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1 Computer Vision Lab, ETH Zürich 2 DISSec, CS, Nankai University

3 Nankai International Advanced Research Institute (SHENZHEN FUTIAN)

Abstract

The estimation of implicit cross-frame correspondences
and the high computational cost have long been major chal-
lenges in video semantic segmentation (VSS) for driving
scenes. Prior works utilize keyframes, feature propaga-
tion, or cross-frame attention to address these issues. By
contrast, we are the first to harness vanishing point (VP)
priors for more effective segmentation. Intuitively, objects
near VPs (i.e., away from the vehicle) are less discernible.
Moreover, they tend to move radially away from the VP
over time in the usual case of a forward-facing camera,
a straight road, and linear forward motion of the vehicle.
Our novel, efficient network for VSS, named VPSeg, incor-
porates two modules that utilize exactly this pair of static
and dynamic VP priors: sparse-to-dense feature mining
(DenseVP) and VP-guided motion fusion (MotionVP). Mo-
tionVP employs VP-guided motion estimation to establish
explicit correspondences across frames and help attend to
the most relevant features from neighboring frames, while
DenseVP enhances weak dynamic features in distant re-
gions around VPs. These modules operate within a context-
detail framework, which separates contextual features from
high-resolution local features at different input resolutions
to reduce computational costs. Contextual and local fea-
tures are integrated through contextualized motion attention
(CMA) for the final prediction. Extensive experiments on
two popular driving segmentation benchmarks, Cityscapes
and ACDC, demonstrate that VPSeg outperforms previous
SOTA methods, with only modest computational overhead.
The resources are available at https://github.com/
RascalGdd/VPSeg.

1. Introduction
In the dawn of automated driving, a comprehensive un-

derstanding of the vehicle’s surroundings becomes a must.
Semantic segmentation, i.e., the per-pixel classification of
camera frames into a set of predefined classes, is a cen-
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Figure 1. Illustration of the intuition behind our proposed
vanishing-point-guided motion estimation and scale-adaptive
partition modules. Targets move radially away from the vanish-
ing point as time progresses in the video for the typical case of a
forward-facing camera, a straight road and linear forward motion,
which is depicted in this example. Moreover, the region around
the vanishing point contains more distant objects, which appear at
smaller scales.

tral task in this context. However, semantic segmentation
in automated driving contexts presents unique challenges.
The diversity of objects, their varying scales, potential oc-
clusions, and the wide range of lighting and weather con-
ditions create complex visual inputs that must be parsed
in real time. Especially problematic are “hard-to-segment”
objects [12] which are small, rare, or have an appearance
that blends seamlessly into their background or into each
other. These objects, such as distant traffic signs or badly lit
pedestrians, are critically important to segment, given their
impact on driving decisions.

As the dynamic context in consecutive frames provides
clues to recognize these hard samples, researchers have
tried to address this issue by exploiting temporal infor-
mation through video semantic segmentation (VSS) [24,
34, 44, 45, 64]. However, processing multiple frames si-
multaneously requires significant computational resources.
Moreover, existing VSS methods still struggle to establish
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correspondences in two main scenarios. First, for distant
small objects, their relative motion over time tends to be
very subtle and can easily be overlooked. Second, in high-
speed driving scenes, rapid changes in object positions and
appearances can pose challenges to motion estimation. Typ-
ical methods assist VSS with optical flow [18, 51, 64],
which not only fails for fast motions, but also introduces
higher latency. Recent works have turned to local attention
to leverage temporal information [24, 44]. However, while
the coarser granularity in the attention mechanism enables a
broader context, it risks neglecting fine motion characteris-
tics. In addition, the non-dynamic feature tracking in local
attention could easily miss the fast-moving features.

Inspired by the basics of perspective projection, we hy-
pothesize that vanishing points (VPs) can provide useful
priors for addressing the above issues in VSS of driving
scenes. As seen in Fig. 1, the apparent motion of objects
between consecutive frames in a video typically depends
on the location of the VP, since static objects move radially
away from the VP as time progresses in the usual case of
a forward-facing camera, a straight road and linear forward
motion. Therefore, this dynamic VP-related motion prior
can serve as a constraint in motion estimation, leading to ex-
plicit cross-frame correspondences. Furthermore,the region
of a frame which is located around the VP generally com-
prises distant parts of the driving scene, which consequently
appear smaller. This static, intra-frame VP-related prior
provides valuable context to quantitatively approximate and
augment these crucial regions. Additionally, VP detection
only requires the analysis of specific line segments or fea-
ture points in the frame, which significantly reduces the ex-
tra computational cost and does not slow down inference
drastically. Thus, how to use these dynamic and static VP
priors to guide VSS becomes a crucial question.

We address this question by proposing VPSeg, a VP-
guided network for VSS. VPSeg leverages the above dy-
namic and static VP priors in two respective novel mod-
ules: the VP-guided motion fusion (MotionVP) and the
sparse-to-dense feature mining (DenseVP). Specifically,
MotionVP establishes explicit cross-frame correspondences
through VP-guided motion estimation and it thus generates
the dynamic context. On the other hand, DenseVP adopts a
scale-adaptive partition strategy in the region around the VP,
which we refer to as “VP region”, to extract finer features
for motions in this region, which are typically indistinct.
Both MotionVP and DenseVP are implemented within a
context-detail framework, where dynamic and local context
are extracted from bilinearly downsampled low-resolution
inputs. Subsequently, we fuse the local context with the dy-
namic context via contextualized motion attention (CMA)
to obtain the detail attention map, which guides the integra-
tion of dynamic context with high-resolution features for
the final prediction. Our contributions are summarized as:

• We propose MotionVP, a VP-guided motion estimation
strategy for VSS, which yields explicit cross-frame cor-
respondences. MotionVP is particularly useful in high-
speed scenarios in driving scenes, with large motion.

• We present DenseVP, a VP-guided scale-adaptive parti-
tion method for VSS, which extracts more fine-grained
features for hard samples in the VP region.

• We design VPSeg, an efficient context-detail framework
for VSS, which adaptively separates the contextual and
detail-based features with different resolutions to reduce
the computational cost on video frames.

2. Related Work
Semantic segmentation performs pixel-level labeling of

an image with a set of object categories [35]. With the
advent of deep learning, various segmentation networks
have been proposed [4–6, 10, 14, 17, 19, 20, 25, 29, 56,
58, 60, 62, 63, 65] and harnessing richer spatial context
has emerged as a primary theme for this task. In con-
trast, video semantic segmentation (VSS) involves perform-
ing semantic segmentation on consecutive video frames and
further exploits the temporal context. Existing VSS meth-
ods can roughly be categorized into efficient VSS and high-
performance VSS. While the former category compromises
accuracy to speed up segmentation by reusing the features,
the latter strives to enhance current frame segmentation us-
ing expensive per-frame networks. Our method falls into
the second category. By guiding VSS via vanishing point
priors, we achieve a better tradeoff between performance
and model complexity.

2.1. Efficient VSS
Efficient VSS aims to reduce the computational cost and

improve the segmentation efficiency [16, 18, 23, 27, 33,
42, 55, 64]. The most typical kind of efficient VSS ap-
proaches is the keyframe method, where the model ap-
plies expensive feature extraction and segmentation net-
works only on keyframes, while non-keyframe features
are fine-tuned from keyframe features to reduce computa-
tion [18, 23, 27, 33, 55, 64]. Among these works, Accel
[18] uses optical flow for feature warping [51]. DFF [64]
propagates deep feature maps through a flow field. DVSNet
[55] embraces an adaptive keyframe and region scheduling
policy. In addition, various other works [16, 42] also adopt
the feature propagation method, where the features in pre-
ceding frames are reused to accelerate computation. Al-
though these methods have improved the segmentation effi-
ciency through feature sharing and propagation, their usage
of proxy features often leads to inaccurate results.

2.2. High-Performance VSS
High-performance VSS focuses on enhancing accuracy

by leveraging the temporal continuity of input videos [24,
30, 34, 37, 44, 45]. Unlike efficient VSS approaches, these
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Figure 2. Overview of our VPSeg network. In the MotionVP module (bottom part), video frames are downsampled to extract context
features, which go through cross-attention to capture dynamic context F ′

t . F ′
t is further augmented by DenseVP to mine finer features fA in

the VP region through a two-scale partition strategy. In the upper part, we obtain local context Ftl and local details Fth from downsampled
and high-resolution target frames It, respectively. In CMA, augmented dynamic context F ′′

t interacts with local context Ftl to generate the
detail attention map O, guiding its merging with high-resolution local details Fth for the final prediction Pf . Zoomed in for best view.

methods employ per-frame networks, utilizing a full, costly
segmentation network for each frame and enhancing the
current frame segmentation by mining temporal correla-
tions from video frames. For example, Liu et al. [30] con-
sidered the temporal consistency among frames as extra
constraints by using knowledge distillation for more robust
VSS. Sun et al. [45] estimated cross-frame affinities to en-
hance temporal information aggregation. Another trend in
recent works [37, 44, 45] is the use of attention mechanisms
[48], where the model dynamically focuses on specific parts
of a video sequence to better exploit the temporal context.
However, the high computational demands of these methods
typically limit their application to low-resolution inputs and
render them impractical when aiming for high-resolution
segmentations of video frames.

2.3. VP Detection
The vanishing point (VP) is a geometric quantity in per-

spective projection, which constitutes the point of appar-
ent convergence of parallel 3D lines in the 2D image. VPs
are involved in many applications, such as camera calibra-
tion [1], lane departure warning [57], and mapping [28]. In
contemporary research, numerous VP detection approaches
have been developed. In general terms, these methods can
be divided into two categories: traditional, hand-crafted
methods and deep learning-based methods.

Traditional methods mainly include texture detection
methods [36, 43, 66] and edge detection methods [21, 46].
Texture detection methods search for the dominant direc-
tion of textures in images and then vote for the VP lo-
cation. They require heavy computation and cannot run
in real time. In structured road scenes, Hough-transform-
based [32] edge detection methods [11, 13] are more com-

monly used. They extract lines and transform them into
Hough space to allow voting for the candidate VP. Deep
learning-based methods [3, 54] primarily use CNNs [22]
to directly predict the VP location from raw image pixels.
However, a lack of dedicated automated driving datasets,
combined with longer inference times, hampers their prac-
tical applicability. In this work, we adopt the Hough-
transform-based edge detection method [11, 32] to strike
a balance between accuracy and inference speed.

3. VPSeg: VP-Guided Network for VSS
Motivation. Structural cues such as depth maps [8], lay-
outs [47], and textures [52] have proven essential for scene
understanding. However, their application to VSS has been
scarcely researched. On the one hand, such models as for
depth estimation have unstable performance on distant re-
gions. On the other hand, most deep learning-based meth-
ods are time-consuming and cumbersome, making them im-
practical to combine with other tasks.

On the contrary, VP detection is swift and robust, partic-
ularly through the application of edge detection techniques
across a wide range of structured driving scenes. Further-
more, motion information based on the locations of a VP
in the frames of the input video can serve to capture cross-
frame correspondences, given that the apparent motion of
pixels across frames is often aligned with their respective
offsets from this VP (cf. Fig. 1). Consequently, how to
exploit such VP-guided motion priors constitutes an un-
explored and highly relevant question for VSS. Notably,
contemporary high-performance VSS methods are compu-
tationally demanding. Recent endeavors in this field ei-
ther necessitate expensive hardware or are limited to low-
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resolution datasets in terms of applicability (e.g., as seen in
[34, 44, 45]). Given these findings, we pose another ques-
tion: how to utilize temporal information in video frames
more efficiently while maintaining high segmentation accu-
racy?

We found a positive answer for these two questions.
Through VP-guided motion fusion (MotionVP), we estab-
lish explicit cross-frame correspondences, extracting rele-
vant dynamic features from adjacent frames. Sparse-to-
dense feature mining (DenseVP) adopts an adaptive par-
tition of the input frame to mine finer features for subtle
motions in the VP region. Additionally, our context-detail
framework separates the extraction of context from detail-
based features with different input resolutions. We inte-
grate high-resolution local predictions with downsampled
contextual predictions using contextualized motion atten-
tion (CMA) to reduce computation. Fig. 2 illustrates the
architecture of our novel VPSeg network, which incorpo-
rates the above newly proposed modules.

3.1. MotionVP: VP-Guided Motion Fusion
VSS poses the challenge of establishing cross-frame

feature correspondences for the same object in frame se-
quences. We observe that in typical automated driving sce-
narios, the relative movements of static and dynamic objects
normally follow the lane markings (see Fig. 1). Typically,
the driving direction coincides with the direction of the VP,
which implies that most objects move radially away from
the VP as time progresses in the video.

To utilize this VP dynamic prior for motion estimation,
we initialize four candidate orientations, γ = n · π

4 , n =
0, 1, 2, 3. Their corresponding vector representations can
be denoted as V = {(+1, 0), (+1,+1), (0,+1), (−1,+1)}.
Assume we have a training data point containing n + 1
video frames I = {It−nk, ..., It−2k, It−k, It} with corre-
sponding timestamps T = {t− nk, ..., t− 2k, t− k, t},
where t − k is k frames earlier than t and k is the frame
sampling interval. We employ the specified n previous
frames to enhance the semantic segmentation of the tar-
get frame It. First, we extract context feature maps F =
{Ft−nk, ..., Ft−2k, Ft−k, Ft} from the bilinearly downsam-
pled video frames I with a pre-trained transformer en-
coder, where F ∈ Rc×h×w and c, h, w represent chan-
nels, height and width, respectively. Then we partition
the feature map into feature blocks of size s × s. For
the i-th feature patch index (xi, yi) in patch index set
D =

{
(xi, yi) ∈ N2|xi <

w
s , yi <

h
s

}
, the corresponding

feature patch in frame j is denoted as fji ∈ Rc×s2 . For
each patch (xi, yi), we consider the vector pointing from
the patch center to the VP as its motion direction:

(∆xji,∆yji) = (x̂j − xi, ŷj − yi), (1)

where (x̂j , ŷj) is the estimated patch-level VP position in
frame j. Different from (xi, yi) ∈ D, we have (x̂j , ŷj) ∈

[0, w
s −1]× [0,

h
s −1]. Subsequently, we mark the candidate

direction that most closely matches the motion direction of
the patch as its “assigned direction”. The assigned direction
(uji, vji) for patch (xi, yi) in frame j can be computed as

(uji, vji) = argmin
(u,v)∈V

dist((u, v), (∆xji,∆yji)), (2)

where dist(·) quantitatively computes the difference be-
tween the motion direction and each candidate direction:

dist((u, v), (∆x,∆y)) =| α(u, v)− α(∆x,∆y) |, (3)

where α(u, v) = NumPy.arctan2(v, u). Then we sam-
ple adjacent patches forward and backward along the as-
signed direction to capture bidirectional correspondences.
As the frame interval t− j increases, the sampling distance
(uji, vji)

′ also increases linearly with the sampling coeffi-
cient ∆d, where a larger ∆d suits higher driving speeds and
larger frame sampling intervals k:

(uji, vji)
′ =

t− j

k
×∆d× (uji, vji). (4)

Now, we have sampled features f̌ji ∈ Rc×3s2 from the con-
catenation of forward, backward, and local sampled patches
(x̌f

ji, y̌
f
ji), (x̌

b
ji, y̌

b
ji), and (x̌l

ji, y̌
l
ji) from frame j:

(x̌f
ji, y̌

f
ji) = (xi, yi) + (uji, vji)

′,

(x̌b
ji, y̌

b
ji) = (xi, yi)− (uji, vji)

′,

(x̌l
ji, y̌

l
ji) = (xi, yi).

(5)

Given the local features fti ∈ Rc×s2 for the i-th patch
from the current frame It and sampled features from neigh-
boring frames S =

{
f̌ji ∈ Rc×3s2 , j ∈ T and j ̸= t

}
, we

use fti as queries, S as keys and values for interaction:

Qi = Wq(fti), Ki = Wk(C(S)), Vi = Wv(C(S)), (6)

where W(·) and C(·) represent fully connected layers and
concatenation, respectively. Next, we use cross-attention
CA(·) [48] to compute patch-level dynamic features f ′

ti ∈
Rc×s2 for patch (xi, yi) of frame t:

f ′
ti = CA(Qi,Ki, Vi). (7)

The patch-level dynamic features of all patches are then
simply tiled together to reconstruct the complete frame-
level dynamic features F ′

t ∈ Rc×h×w for frame t.
In summary, the VP-guided motion estimation estab-

lishes explicit feature correspondences by imposing con-
straints on motion estimation. This fast and simple algo-
rithm also suits well high-speed scenarios with gradually
increasing sampling distances (uji, vji)

′. It should be noted
that low-resolution frames are utilized in our MotionVP
module to prioritize context features over high-resolution
details for more comprehensive dynamic contextual under-
standing. The dynamic context is afterwards fused with
high-resolution details through contextualized motion atten-
tion (cf. Sec. 3.3) to obtain the final semantic prediction.
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(a) current frame It (b) VP proximity map E (c) N = 0 (d) N = 1 (e) N = 2

Figure 3. Visualization of detail attention maps O with N motion attention layers in CMA. As N increases, the detail attention map
interacts more heavily with the dynamic features, and the weights gradually decrease in closer parts of the scene or on simple semantic
categories. The highlighted distant regions near the VP suggest that the final predictions Pf are primarily based on the detail-based
predictions Pd and not on Pc for these regions. The VP proximity map serves as a positional prior and assists the model in pinpointing the
locations of these distant regions.

3.2. DenseVP: Sparse-to-Dense Feature Mining
In the vicinity of the VP, objects typically appear tiny and

exhibit very small motions across frames. Therefore, we
propose a scale-adaptive VP-guided feature enhancement
module called sparse-to-dense feature mining (DenseVP).
In simple terms, we combine the dense and sparse partition
to mine finer features for motions near the VP which are
typically indistinct, while a sparser and more computation-
ally efficient patch partition approach is adopted in the rest
of the frame. Due to the instability in VP detection, we uti-
lize the VP region, i.e., the region that surrounds the VP, as
a coarser and more robust alternative. Specifically, we first
determine the VP region based on the position of the VP.
Following the notation of Sec. 3.1, we have h

s ×
w
s feature

patches, index (xi, yi) for the i-th feature patch and esti-
mated patch-level VP position (x̂j , ŷj) in frame j. The VP
patch (x′

j , y
′
j) represents the closest feature patch to VP and

can be formulated by:

(x′
j , y

′
j) = argmin

(x,y)∈D
[(x− x̂j)

2 + (y − ŷj)
2]. (8)

The VP region A ⊂ D is a rectangular region near the VP
patch containing (2a+ 1)× (2b+ 1) patches arranged in a
sparse grid, with a, b ∈ N:

A =
{
(m,n)|(m− x′

j)
2 ≤ a2 , (n− y′j)

2 ≤ b2
}
. (9)

Then, an overlapping dense grid partition is applied in the
VP region. More precisely, we adopt a stride of ⌈s/2⌉
for this dense partition, resulting in m overlapping patches,
where m = (⌊ 2as

⌈s/2⌉⌋+ 1)(⌊ 2bs
⌈s/2⌉⌋+ 1). Subsequently, the

dynamic context F ′
t is used as queries, while the features

extracted densely from the VP region, fA ∈ R c×ms2 , are

used as keys and values:
QA = Wq(F

′
t ), KA = Wk(fA), VA = Wv(fA), (10)

where W(·) represents fully connected layers. Cross-
attention operations CA(·) [48] are then employed to aug-
ment the dynamic context F ′

t with dense features fA for
finer representations of motions in the VP region:

F ′′
t = CA(QA,KA, VA), F ′′

t ∈ Rc×h×w. (11)

The described two-scale feature partition enhances the
dynamic context in the VP region, which typically contains
distant objects, by leveraging static VP positional informa-
tion. Thus, DenseVP exploits a static prior related to the
position of the VP in a frame, while MotionVP exploits a
dynamic VP prior related to apparent motion of objects de-
pending on their relative position with respect to the VP.

3.3. CMA: Contextualized Motion Attention
Given the augmented dynamic context F ′′

t ∈ Rc×h×w,
we aim to integrate it with the high-resolution details for the
final prediction. For the target frame It, the low-resolution
and high-resolution inputs are denoted as Itl and Ith, re-
spectively. The corresponding local context and detail-
based local features are Ftl ∈ Rc×h×w and Fth ∈ Rc×h×w.
First, we randomly initialize our learnable queries Q ∈
Rc×K (K is the number of classes) and contextualize them
with Ftl through VP-aware cross-attention CAE(·):

Qc = CAE(Wq(Q),Wk(Ftl),Wv(Ftl)), (12)

where W(·) denotes fully connected layers and Qc ∈ Rc×K

are the contextualized queries. CAE(·) is given by

CAE(Q,K, V ) = Softmax(
QKT

√
c

+ E)V +Q. (13)
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The term E refers to our VP proximity map embedding.
It is a VP-centered pseudo-depth map, where the depth of
pixel (x, y) is 1 − ∆D, ∆D ∝ max{ |y−ŷp

j |
h ,

|x−x̂p
j |

w } and
(x̂p

j , ŷ
p
j ) is the VP pixel coordinate. Then, we perform mo-

tion attention to merge local and dynamic context:
Fm = CAE(Wq(Qc),Wk(F

′′
t ),Wv(F

′′
t )), (14)

where the merged context Fm ∈ Rc×K . Thus, the detail
attention map O ∈ RK×h×w is computed as

O = FT
mFtl. (15)

The final prediction Pf is the weighted sum of the context
prediction Pc and the detail-based prediction Pd under the
guidance of the detail attention map O:

Pf = (1−O)⊙ Pc +O ⊙ Pd, (16)

where ⊙ denotes element-wise multiplication, and Pc and
Pd are generated from Ftl and Fth through the DAFormer
[15] decoder. For every different semantic category and ev-
ery distinct position, O learns to weight the high-resolution
details and dynamic context differently. As shown in Fig. 3,
the weights for Pd are generally higher in distant regions,
indicating that the final prediction Pf in these zones are pri-
marily determined by the detail-based prediction Pd. By
contrast, in closer regions and simple semantic categories,
the final results mostly rely on the context prediction Pc.
Our VP proximity map serves as a positional prior embed-
ding, guiding the detail attention map O to prioritize those
deeper regions. The loss function of VPSeg is denoted as

Ltotal = (1− λd)LCE(Pf , G) + λdLCE(Pd, G), (17)

where G and λd represent ground truth and the loss coeffi-
cient for detail-based prediction. Here we compute the fi-
nal loss as the weighted sum of the cross-entropy loss from
fused and detail-based prediction, which is beneficial for
improving the high-resolution details while optimizing the
feature fusion.

4. Experiments
4.1. Experimental Setup
Implementation details. Our end-to-end model is trained
for 160k iterations using the AdamW [31] optimizer. We
set the batch size to 4, with an initial learning rate of
2× 10−4, and the weight of the detail-based prediction loss
to λd = 0.1. Following the settings of SegFormer [53], we
employ the MiT [53] pre-trained on ImageNet [40] as the
backbone. For generality, only previous frames are utilized
to assist segmentation for each current frame. The frame
sampling interval is set to k = 3. We adopt random resiz-
ing, flipping, cropping, and photometric distortion for data
augmentation. Unlike other high-performance VSS models
[34, 44, 45] that only use low-resolution inputs, 1024×2048
resolution inputs are employed in VPSeg. For context fea-
tures, inputs are bilinearly downsampled with a ratio of 0.5.

For VP estimation, the thresholds of the Canny edge fil-
ter are set to 50 and 150 with an aperture size of 3. The sam-
pling coefficient ∆d in MotionVP is 1. We found that this
number sufficiently covers fast-moving targets and achieves
good performance. For DenseVP, we define the VP region
as 3 × 3 sparse patches (a = 1, b = 1). During inference,
we carry out a single-scale sliding window test. All experi-
ments are conducted on 4 NVIDIA RTX 3090 GPUs.
Datasets. Our experiments are primarily performed on two
automated driving datasets: ACDC [41] and Cityscapes [9].
ACDC consists of a large collection of images (1, 600 clips
for training and 406 clips for validation) that are evenly
distributed across four common adverse conditions: fog,
nighttime, rain, and snow. More importantly, ACDC’s an-
notation strategy involves a two-step process that creates
a binary “invalid mask” to highlight ambiguous image re-
gions. Initially, a semantic label is manually drafted, then
refined using adverse-condition videos to finalize the anno-
tation, allowing valid quantitative assessment of segmenta-
tion on uncertain areas. We also perform experiments on the
Cityscapes video dataset, which includes 3,475 clips from
21 cities in its training and validation splits.
Evaluation metrics. The experiment results are evaluated
on three metrics: mIoU, iIoU [9], and IA-IoU. As mIoU
tends to downweigh small instances within the same class,
we also employ the instance-level intersection-over-union
(iIoU) for more informative evaluation with respect to per-
formance on tiny objects. iIoU is defined as

iIoU =
iTP

iTP + iFN + FP
, (18)

where TP, FN and FP represent true positive, false nega-
tive and false positive, respectively. The iIoU assigns higher
weights i to pixels in smaller instances.

For ACDC [41], we propose a new metric IA-IoU
(invalid-area intersection-over-union). As discussed above,
the invalid masks of ACDC are particularly informative as
they reveal regions of ambiguity or what might be termed
as uncertain regions within the frame. Therefore, we test
mIoU explicitly on these invalid regions as IA-IoU. Specif-
ically, suppose we have K semantic classes and nmax val-
idation images. With the corresponding invalid mask Mn

for the n-th image, we have:

P̂nz = Pnz ∩Mn, (19)

where Pnz is the model prediction of the z-th class in the
n-th image. Similarly, for the ground truth:

Ĝnz = Gnz ∩Mn, (20)

where Gnz is the ground truth of the z-th class in the n-th
image. The IA-IoU of class z can be calculated as

IA-IoUz =

∑nmax
n=0 |P̂nz ∩ Ĝnz |∑nmax
n=0 |P̂nz ∪ Ĝnz |

. (21)
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(a) Image (b) SegFormer [53] (c) CFFM [44] (d) VPSeg (Ours) (e) GT
Figure 4. Qualitative comparison on ACDC. The yellow box represents the densely partitioned VP region. Our model produces more
accurate results for both distant tiny hard samples near the VP and occluded fast-moving close targets.

Methods Backbones Params (M)↓ mIoU↑ miIoU↑ mIA-IoU↑ VSSACDC Cityscapes ACDC Cityscapes ACDC
DeepLabv3+[7] ResNet-101 62.7 72.79 79.09 43.14 56.89 36.32 ✗

PSPNet [61] ResNet-101 68.0 72.26 78.34 40.95 56.78 37.29 ✗
OCRNet [59] ResNet-101 55.6 70.39 80.09 43.36 59.55 33.38 ✗

SeaFormer [49] SeaFormer-L 14.0 70.09 77.70 40.41 56.96 33.26 ✗
SegFormer [53] MiT-B1 13.7 70.25 78.56 41.14 58.25 34.05 ✗
SegFormer [53] MiT-B3 44.6 75.38 81.32 46.51 60.01 38.42 ✗

Video K-Net [26] Swin-B 104.6 69.03 76.62 39.33 56.02 31.67 ✓
ETC [30] ResNet-101 68.1 71.45 79.50 42.28 58.35 36.71 ✓
TCB [34] ResNet-101 72.5 70.56 78.70 41.76 57.84 35.96 ✓

NetWarp [51] PSPNet 90.6 73.71 80.60 45.59 59.63 36.58 ✓
CFFM [44] MiT-B3 49.6 75.47 81.44 47.31 60.09 37.88 ✓

MRCFA [45] MiT-B3 48.2 75.63 81.31 46.28 60.56 38.81 ✓
VPSeg (Ours) MiT-B1 14.9 72.86 79.56 43.42 59.53 37.96 ✓
VPSeg (Ours) MiT-B3 46.8 77.48 82.46 49.42 61.79 41.48 ✓

Table 1. Comparison with state-of-the-art methods on the ACDC [41] and Cityscapes [9] validation sets. Our model outperforms the
compared methods in mIoU, miIoU [9] and mIA-IoU.

The mean IA-IoU (mIA-IoU) is the average of IA-IoU for
each class. This specialized metric allows an evaluation tar-
geted specifically to the regions which are marked as uncer-
tain and ambiguous in the ground truth.

4.2. Comparison with the State of the Art
In Tab. 1, we compare the performance of VPSeg to

state-of-the-art methods on ACDC and Cityscapes. Qualita-
tive results are shown in Fig. 4. We observe that our method
captures indistinct and fast motions more accurately, lead-
ing to more robust segmentation.

On ACDC, VPSeg improves the mIoU by 2.10% and
1.85% compared to the baseline model SegFormer [53] and
the SOTA VSS model MRCFA [45], respectively. More
notable is our performance on mIA-IoU. For this metric
that places more emphasis on indistinct regions, our model
obtains even higher advancement, improving by 3.06%
and 2.67% upon SegFormer and MRCFA, respectively. In
Tab. 2, we display the IA-IoU performance of different
models for selected categories. For hard categories such

as rider (+8.5%) and traffic sign (+3.4%), VPSeg delivers
significant improvements. At the same time, our method
matches the performance of competing methods on easier
categories with larger segments, including sky (+0.2%) and
bus (+0.1%). We also provide results on miIoU in Tab. 1,
where VPSeg performs favorably against the SOTA method
CFFM [44] (+2.11%), indicating our model is better at han-
dling distant, hard-to-segment small objects.

Besides ACDC, VPSeg also sets the new state of the art
on Cityscapes. Compared to the baseline model SegFormer
and the VSS model CFFM, our mIoU is boosted by 1.14%
and 1.02%, respectively. As for miIoU, VPSeg improves
performance even more (+1.78%, +1.70%), evidencing its
robustness in segmenting tiny objects. Both for MiT-B1
[53] and MiT-B3 [53] backbones, VPSeg clearly outper-
forms the corresponding baselines, showing that the pro-
posed modules are general.

As is shown in Tab. 3, the resource efficiency of our
method is also noteworthy. In contrast to SegFormer with
MiT-B3 backbone, VPSeg adds only 2.2M extra param-
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DeepLabv3+ [7] 48.2 18.2 41.3 40.1 69.6 26.1 35.0 84.7 67.7
SegFormer [53] 47.9 19.0 44.6 45.9 71.1 35.4 32.6 85.4 74.8
SeaFormer [49] 41.2 10.6 36.2 41.5 70.1 29.7 29.4 84.5 62.9

ETC [30] 45.8 15.5 41.1 33.5 71.6 29.6 34.6 84.5 70.6
CFFM [44] 48.6 21.4 46.6 46.5 70.8 32.8 31.9 84.6 74.2

MRCFA [45] 47.8 24.3 46.1 46.1 71.3 35.7 34.1 85.1 74.7
VPSeg (Ours) 51.8 32.8 46.3 46.6 71.5 39.3 38.4 85.6 74.5

Table 2. Per-class IA-IoU of methods from Tab. 1 on ACDC.
“VG”: vegetation, “TS”: traffic sign. SegFormer and VPSeg use
an MiT-B3 [53] backbone.

Methods Backbones Params (M)↓ mIoU↑ GFLOPs↓ FPS↑
Video K-Net [26] Swin-B 104.6 69.03 1430.0 -

TMANet [50] ResNet-101 54.2 71.62 1385.9 2.4
ETC [30] ResNet-101 68.1 71.45 - 1.2
TCB [34] ResNet-101 72.5 70.56 - 1.9

MRCFA [45] MiT-B3 48.2 75.63 1436.4 4.4
CFFM [44] MiT-B3 49.6 75.47 1534.8 3.8

VPSeg (Ours) MiT-B3 46.8 77.48 1124.7 3.4
Table 3. Comparison of FPS and GFLOPs of high-performance
VSS methods on ACDC.

VP region size mIoU (A.)↑ mIA-IoU (A.)↑ mIoU (C.)↑
No DenseVP 77.15 41.02 82.19
a = 0, b = 0 77.28 40.87 82.34
a = 1, b = 1 77.48 41.48 82.46
a = 2, b = 2 77.36 41.33 82.37
a = 3, b = 3 77.41 41.32 82.50

Table 4. Ablation study on the VP region size on ACDC (A.) and
Cityscapes (C.) with MiT-B3 backbone.

Embeddings mIoU (A.)↑ mIA-IoU (A.)↑ mIoU (C.)↑ FPS↑
No embedding 77.02 40.91 81.16 4.2

Depth map 77.19 40.78 82.23 1.8
VP proximity map 77.48 41.48 82.46 3.4

Depth map + VP 77.46 41.37 82.39 1.6
Table 5. Ablation study of different positional embeddings on
ACDC (A.) and Cityscapes (C.) with MiT-B3 backbone.

eters, which correspond to 4.9% of the total parameters
of SegFormer (44.6M). Relative to other high-performance
VSS models such as Video K-Net [26] and MRCFA,
our method reaches superior computational efficiency with
1124.7 GFLOPs. Although limited by the VP inference
speed (see Tab. 5), the FPS of VPSeg is still comparable.
Overall, VPSeg delivers SOTA segmentation performance
with only limited additional computational cost.

4.3. Ablation Studies
Benefit of DenseVP. In Tab. 4, we conduct ablation ex-
periments on the sparse-to-dense feature mining (DenseVP)
module under different settings. As the VP region expands,
the performance of the model gradually improves and peaks
when 3× 3 (a = 1, b = 1) feature patches are used. IA-IoU
is more significantly influenced by DenseVP than mIoU,
indicating that the scale-adaptive partition in DenseVP con-
tributes more to the enhancement of uncertain regions.
Effect of different positional embeddings. Given that
VP proximity maps are constructed as pseudo depth maps,
we attempt to replace the VP proximity embedding in CMA

Methods / k 3 5 7 9
Segformer [53] 75.38 75.38 75.38 75.38

MRCFA [45] 75.63 75.44 75.32 75.30
CFFM [44] 75.47 75.35 75.22 75.07

VPSeg (Ours) 77.48 77.52 77.39 77.43
Table 6. Ablation study of the frame sampling interval k (default
3) on ACDC with MiT-B3 backbone.

N mIoU (A.)↑ mIA-IoU (A.)↑ mIoU (C.)↑ Params (M)↓
0 76.65 40.33 82.12 45.9
1 77.21 41.23 82.33 46.4
2 77.48 41.48 82.46 46.8
3 77.51 41.39 82.44 47.3

Table 7. Ablation study on the number of motion attention layers
in CMA with MiT-B3 backbone.

with depth map embeddings. The experimental results are
presented in Tab. 5, where the depth maps are generated by
MiDaS V3-Hybrid [39]. As the depth estimation has un-
stable performances at distant regions, the depth map em-
bedding yields limited improvement in mIoU and leads to
worse performance on IA-IoU. In addition, the longer in-
ference time of MiDaS results in a significant drop in the
FPS. The VP proximity embedding alone reaches the best
mIoU and mIA-IoU with a medium inference speed. Ex-
periments incorporating both depth map and VP proximity
embeddings have comparable results, but still limited FPS.
Effect of the frame sampling interval k. We study the
impact of the frame sampling interval k in Tab. 6. Notably,
VPSeg obtains even higher mIoU when k increases from
3 to 5. For larger k, VPSeg also exhibits more robustness
against other methods whose mIoU drops drastically. The
possible reason is that the axial motion searching along the
VP direction covers a wider range of motions, which is es-
pecially relevant for high-speed scenarios.
Influence of the number of motion attention layers N .
Tab. 7 shows the performance of VPSeg with respect to
the number of motion attention layers N in CMA. As N
increases, the model performance significantly improves,
proving the effectiveness of our dynamic feature fusion. We
observe diminishing returns in performance for N ≥ 2. For
VPSeg with MiT-B3 backbone, we choose N = 2 for the
best tradeoff between performance and model complexity.

5. Conclusion
The establishment of cross-frame correspondences and

the reduction of computational cost are two pressing issues
in VSS of driving scenes. We have proposed the novel
VPSeg network to address these issues by exploiting dy-
namic and static VP priors through the novel MotionVP
and DenseVP modules. The former module establishes
explicit correspondences via a VP-guided motion estima-
tion strategy, while the latter augments fine dynamic fea-
tures in the region around the estimated VP through a scale-
adaptive partition method. In the context-detail framework
of VPSeg, the downsampled contextual features and high-
resolution local details are separated and adaptively fused
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through our motion-aware CMA attention module. VPSeg
has achieved SOTA performance for VSS on two widely
used driving datasets at a reasonable computational cost.
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point estimation for driver assistance. In IEEE ITSC, 2006.
3

[47] Arces Talavera, Daniel Stanley Tan, Arnulfo Azcarraga, and
Kai-Lung Hua. Layout and context understanding for image
synthesis with scene graphs. In ICIP, 2019. 3

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 3,
4, 5, 13

[49] Qiang Wan, Zilong Huang, Jiachen Lu, Gang Yu, and Li
Zhang. Seaformer: Squeeze-enhanced axial transformer for
mobile semantic segmentation. In ICLR, 2023. 7, 8

[50] Hao Wang, Weining Wang, and Jing Liu. Temporal memory
attention for video semantic segmentation. In ICIP, 2021. 8

[51] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-
ing. In ECCV, 2018. 2, 7

[52] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-
ing. In ECCV, 2018. 3

[53] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. SegFormer: Simple and ef-
ficient design for semantic segmentation with transformers.
In NeurIPS, 2021. 6, 7, 8, 12

[54] Li Xingxin, Liqiang Zhu, Yu Zujun, and Wan Yanqin. Adap-
tive auxiliary input extraction based on vanishing point de-
tection for distant object detection in high-resolution railway
scene. In IEEE ICEMI, 2019. 3

[55] Yu-Syuan Xu, Tsu-Jui Fu, Hsuan-Kung Yang, and Chun-Yi
Lee. Dynamic video segmentation network. In CVPR, 2018.
2

[56] Maoke Yang, Kun Yu, Chi Zhang, Zhiwei Li, and Kuiyuan
Yang. DenseASPP for semantic segmentation in street
scenes. In CVPR, 2018. 2

[57] Ju Han Yoo, Seong-Whan Lee, Sung-Kee Park, and
Dong Hwan Kim. A robust lane detection method based on
vanishing point estimation using the relevance of line seg-
ments. IEEE TITS, 18(12):3254–3266, 2017. 3

[58] Fisher Yu and Vladlen Koltun. Multi-scale context aggrega-
tion by dilated convolutions. In ICLR, 2016. 2

[59] Yuhui Yuan, Xilin Chen, and Jingdong Wang. Object-
contextual representations for semantic segmentation. In
ECCV, 2020. 7

[60] Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang,
Xiaogang Wang, Ambrish Tyagi, and Amit Agrawal. Con-
text encoding for semantic segmentation. In CVPR, 2018.
2

[61] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
CVPR, 2017. 7

[62] Mingmin Zhen, Jinglu Wang, Lei Zhou, Shiwei Li, Tianwei
Shen, Jiaxiang Shang, Tian Fang, and Long Quan. Joint se-
mantic segmentation and boundary detection using iterative
pyramid contexts. In CVPR, 2020. 2

[63] Yizhou Zhou, Xiaoyan Sun, Zheng-Jun Zha, and Wenjun
Zeng. Context-reinforced semantic segmentation. In CVPR,
2019. 2

[64] Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen
Wei. Deep feature flow for video recognition. In CVPR,
2017. 1, 2

[65] Zhen Zhu, Mengde Xu, Song Bai, Tengteng Huang, and Xi-
ang Bai. Asymmetric non-local neural networks for semantic
segmentation. In ICCV, 2019. 2

[66] Zhaozi Zu, Yingtuan Hou, Dixiao Cui, and Jianru Xue. Real-
time road detection with image texture analysis-based van-
ishing point estimation. In IEEE PIC, 2015. 3

10



A. Vanishing Point Detection

We adopt a classical solution for vanishing point (VP)
detection: Hough-transform [32] on Canny-edge [2] filtered
images. The VP detection process is summarized in Algo-
rithm 1. Given a gray-scale image x with height H and
width W , we do the following to estimate the VP:

Pre-process. To make edge detection more robust, mor-
phological transform with opening (erosion followed by di-
lation) [38] is first used to denoise input images. Canny
edge filter is then implemented to get the edge map. As
the “sky” area constitutes the top part of images, we only
do Canny edge filtering for the bottom 2/3 part of images.
Next, Hough-transform is applied to the edges, achieving a
set containing the lines detected. For each line ℓ in the set,
we denote its slope (∆H/∆W ) as slope(ℓ).

Line selection. Once having the Hough-lines [32], we
decide which lines are to retain or discard. We design a
criterion based on the likelihood of the lines that could be
near the VP. On the one hand, as VPs are normally located
around the center of the image, we delete the lines that are
more than dmax = 160 pixels away from the image center.
Besides, we find that most horizontal and vertical lines (e.g.,
trees, wires) do not contribute to the VP detection. As a
consequence, we delete any line ℓ from the Hough-line set
that has slope(ℓ) /∈ S, where S = (−5,−0.2) ∪ (0.2, 5) is
a pre-defined slope acceptance interval.

Cell vote. After removing undesired lines, we compute
the line intersections between line pairs. Upon obtaining
Nline lines after line selection, we would get Nline(Nline −
1)/2 intersections, notated as R. If the number of lines is
too large, we randomly sample 100 lines among them. Next,
we define several cells inside the image, where each cell is
a rectangular box, and count the Hough-line intersections in
it. In practice, we only parse cells in the lower part of the
image, as the “sky” area takes the upper part of images. Fi-
nally, we choose the cell that includes the most intersections
and return its center as the estimated VP position.

After obtaining the VP, it is still a problem to pass the VP
position to the model. As cropping operations are used in
the pre-processing pipeline, we crop the VP proximity map
along with the input frame. The cropped input frame and
proximity map are concatenated as our new input.

The Hough-transform-based VP detection proves fast
and robust in automated driving scenarios. However, chal-
lenges arise when dealing with images featuring messy or
unclear edges. For instance, cross street scenes may exhibit
multiple VPs, while crowded pedestrian areas can introduce
noisy lines, affecting VP detection accuracy. To address
these issues, we will combine the hand-crafted VP detec-
tion method with deep learning to strike a better balance
between accuracy and inference speed in future works.

Algorithm 1 VP Detection

Require: gray-scale image x ∈ [0, 255]H×W , max central-
to-line distance dmax, slope acceptance interval S,
square cells inside x centered at ci = (Hi,Wi), i =
1, ..., Ncell with size L = ⌊H/4⌋

1: x← morphology opening(x, kernel = I5×5)
2: x← Canny edge(x, 50, 150, apertureSize = 3)
3: lines← Hough lines(x, ρ = 1, θ = π

180 , thres = 200)
4: c← (W/2, H/2)
5: for ℓ ∈ lines do
6: if d(c, ℓ) > dmax or slope(ℓ) /∈ S then
7: Delete ℓ from lines
8: end if
9: end for

10: R = find intersections(lines)
11: for i = 1, ..., Ncell do
12: ni ← number hits of R inside cell i
13: end for
14: iopt = argmaxi ni

15: return ciopt

B. Additional Ablation Studies

Effect of VP proximity embeddings. The linear VP
proximity embedding is a VP-centered pseudo-depth map,
where the depth of pixel (x, y) is 1 − ∆D, ∆D ∝
max{ |y−ŷp

j |
H ,

|x−x̂p
j |

W } and (x̂p
j , ŷ

p
j ) is the VP pixel coordi-

nate. Similarly, we introduce another two types of VP prox-
imity maps: power and Euclidean decreasing (see Fig. 6).
• Linear (Fig. 6b): ∆D ∝ max{∆y

H , ∆x
W }

In linear decreasing, the depth value of (x, y) is linearly
decreased according to its distance to the VP. It is fast to
compute, and is our default option.

• Power (Fig. 6c): ∆D2 ∝ max{ |∆y|
H , |∆x|

W }
In power decreasing, the square of the depth value is lin-
early decreased. It is more concentrated, but the depth
drops faster around the VP.

• Euclidean (Fig. 6d): ∆D ∝
√
( |∆y|

H )2 + ( |∆x|
H )2

In Euclidean decreasing, the depth value is linearly de-
creased according to the Euclidean distance. It is circular
and isotropic, but ignores the image aspect ratio H

W .
We study the impact of above-mentioned VP proximity

embeddings in Tab. 8. Notably, VPSeg with linear VP prox-
imity embedding achieves the highest mIoU and mIA-IoU
for ACDC [41] and Cityscapes [9]. The experiments with
power and Euclidean embeddings perform slightly worse.
The possible reason is that the Euclidean decreasing does
not consider the image aspect ratio H

W . And the depth value
of power decreasing drops too fast around the VP.
Impact of the sampling coefficient ∆d. We conduct ex-
periments on different ∆d in Tab. 9. We found that ∆d = 1
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Figure 5. The VP detection pipeline. We first pre-process the input frame with morphology opening transform [38] and Canny edge filtering
[2]. Hough-transform [32] is then applied and lines that do not contribute to VP detection are discarded. Finally, cell vote is implemented
to count the intersections in each cell to determine the final VP position.

(a) original image (b) linear decreasing

(c) power decreasing (d) Euclidean decreasing

Figure 6. Different types of VP proximity map embeddings. (a)
represents the input frame, (b) is the VP proximity map with linear
decreasing. Compared with linear decreasing, the depth value in
our power decreasing map (c) drops much faster around the VP.
(d) denotes the proximity map with Euclidean decreasing, where
the image aspect ratio H

W
is not considered.

Embeddings mIoU (A.)↑ mIA-IoU (A.)↑ mIoU (C.)↑
Linear 77.48 41.48 82.46
Power 77.29 41.23 82.29

Euclidean 77.33 41.16 82.35

Table 8. Ablation study of different VP proximity embeddings on
ACDC (A.) and Cityscapes (C.) with MiT-B3 [53] backbone.

∆d mIoU (A.)↑ mIA-IoU (A.)↑ mIoU (C.)↑
0 76.74 40.57 81.83
1 77.48 41.48 82.46
2 77.12 41.01 82.23
3 76.88 40.65 81.79

Table 9. Ablation study of different sampling coefficients ∆d on
ACDC (A.) and Cityscapes (C.) with MiT-B3 [53] backbone.

adequately covers fast-moving targets with good perfor-
mance. MotionVP with ∆d = 0 only samples patches lo-
cally, which is unsuitable for high-speed driving scenarios
and achieves worse mIoU and mIA-IoU. For ∆d > 1, the
performance of VPSeg drops drastically, proving that larger
∆d is redundant for our VP-guided motion estimation.

C. Detailed Pipelines
To exploit dynamic and static VP priors, we proposed

MotionVP and DenseVP. MotionVP extracts dynamic con-
text and can be divided into four parts: window partition
and VP detection, direction assignment, patch sampling,
and feature aggregation. DenseVP augments the dynamic
context with finer attention around the VP region and con-
sists of three steps: find VP patch index, select VP region,
and generate dense features. The augmented dynamic con-
text is sent to the prediction head for the final prediction.
The details of MotionVP and DenseVP pipelines are shown
in Fig. 7 and Fig. 8, while Tab. 10 explains types, domains,
and meanings of the symbols from MotionVP and DenseVP.
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(a) Window partition and VP detection: given n+1 input video frames, we first extract feature maps with pre-trained transformer encoder.
The feature maps are then subdivided into feature blocks of size s× s (indexed by i).

(b) Direction assignment: we determine the assigned direction for each patch (xi, yi). The assigned direction (uji, vji) is the closest
candidate direction to vector (∆xji,∆yji), which points from the patch center to the VP.

(c) Patch sampling: after obtaining the assigned direction, we sample adjacent patches both forward and backward along the assigned
direction. As the frame interval increases, the sampling distance also increases with the sampling coefficient ∆d. But the sampled patches
should not exceed the boundaries of the feature map.

(d) Feature aggregation: we generate dynamic context F ′
t with cross-attention [48] operations. Specifically, for each patch (xi, yi), the

patch features of the current frame serve as queries, while the sampled features in neighboring frames serve as keys and values. After cross-
attention, we achieve patch-level dynamic features f ′

t , which are then simply tiled together to reconstruct the complete frame-level dynamic
context F ′

t .

Figure 7. Detailed MotionVP pipeline.
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Figure 8. Detailed DenseVP pipeline. Find VP patch index: we find the closest patch to the VP as our VP patch. Select VP region: we
select a rectangular region around the VP patch as our VP region A. Generate dense features: the overlapping dense partition strategy is
applied in the VP region, obtaining dense features fA.

Table 10. Table of symbols, their types, domains, and meanings.

Symbol Type Size (length) Domain Meaning
I set n+ 1 - a set of input frames
T set n+ 1 - a set of timestamps
F set n+ 1 - a set of feature maps
D set n+ 1 - a set of patch indexes
A set (2a+ 1)(2b+ 1) - a set of sparse patch indexes of the VP region
V set 4 - a set of vector representations of candidate directions
S set 3n - a set of sampled features in n neighboring frames
c scalar - N number of feature channels

h,w scalar - N spatial height/width of the feature map
H,W scalar - N spatial height/width of the input frame
k scalar - N frame sampling interval
K scalar - N number of semantic classes
s scalar - N size of the feature block
m scalar - N number of dense patches in the VP region
∆d scalar - N sampling coefficient

(x̂j , ŷj) coordinate 2× 1 R patch-level VP position in frame j(
x̂p
j , ŷ

p
j

)
coordinate 2× 1 N pixel-level VP position in frame j

(xi, yi) coordinate 2× 1 N index of the i-th patch
(x̌f

ji, y̌
f
ji) coordinate 2× 1 N forward sampled patch index for the i-th patch in frame j

(x̌b
ji, y̌

b
ji) coordinate 2× 1 N backward sampled patch index for the i-th patch in frame j

(x̌l
ji, y̌

l
ji) coordinate 2× 1 N locally sampled patch index for the i-th patch in frame j

(x′
j , y

′
j) coordinate 2× 1 N VP patch index in frame j

It matrix H ×W R frame in time t
Ft matrix c× h× w R feature map for frame t
fti matrix c× s2 R patch-level feature for the i-th patch in frame t

Ftl, Fth matrix c× h× w R low/high-resolution feature map of It
f̌ji matrix c× 3s2 R sampled features for the i-th patch in frame j
F ′
t matrix c× h× w R frame-level dynamic features in frame t

f ′
ti matrix c× s2 R patch-level dynamic features for the i-th patch in frame t

fA matrix c×ms2 R dense features of VP region
F ′′
t matrix c× h× w R augmented dynamic context in frame t
E matrix h× w R VP proximity map

Q,Qc matrix c×K R learnable/contextualized queries in CMA
Fm matrix c×K R the merged context
Gnz matrix H ×W {0, 1} ground truth of the z-th class in the n-th image
Pnz matrix H ×W {0, 1} prediction of the z-th class in the n-th image
Mn matrix H ×W {0, 1} invalid mask of the n-th image
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