantum probabilities requires extra assumptions as described

above. One of these assumptions is related to statistical theory. This opens for a possi-

ble communication between statisticians and quantum physicists, a communication that

up to now has been very scarce. With the rapid progress now of artificial intelligence,

which is closely connected to statistics, and the fact that there now are appearing sev-

eral articles connecting artificial intelligence to quantum mechanics, see Dunjko and

Briegel (2019), such communication should be treated as being of some importance.

The other assumption relates to the ideals of the relevant agent. These are assumed

to be of a kind that can be modeled by a higher being, considered by the agent to

be perfectly rational. In Helland (2023a), such ideals are dscussed in connection to
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decision processes.

Finally, the theory can be taken as a basis for reviewing discussions within the

quantum community. In the present article I have considered the recent discussion

between Khrennikov (2024) and a couple of QBists. From my point of view, I have

stated arguments against the basic QBist assumptions.
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Appendix 1

Proof of the Direct Part of Proposition 1.

Define bk = p(zb|τ,θ b = ub
k) and ck = p(zc|τ,θ c = uc

k). Then (3) is

∑
k

bk|b;k〉〈b;k|= ∑
k

ck|c;k〉〈c;k|.

In these sums we can collect together terms with equal coefficients. Let Pj =∑k∈C j
|b;k〉〈b;k|,

where C j is defined such that bk = bk′ when k,k′ ∈C j, similarly define Q j on the right-

hand side. Redefine b j as bk j
whenever k j ∈C j, and redefine c j similarly. Then

∑
j

b jPj = ∑
j

c jQ j, (13)

{Pj} and {QJ} are orthogonal sets of projection operators, b j 6= b j′ whenever j 6= j′

and c j 6= c j′ whenever j 6= j′. We can order the terms in (13) such that b1 > b2 > .. . > 0

and c1 > c2 > .. . > 0. Furthermore we can multiply each side of (13) with itself any

number of times, giving

∑
j

bm
j Pj = ∑

j

cm
j Q j

for m = 1,2, . . .. When m is large enough, the first term on each side of this equation

will dominate completely, and we must have bm
1 P1 = cm

1 Q1 for all large enough m. But

since P1 and Q1 are projection operators, this is only possible if b1 = c1 and P1 = Q1.

Then we can subtract the term b1P1 from the lefthand side of (13), subtract the equal

term c1Q1 from the righthand side of the equation, and repeat the argument. It follows

that b j = c j and Pj = Q j for each j, which is the conclusion of the proposition.
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Appendix 2

Proof of Busch’s Theorem for the Finite-Dimensional Case

The main point of the proof is to show that any generalized probability measure on

effects extends to a unique positive linear functional on the vector space of all bounded

linear Hermitian operators. This is done in steps.

1. It is trivial that µ(E) = nµ( 1
n
E) for all positive integers. It follows that µ(pE) =

pµ(E) for all rational numbers in [0,1]. By approximating from below and from

above by rational numbers, this implies that µ(αE) = αµ(E) for all real num-

bers α in [0,1].

2. Let A be any positive bounded operator in H. Then there is a positive number α
such that 〈u|Au〉 ≤ α for all unit vectors u. Then E defined by E = (1/α)A is

an effect. Thus we can always write A = αE for an effect E . Assume now that

there are two effects E1 and E2 such that A=α1E1 =α2E2. Assume without loss

of generality that α2 > α1 > 0. Then by (1) µ(E2) =
α1
α2

µ(E1), so α1µ(E1) =

α2µ(E2). Therefore we can uniquely define µ(A) = α1µ(E1).

3. Let A and B be positive bounded operators. Take γ > 1 such that 1
γ (A+B) is

an effect. Then we can write µ(A+B) as γµ( 1
γ (A+B)) = γµ( 1

γ A)+ γµ( 1
γ B) =

µ(A)+ µ(B).

4. Let C be an arbitrary bounded Hermitian operator. Assume that we have two

different decompositions C = A−B = A′ −B′ into a difference of positive op-

erators. Then A+ B′ = A′ +B implies µ(A)+ µ(B′) = µ(A′) + µ(B). Hence

µ(A)−µ(B) = µ(A′)−µ(B′), so we can uniquely define µ(C) as µ(A)−µ(B).
It follows then easily from (3) that µ(C+D) = µ(C)+ µ(D) for bounded Her-

mitian operators.

5. This is extended directly to µ(C1 + . . .+Cr) = µ(C1 + . . .+Cr−1) + µ(Cr) =
µ(C1)+ . . .+ µ(Cr) for finite sums.

Let {|k〉;k = 1, . . . ,n} be a basis for H. Then for any Hermitian operator C we can

write C = ∑i, j ci j|i〉〈 j|, where ci j are complex numbers satisfying ci j∗= c ji. Define the

operator ρ by ρi j = µ(|i〉〈 j|). Then ρ is a positive operator since 〈v|ρv〉 = µ(|v〉〈v|)
for any vector |v〉. Also

trace(ρ) = ∑
i

ρii = ∑
i

µ(|i〉〈i|) = µ(∑
i

|i〉〈i|) = µ(I) = 1,

so ρ is a density operator.

We have µ(C) = ∑i, j ρi jci j = trace(ρC), and this holds in particular when C is an

effect.
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