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Abstract. The starting point of this paper is a collection of proper-
ties of an algorithm that have been distilled from the informal descrip-
tions of what an algorithm is that are given in standard works from the
mathematical and computer science literature. Based on that, the notion
of a proto-algorithm is introduced. The thought is that algorithms are
equivalence classes of proto-algorithms under some equivalence relation.
Three equivalence relations are defined. Two of them give bounds be-
tween which an appropriate equivalence relation must lie. The third lies
in between these two and is likely an appropriate equivalence relation.
A sound method is presented to prove, using an imperative process al-
gebra based on ACP, that this equivalence relation holds between two
proto-algorithms.
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1 Introduction

In many works from the mathematical and computer science literature, including
standard works such as [15,16,19,24], the notion of an algorithm is informally
characterized by properties that are considered the most important ones of an
algorithm. Most of those characterizations agree with each other and indicate
that an algorithm is considered to express a pattern of behaviour by which all
instances of a computational problem can be solved. A remark like “Formally,
an algorithm is a Turing machine” is often made in the works concerned if
additionally Turing machines are rigorously defined.

However, the viewpoint that the formal notion of a Turing machine is a for-
malization of the intuitive notion of an algorithm is unsatisfactory in at least
two ways: (a) a Turing machine expresses primarily a way in which a computa-
tional problem-solving pattern of behaviour can be generated and (b) a Turing
machine restricts the data involved in such a pattern of behaviour to strings over
some finite set of symbols. There are not many alternative formalizations of the
notion of an algorithm that are regularly cited. To the best of my knowledge,
the main exceptions are the ones that can be found in [12,21]. In both papers, a
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notion of an algorithm is formally defined that does not depend on a particular
machine model such as the Turing machine model.

In [21], an algorithm is defined as a fairly complex set-theoretic object. The
definition has its origins in the idea that, if a partial function is defined recur-
sively by a system of equations, that system of equations induces an algorithm.
An algorithm according to this definition fails to have many properties that are
generally considered to belong to the most important ones of an algorithm.

In [12], an algorithm is defined as an object that satisfies certain postulates.
The postulates concerned appear to be devised with the purpose that Gurevich’s
abstract state machines would satisfy them. However, this definition covers ob-
jects that have almost all properties that are generally considered to belong to
the most important ones of an algorithm as well as more abstract objects that
have almost none of those properties.

What is mentioned above about the formalizations of the notion of an algo-
rithm in [12,21] makes them unsatisfactory as well. This state of affairs motivated
me to start a quest for a formalization of the notion of an algorithm that is more
satisfactory than the existing ones. One possibility is to investigate whether
this can be done by adapting the postulates from [12] or adding postulates to
them. Another possibility is to investigate whether a constructive definition can
be given. This is what will be done in this paper. In addition, the connection
between the resulting objects and the processes considered in the imperative
process algebra presented in [20] will be investigated.

In [3], I made a first attempt to give a constructive definition. A main draw-
back of the approach followed there is that the data involved in an algorithm is
restricted to bit strings. The idea was that this restriction could be discarded
without much effort. This turned out not to be the case. Therefore, I follow a
rather different approach in this paper.

2 The Informal Notion of an Algorithm

What is an algorithm? A brief answer to this question usually goes something
like this: an algorithm is a procedure for solving a computational problem in a
finite number of steps. This is a reasonable answer. A difficulty is that it is com-
mon to describe a computational problem informally as a problem that can be
solved using an algorithm. For this reason, first a description of a computational
problem that does not refer to the notion of an algorithm must be given:

A computational problem is a problem where, given an input value that
belongs to a certain set, an output value that is in a certain relation to
the given input value must be found if it exists. The input values that
belong to the certain set are also called the instances of the problem and
an output value that is in the certain relation to the given input value
is also called a solution for the instance concerned.

The existing viewpoints on what an algorithm is indicate that something like
the following properties are essential for an algorithm:
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– an algorithm is a finite expression of a pattern of behaviour by which all
instances of a computational problem can be solved;

– the pattern of behaviour expressed by an algorithm is made up of discrete
steps, each of which consists of performing an elementary operation or in-
specting an elementary condition unless it is the initial step or a final step;

– the pattern of behaviour expressed by an algorithm is such that there is one
possible step immediately following a step that consists of performing an
operation;

– the pattern of behaviour expressed by an algorithm is such that there is
one possible step immediately following a step that consists of inspecting a
condition for each outcome of the inspection;

– the pattern of behaviour expressed by an algorithm is such that the initial
step consists of inputting an input value of the problem concerned;

– the pattern of behaviour expressed by an algorithm is such that, for each
input value of the problem concerned for which a correct output value exists,
a final step is reached after a finite number of steps and that final step consists
of outputting a correct output value for that input value;

– the steps involved in the pattern of behaviour expressed by an algorithm
are precisely and unambiguously defined and can be performed exactly in a
finite amount of time.

These properties give an intuitive characterization of the notion of an algorithm
and form the starting point for the formalization of this notion in upcoming
sections. They have been distilled from the descriptions of what an algorithm is
that are given in standard works from the mathematical and computer science
literature such as [15,16,19,24]. They can also be found elsewhere in the mathe-
matical and computer science literature and even in the philosophical literature
on algorithms, see e.g. [13,22].

Usually it is also mentioned in some detail how an algorithm is generally
expressed. However, usually it is mentioned at most in passing that an algorithm
expresses a pattern of behaviour. Following [6], this point is central here. The
reason for this is that, in order to formalize the notion of an algorithm well, it
is more important to know what an algorithm expresses than how an algorithm
is expressed.

Recently, discussions about the notion of an algorithm take also place in the
social sciences. This leads to viewpoints on algorithms that are useless in mathe-
matics and computer science. For example, in [26] is proposed to view algorithms
as ‘heterogeneous and diffuse sociotechnical systems’. Such viewpoints preclude
formalization and are therefore disregarded.

It should be noted that the characterization of the notion of an algorithm
given by the above-mentioned properties of an algorithm reflects a rather op-
erational view of what an algorithm is. In a more abstract view of what an
algorithm is, an algorithm expresses a collection of patterns of behaviour that
are equivalent in some well-defined way. We will come back to this at the end of
Section 3.
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3 Proto-Algorithms

In this section, the notion of an proto-algorithm is introduced. The thought is
that algorithms are equivalence classes of proto-algorithms under an appropriate
equivalence relation. An equivalence relation that is likely an appropriate one is
introduced in Section 4.

The notion of a proto-algorithm will be defined in terms of three auxiliary
notions. The definition of one of these auxiliary notions is based on the well-
known notion of a rooted labeled directed graph. However, the definitions of
this notion given in the mathematical and computer science literature vary.
Therefore, the definition that is used in this paper is given first.

Definition. A rooted labeled directed graph G is a sextuple (V,E, Lv, Le, l, r),
where:

– V is a non-empty finite set, whose members are called the vertices of G;
– E is a subset of V × V , whose members are called the edges of G;
– Lv is a countable set, whose members are called the vertex labels of G;
– Le is a countable set, whose members are called the edge labels of G;
– l is a partial function from V ∪ E to Lv ∪ Le such that

for all v ∈ V for which l(v) is defined, l(v) ∈ Lv and
for all e ∈ E for which l(e) is defined, l(e) ∈ Le,

called the labeling function of G;
– r ∈ V , called the root of G.

The additional graph theoretical notions defined below are also used in this
paper.

Definition. Let G = (V,E, Lv, Le, l, r) be a rooted labeled directed graph. Then
a cycle in G is a sequence v1 . . . vn+1 ∈ V ∗ such that, for all i ∈ {1, . . . , n},
(vi, vi+1) ∈ E, card({v1, . . . , vn}) = n, and v1 = vn+1. Let, moreover, v ∈ V .
Then the indegree of v, written indegree(v), is card({v′ | (v′, v) ∈ E}) and the
outdegree of v, written outdegree(v), is card({v′ | (v, v′) ∈ E}).

We proceed with defining the three auxiliary notions, starting with the notion
of an alphabet. This notion concerns the symbols used to refer to the operations
and conditions involved in the steps of which the pattern of behaviour expressed
by an algorithm is made up.

Definition. An alphabet Σ is a couple (F, P ), where:

– F is a countable set, whose members are called the function symbols of Σ;
– P is a countable set, whose members are called the predicate symbols of Σ;
– F and P are disjoint sets and ini, fin ∈ F .

We write F̃ , where F is the set of function symbols of an alphabet, for the set
F \ {ini, fin}.

The function symbols and predicate symbols of an alphabet refer to the
operations and conditions, respectively, involved in the steps of which the pattern
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of behaviour expressed by an algorithm is made up. The function symbols ini and
fin refer to inputting an input value and outputting an output value, respectively.

We are now ready to define the notions of a Σ-algorithm graph and a Σ-
interpretation. They concern the pattern of behaviour expressed by an algorithm.

Definition. Let Σ = (F, P ) be an alphabet. Then a Σ-algorithm graph G is a
rooted labeled directed graph (V,E, Lv, Le, l, r) such that

– Lv = F ∪ P ;
– Le = {0, 1};
– for all v ∈ V :

• l(v) = ini iff v = r;
• if l(v) = ini, then indegree(v) = 0, outdegree(v) = 1, and, for the unique
v′ ∈ V for which (v, v′) ∈ E, l((v, v′)) is undefined;

• if l(v) = fin, then indegree(v) > 0 and outdegree(v) = 0;

• if l(v) ∈ F̃ , then indegree(v) > 0, outdegree(v) = 1, and, for the unique
v′ ∈ V for which (v, v′) ∈ E, l((v, v′)) is undefined;

• if l(v) ∈ P , then indegree(v) > 0, outdegree(v) = 2, and, for the unique
v′ ∈ V and v′′ ∈ V with v′ 6= v′′ for which (v, v′) ∈ E and (v, v′′) ∈ E,
l((v, v′)) is defined, l((v, v′′)) is defined, and l((v, v′)) 6= l((v, v′′));

– if v1 . . . vn+1 is a cycle in G, then, for some v ∈ {v1, . . . , vn}, l(v) ∈ F .

Σ-algorithm graphs are somewhat reminiscent of program schemes as defined,
for example, in [27].

In the above definition, the condition on cycles in a Σ algorithm graph ex-
cludes infinitely many consecutive steps, each of which consists of inspecting a
condition.

In the above definition, the conditions regarding the vertices of a Σ-algorithm
graph correspond to the essential properties of an algorithm mentioned in Sec-
tion 2 that concern its structure. Adding an interpretation of the symbols of
the alphabet Σ to a Σ-algorithm graph yields something that has all of the
mentioned essential properties of an algorithm.

Definition. Let Σ = (F, P ) be an alphabet. Then a Σ-interpretation I is a
quadruple (D,Din, Dout, I), where:

– D is a set, called the main domain of I;
– Din is a set, called the input domain of I;
– Dout is a set, called the output domain of I;
– I is a total function from F ∪ P to the set of all total computable functions

from Din to D, D to Dout, D to D or D to {0, 1} such that:
• I(ini) is a function from Din to D;
• I(fin) is a function from D to Dout;

• for all f ∈ F̃ , I(f) is a function from D to D;
• for all p ∈ P , I(p) is a function from D to {0, 1};

– there does not exist a D′ ⊂ D such that:
• for all d ∈ Din, I(ini)(d) ∈ D′;

• for all f ∈ F̃ , for all d ∈ D′, I(f)(d) ∈ D′.
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In the above definition, the minimality condition on D is not essential, but this
condition facilitates establishing a connection between proto-algorithms and the
processes considered in the imperative process algebra BPAδǫ-I (see Section 6).

The pattern of behavior expressed by an algorithm can completely be rep-
resented by the combination of an alphabet Σ, a Σ-algorithm graph G, and a
Σ-interpretation I. This brings us to defining the notion of a proto-algorithm.

Definition. A proto-algorithm A is a triple (Σ,G, I), where:

– Σ is an alphabet, called the alphabet of A;
– G is a Σ-algorithm graph, called the algorithm graph of A;
– I is a Σ-interpretation, called the interpretation of A.

LetA = (Σ,G, I) be a proto-algorithm, whereΣ = (F, P ), G = (V,E, Lv, Le,
l, r), and I = (D,Din, Dout, I). Then the intuition is that A is something that
goes through states, where states are elements of the set Din ∪ (V ×D) ∪Dout.
The elements of Din, V ×D, and Dout are called input states, internal states, and
output states, respectively. A goes from one state to the next state by making a
step, it starts in an input state, and it stops in an output state. The state that
A is in determines what the step to the next state consists of and what the next
state is as follows:

– if A is in input state d, then the step to the next state consists of applying
function I(ini) to d and the next state is the unique internal state (v′, d′)
such that (r, v′) ∈ E, and I(ini)(d) = d′;

– if A is in internal state (v, d) and l(v) ∈ F̃ , then the step to the next state
consists of applying function I(l(v)) to d and the next state is the unique
internal state (v′, d′) such that (v, v′) ∈ E, and I(l(v))(d) = d′;

– if A is in internal state (v, d) and l(v) ∈ P , then the step to the next state
consists of applying function I(l(v)) to d and the next state is the unique
internal state (v′, d) such that (v, v′) ∈ E, and I(l(v))(d) = l((v, v′));

– if A is in internal state (v, d) and l(v) = fin, then the step to the next state
consists of applying function I(fin) to d and the next state is the unique
output state d′ such that I(fin)(d) = d′.

This informal explanation of how the state that A is in determines what the next
state is, is formalized by the algorithmic step function δaA defined in Section 4.

The term proto-algorithm has been chosen instead of the term algorithm
because proto-algorithms are considered too concrete to be called algorithms.
For example, from a mathematical point of view, it is natural to consider the
behavioral patterns expressed by isomorphic proto-algorithms to be the same.
Isomorphism of proto-algorithms is defined as expected.

Definition. Let A = (Σ,G, I) and A′ = (Σ′, G′, I ′) be proto-algorithms, where
Σ = (F, P ), Σ′ = (F ′, P ′), G = (V,E, Lv, Le, l, r), G

′ = (V ′, E′, L′

v, L
′

e, l
′, r′),

I = (D,Din, Dout, I), and I ′ = (D′, D′

in, D
′

out, I
′). Then A and A′ are iso-

morphic, written A ∼= A′, if there exist bijections βf : F → F ′, βp : P → P ′,
βv :V → V ′, βd :D → D′, βi :Din → D′

in, βo :Dout → D′

out, and βb :{0, 1} → {0, 1}
such that:
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– βf(ini) = ini and βf(fin) = fin;
– for all v, v′ ∈ V , (v, v′) ∈ E iff (βv(v), βv(v

′)) ∈ E′;
– for all v ∈ V with l(v) ∈ F , βf(l(v)) = l′(βv(v));
– for all v ∈ V with l(v) ∈ P , βp(l(v)) = l′(βv(v));
– for all (v, v′) ∈ E with l((v, v′)) is defined, βb(l((v, v

′))) = l′((βv(v), βv(v
′)));

– for all d ∈ Din, βd(I(ini)(d)) = I ′(ini)(βi(d));
– for all d ∈ D, βo(I(fin)(d)) = I ′(fin)(βd(d));

– for all d ∈ D and f ∈ F̃ , βd(I(f)(d)) = I ′(βf(f))(βd(d));
– for all d ∈ D and p ∈ P , βb(I(p)(d)) = I ′(βp(p))(βd(d)).

Proto-algorithms may also be considered too concrete in a way not covered
by isomorphism of proto-algorithms. This issue is addressed in Section 4 and
leads there to the introduction of two other equivalence relations. Although it is
intuitive clear what isomorphism of proto-algorithms is, its precise definition is
not easy to memorize. The equivalence relations that are given in Section 4 may
be easier to memorize.

A proto-algorithm could also be defined as a quadruple (D,Din, Dout, G)
where G is a graph that differs from a Σ-algorithm graph in that its vertex
labels are computable functions from Din to D, D to Dout, D to D or D to {0, 1}
instead of function and predicate symbols from Σ. I consider the definition of
a proto-algorithm given earlier more insightful because it isolates as much as
possible the operations to be performed and the conditions to be inspected from
its structure.

4 Algorithmic and Computational Equivalence

In Section 3, the intuition was given that a proto-algorithm A is something
that goes through states. It was informally explained how the state that it is
in determines what the next state is. The algorithmic step function δaA that is
defined below formalizes this. The computational step function δcA that is also
defined below is like the algorithmic step function δaA, but conceals the steps
that consist of inspecting conditions.

Definition. Let A = (Σ,G, I) be a proto-algorithm, where Σ = (F, P ), G =
(V,E, Lv, Le, l, r), and I = (D,Din, Dout, I). Then the algorithmic step function
δaA induced by A is the unary total function on the set Din ∪ (V × D) ∪ Dout

defined by:

δaA(d) = (v′, d′) if d ∈ Din, (r, v′) ∈ E, and I(ini)(d) = d′;

δaA((v, d)) = (v′, d′) if l(v) = o, o ∈ F̃ , (v, v′) ∈ E, and I(o)(d) = d′;

δaA((v, d)) = (v′, d) if l(v) = p, p ∈ P , (v, v′) ∈ E, and I(p)(d) = l((v, v′));

δaA((v, d)) = d′ if l(v) = fin and I(fin)(d) = d′;

δaA(d) = d if d ∈ Dout;

and the computational step function δcA induced by A is the unary total function
on the set Din ∪ (V ×D) ∪Dout defined by:
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δcA(d) = (v′, d′) if d ∈ Din, (r, v′) ∈ E, and I(ini)(d) = d′;

δcA((v, d)) = (v′, d′) if l(v) = o, o ∈ F̃ , (v, v′) ∈ E, and I(o)(d) = d′;

δcA((v, d)) = δcA((v
′, d)) if l(v) = p, p ∈ P , (v, v′) ∈ E, and I(p)(d) = l((v, v′));

δcA((v, d)) = d′ if l(v) = fin and I(fin)(d) = d′;

δcA(d) = d if d ∈ Dout.

If a proto-algorithm A′ can mimic a proto-algorithm A step-by-step, then
we say that A is algorithmically simulated by A′. If the steps that consist of
inspecting conditions are ignored, then we say that A is computationally simu-
lated by A′. Algorithmic and computational simulation can be formally defined
using the step functions defined above.

Definition. Let A = (Σ,G, I) and A′ = (Σ′, G′, I ′) be two proto-algorithms,
where G = (V,E, Lv, Le, l, r), G

′ = (V ′, E′, L′

v, L
′

e, l
′, r′), I = (D,Din, Dout, I),

and I ′ = (D′, D′

in, D
′

out, I
′). Then an algorithmic simulation of A by A′ is a set

R ⊆ (Din ×D′

in) ∪ ((V ×D)× (V ′ ×D′)) ∪ (Dout ×D′

out) such that:

if d ∈ Din, then there exists a unique d′ ∈ D′

in such that (d, d′) ∈ R;

if d′ ∈ D′

out, then there exists a unique d ∈ Dout such that (d, d′) ∈ R;

if (d, d′) ∈ R, then (δaA(d), δ
a
A′(d′)) ∈ R;

and a computational simulation of A by A′ is a set R ⊆ (Din×D
′

in)∪((V ×D)×
(V ′ ×D′)) ∪ (Dout ×D′

out) such that:

if d ∈ Din, then there exists a unique d′ ∈ D′

in such that (d, d′) ∈ R;

if d′ ∈ D′

out, then there exists a unique d ∈ Dout such that (d, d′) ∈ R;

if (d, d′) ∈ R, then (δcA(d), δ
c
A′(d′)) ∈ R.

A is algorithmically simulated by A′, written A ⊑a A
′, if there exists an algo-

rithmic simulation of A by A′.
A is computationally simulated by A′, written A ⊑c A

′, if there exists a compu-
tational simulation of A by A′.
A is algorithmically equivalent to A′, written A ≡a A

′, if A ⊑a A
′ and A′ ⊑a A.

A is computationally equivalent to A′, written A ≡c A
′, if A ⊑c A

′ and A′ ⊑c A.

The following theorem tells us how isomorphism, algorithmic equivalence,
and computational equivalence are related.

Theorem 1. Let A and A′ be proto-algorithms. Then:

(1) A ∼= A′ only if A ≡a A
′ (2) A ≡a A

′ only if A ≡c A
′.

Proof. Let A = (Σ,G, I) and A′ = (Σ′, G′, I ′) be proto-algorithms, where
Σ = (F, P ), Σ′ = (F ′, P ′), G = (V,E, Lv, Le, l, r), G

′ = (V ′, E′, L′

v, L
′

e, l
′, r′),

I = (D,Din, Dout, I), and I ′ = (D′, D′

in, D
′

out, I
′).

Part 1. Let βv, βd, βi, and βo be as in the definition of ∼=, and let β be
the bijection from Din ∪ (V ×D) ∪Dout to D′

in ∪ (V ′ ×D′) ∪ D′

out defined by:
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β(d) = βi(d) if d ∈ Din, β((v, d)) = (βv(v), βd(d)), and β(d) = βo(d) if d ∈ Dout.
It is easy to show that, for all d ∈ Din ∪ (V ×D) ∪Dout, β(δ

a
A(d)) = δaA′(β(d)).

It immediately follows that the set {(δan
A (d), β(δa n

A (d))) | d ∈ Din ∧n ∈ N} is an
algorithmic simulation of A by A′.1 Hence, A ⊑a A

′. The proof of A′ ⊑a A is
done in the same way.

Part 2. Because A ≡a A
′, there exists an algorithmic simulation of A by A′.

Let R be an algorithmic simulation of A by A′. Then it is easy to show that,
for all (d, d′) ∈ R, (δcA(d), δ

c
A′(d′)) ∈ R. It immediately follows that R is also a

computational simulation of A by A′. Hence, A ⊑c A
′. The proof of A′ ⊑c A is

done in the same way. ⊓⊔

We do not have that A ∼= A′ if A ≡a A
′. The following example illustrates

this. Take proto-algorithms A = (Σ,G, I) and A′ = (Σ,G′, I) where:

– G contains edges (v1, v
′

1), (v
′

1, v
′′), (v2, v

′

2), and (v′2, v
′′) where the vertices v′1

and v′2 are labeled by the same function symbol;
– G′ is obtained from G by replacing the edge (v2, v

′

2) by (v2, v
′

1) and removing
the edge (v′2, v

′′).

Clearly, A and A′ are algorithmically equivalent, but not isomorphic.
We also do not have A ≡a A

′ if A ≡c A
′. The following example illustrates

this. Take proto-algorithms A = (Σ,G, I) and A′ = (Σ,G′, I) where:

– G contains a cycle in which only one vertex occurs that is labeled by a
predicate symbol p and the outgoing edge of this vertex that is not part of
the cycle is labeled by 1;

– G′ is obtained from G by adding immediately before the cycle a copy of the
cycle in which the predicate symbol p is replaced by a predicate symbol p′

whose interpretation yields 1 whenever the interpretation of p yields 1.

It is easy to see that A and A′ are computationally equivalent, but not algorith-
mically equivalent.

The definition of algorithmic equivalence suggests that the patterns of be-
haviour expressed by algorithmically equivalent proto-algorithms must be con-
sidered the same. This suggests in turn that algorithms are equivalence classes
of proto-algorithms under algorithmic equivalence.

If two proto-algorithms are computationally equivalent, then, for each input
value, they lead to the same sequence of operations being performed. The point
of view should not be taken that the patterns of behaviour expressed by com-
putationally equivalent proto-algorithms are the same: the steps that consist of
inspecting a condition are treated as if they do not belong to the patterns of
behaviour.

The relevance of the computational equivalence relation is that any equiva-
lence relation that captures the sameness of the patterns of behaviour expressed
by proto-algorithms to a higher degree than the algorithmic equivalence relation
must be finer than the computational equivalence relation.

1 The notation δ
an
A (d), where n ∈ N, is used for the n-fold application of δaA to d, i.e.

δ
a 0
A (d) = d and δ

an+1
A (d) = δ

a(δan
A (d)).



10 C.A. Middelburg

Definition. Let A = (Σ,G, I) be a proto-algorithm, where Σ = (F, P ), G =

(V,E, Lv, Le, l, r), and I = (D,Din, Dout, I). Then the function Â computed by

A is the partial function from Din to Dout defined by Â(d) = δa ∗

A (d), where δa ∗

A

is the least-defined unary partial function on Din ∪ (V ×D) ∪Dout satisfying

δa ∗

A (d) = δa ∗

A (δaA(d)) if δ
a
A(d) ∈ V ×D;

δa ∗

A (d) = δaA(d) if δaA(d) ∈ Dout.

Let, moreover, d ∈ Din be such that Â(d) is defined. Then the number of algo-

rithmic steps to compute Â(d) by A, written #astep(A, d), is the smallest n ∈ N

such that δan
A (d) = Â(d).

The following theorem tells us that, if a proto-algorithm A is simulated by a
proto-algorithm A′, then (a) the function computed by A′ models the function
computed by A (in the sense of e.g. [14]) and (b) for each input value for which A
eventually outputs an output value, A′ does so in the same number of algorithmic
steps.

Theorem 2. Let A = (Σ,G, I) and A′ = (Σ′, G′, I ′) be proto-algorithms, where
I = (D,Din, Dout, I) and I ′ = (D′, D′

in, D
′

out, I
′). Then A ⊑a A

′ only if there
exist total functions γi :Din → D′

in and γo :D
′

out → Dout such that:

(1) for all d ∈ Din, Â(d) is defined only if Â′(γi(d)) is defined;

(2) for all d ∈ Din and d′ ∈ Dout, Â(d) = d′ only if γo(Â′(γi(d))) = d′;

(3) for all d ∈ Din such that Â(d) is defined, #astep(A, d) = #astep(A
′, γi(d)).

Proof. Because A ⊑a A′, there exists an algorithmic simulation of A by A′.
Let R be an algorithmic simulation of A by A′, let γi be the unique function
from Din to D′

in such that, for all d ∈ Din, (d, γi(d)) ∈ R, and let γo be the
unique function from D′

out to Dout such that, for all d′ ∈ D′

out, (γo(d
′), d′) ∈ R.

From the definition of an algorithmic simulation, it follows immediately that,
for all d ∈ Din, for all n ∈ N, (δan

A (d), δa n
A′ (γi(d))) ∈ R. From this result and

the definition of an algorithmic simulation, it follows immediately that, for all
d ∈ Din, for all n ∈ N:

(a) δan
A (d) ∈ Dout iff δ

an
A′ (γi(d)) ∈ D′

out;
(b) for all d′ ∈ Dout, δ

an
A (d) = d′ iff there exists a d′′ ∈ D′

out such that
δan
A′ (γi(d)) = d′′ and γo(d

′′) = d′.

By the definition of the function computed by a proto-algorithm, we have that
Â(d) is defined iff there exists an n ∈ N such that δan

A (d) ∈ Dout and that

Â′(γi(d)) is defined iff there exists an n ∈ N such that δan
A′ (γi(d)) ∈ D′

out. From
this and (a), (1) follows immediately.

By the definition of the function computed by a proto-algorithm, we have that
Â(d) = d′ iff there exists an n ∈ N such that δan

A (d) = d′ and that Â′(γi(d)) = d′′

iff there exists an n ∈ N such that δan
A′ (γi(d)) = d′′. From this and (b), (2) follows

immediately.
By the definition of #astep and (a), (3) also follows immediately. ⊓⊔
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It is easy to see that, for all d ∈ Din, Â(d) = δc ∗A (d), where δc ∗A is the least-defined
unary partial function on Din ∪ (V ×D) ∪Dout satisfying

δc ∗A (d) = δc ∗A (δcA(d)) if δ
c
A(d) ∈ V ×D;

δc ∗A (d) = δcA(d) if δcA(d) ∈ Dout.

This means that Theorem 2 goes through as far as (1) and (2) are concerned if
algorithmic simulation is replaced by computational simulation. It follows imme-
diately from the example of computationally equivalent proto-algorithms given
earlier that (3) does not go through if algorithmic simulation is replaced by
computational simulation.

5 The Imperative Process Algebra BPAδǫ-I

In Section 6, a connection is made between proto-algorithms and the processes
that are considered in the imperative process algebra BPAδǫ-I. In this section,
a short survey of BPAδǫ-I and recursion in the setting of BPAδǫ-I is given. The
constants and operators of the algebraic theory BPAδǫ-I and the additional con-
stants of its extension with recursion are discussed. The axioms of BPAδǫ-I are
given in the Appendix. BPAδǫ-I is a subtheory of ACPτ

ǫ -I. In [20], a comprehen-
sive treatment of ACPτ

ǫ -I can be found. The axioms of BPAδǫ-I are the axioms of
ACPτ

ǫ -I in which only constants and operators of BPAδǫ-I occur. The additional
axioms of the extension of BPAδǫ-I with recursion are simply the additional
axioms of the extension of ACPτ

ǫ -I with recursion.

5.1 BPA with Inaction and Empty Process

First, a short survey of BPAδǫ is given. BPAδǫ is the version of BPA with inac-
tion and empty process constants that was first presented in [1, Section 2.2]. In
Section 5.2, BPAδǫ-I will be introduced as an extension of BPAδǫ.

In BPAδǫ, it is assumed that a fixed but arbitrary finite set A of basic actions,
with δ, ǫ 6∈ A, has been given. Basic actions are taken as atomic processes.

The algebraic theory BPAδǫ has one sort: the sort P of processes. This sort is
made explicit to anticipate the need for many-sortedness later on. The algebraic
theory BPAδǫ has the following constants and operators to build terms of sort P:

– a basic action constant a :P for each a ∈ A;
– an inaction constant δ :P;
– an empty process constant ǫ :P;
– a binary alternative composition or choice operator + :P×P → P;
– a binary sequential composition operator · :P×P → P.

It is assumed that there is a countably infinite set X of variables of sort P,
which contains x, y and z. Terms are built as usual. Infix notation is used for
the operators + and · . The following precedence convention are used to reduce
the need for parentheses: the operator · binds stronger than the operator + .
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The constants a (a ∈ A), ǫ, and δ can be explained as follows: (a) a denotes
the process that first performs the action a and then terminates successfully,
(b) ǫ denotes the process that terminates successfully without performing any
action, and (c) δ denotes the process that cannot do anything, it cannot even
terminate successfully.

Let t and t′ be closed BPAδǫ terms. Then the operators + and · can be
explained as follows: (a) t + t′ denotes the process that behaves as the process
denoted by t or as the process denoted by t′, where the choice between the two is
resolved at the instant that one of them does something, and (b) t ·t′ denotes the
process that first behaves as the process denoted by t and following successful
termination of that process behaves as the process denoted by t′.

5.2 Imperative BPAδǫ

BPAδǫ-I, imperative BPAδǫ, extends BPAδǫ with features to change data involved
in a process in the course of the process and to proceed at certain stages of a
process in a way that depends on the changing data.

In BPAδǫ-I, it is assumed that the following has been given with respect to
data:

– a many-sorted signature ΣD that includes:
• a sort D of data and a sort B of bits ;
• constants of sort D and/or operators with result sort D;
• constants 0 and 1 of sort B and operators with result sort B;

– a minimal algebra D of signature ΣD in which the carrier of sort B has
cardinality 2 and the equation 0 = 1 does not hold.

We write D for the set of all closed terms over the signature ΣD of sort D.
In BPAδǫ-I, it is moreover assumed that a finite or countably infinite set V

of flexible variables has been given. A flexible variable is a variable whose value
may change in the course of a process.2

A flexible variable valuation is a total function from V to D. We write VVal
for the set of all flexible variable valuations.

Flexible variable valuations provide closed terms from D that denote the
members of D’s carrier of sort D assigned to flexible variables when a BPAδǫ-I
term of sort D is evaluated. Because D is a minimal algebra, each member of
D’s carrier of sort D can be represented by a term from D. We write d, where
d is a member of D’s carrier of sort D, for a fixed but arbitrary term from D

representing d when it is clear from the context that a term from D is expected.
BPAδǫ-I has the following sorts: the sorts included in ΣD, the sort C of

conditions, and the sort P of processes.
For each sort s included in ΣD other than D, BPAδǫ-I has only the constants

and operators included in ΣD to build terms of sort s.
BPAδǫ-I has, in addition to the constants and operators included in ΣD to

build terms of sorts D, the following constants to build terms of sort D:

2 The term flexible variable is used for this kind of variables in e.g. [17,25].
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– for each v ∈ V , the flexible variable constant v :D.

We write D for the set of all closed BPAδǫ-I terms of sort D.
BPAδǫ-I has the following constants and operators to build terms of sort C:

– a binary equality operator = :B×B → C;
– a binary equality operator = :D×D → C;3

– a truth constant t :C;
– a falsity constant f :C;
– a unary negation operator ¬ :C → C;
– a binary conjunction operator ∧ :C×C → C;
– a binary disjunction operator ∨ :C×C → C;
– a binary implication operator ⇒ :C×C → C;

We write C for the set of all closed BPAδǫ-I terms of sort C.
BPAδǫ-I has, in addition to the constants and operators of BPAδǫ, the fol-

lowing operators to build terms of sort P:

– a unary assignment action operator :=v :D → P for each v ∈ V ;
– a binary guarded command operator :→ :C×P → P;
– a unary evaluation operator Vρ :P → P for each ρ ∈ VVal .

We write P for the set of all closed BPAδǫ-I terms of sort P.
It is assumed that there are countably infinite sets of variables of sort D and

C and that the sets of variables of sort D, C, and P are mutually disjoint and
disjoint from V .

The same notational conventions are used as before. Infix notation is also
used for the additional binary operators. Moreover, the notation [v := e], where
v ∈ V and e is a BPAδǫ-I term of sort D, is used for the term :=v(e).

Each term from C can be taken as a formula of a first-order language with
equality of D by taking the flexible variable constants as variables of sort D. The
flexible variable constants are implicitly taken as variables of sort D wherever
the context asks for a formula. In this way, each term from C can be interpreted
in D as a formula.

The notation φ⇔ ψ, where φ and ψ are BPAδǫ-I terms of sort C, is used for
the term (φ⇒ ψ)∧ (ψ ⇒ φ). The axioms of BPAδǫ-I include an equation φ = ψ
for each two terms φ and ψ from C for which the formula φ⇔ ψ holds in D.

Let e be a term from D, φ be a term from C, and t be a term from P . Then
the additional operators to build terms of sort P can be explained as follows:

– the term [v :=e] denotes the process that first performs the assignment action
[v := e], whose intended effect is the assignment of the result of evaluating e
to flexible variable v, and then terminates successfully;

– the term φ :→ t denotes the process that behaves as the process denoted by
t if condition φ holds and as δ otherwise;

3 The overloading of = can be trivially resolved if ΣD is without overloaded symbols.
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– the term Vρ(t) denotes the process that behaves as the process denoted by
t, except that each subterm of t that belongs to D is evaluated using flexible
variable valuation ρ updated according to the assignment actions that have
taken place at the point where the subterm is encountered.

Below will be referred to the subset A of P that consists of the terms from
P that denote the processes that are considered to be atomic.

A is defined as follows: A = A ∪ {[v := e] | v ∈ V ∧ e ∈ D}.

5.3 BPAδǫ-I with Recursion

In this section, recursion in the setting of BPAδǫ-I is treated. A closed BPAδǫ-I
term of sort P denotes a process with a finite upper bound to the number of
actions that it can perform. Recursion allows the description of processes without
a finite upper bound to the number of actions that it can perform.

A recursive specification over BPAδǫ-I is a set {X = tX | X ∈ V } of recursion
equations, where V is a subset of X and each tX is a BPAδǫ-I term of sort P

in which only variables from V occur. We write vars(S), where S is a recursive
specification over BPAδǫ-I, for the set of all variables that occur in S.

A solution of a recursive specification S over BPAδǫ-I in some model of
BPAδǫ-I is a set {pX | X ∈ vars(S)} of elements of the carrier of sort P in that
model such that each equation in S holds if, for all X ∈ vars(S), X is assigned
pX . If {pX | X ∈ vars(S)} is a solution of a recursive specification S, then, for
each X ∈ vars(S), pX is called the X-component of that solution of S. Each
recursive specification over BPAδǫ-I that has a unique solution in the model of
BPAδǫ-I given in [20] can be rewritten to a recursive specification in which the
right-hand sides of equations are linear BPAδǫ-I terms.

The set L of linear BPAδǫ-I terms is inductively defined by the following rules:

– δ ∈ L;
– if φ ∈ C, then φ :→ ǫ ∈ L;
– if φ ∈ C, α ∈ A, and X ∈ X , then φ :→ α ·X ∈ L;
– if t, t′ ∈ L \ {δ}, then t+ t′ ∈ L.

A linear recursive specification over BPAδǫ-I is a recursive specification
{X = tX | X ∈ V } over BPAδǫ-I where each tX ∈ L.

BPAδǫ-I is extended with recursion by adding constants for solutions of
linear recursive specifications over BPAδǫ-I and axioms concerning these addi-
tional constants. For each linear recursive specification S over BPAδǫ-I and each
X ∈ vars(S), a constant 〈X |S〉 of sort P is added to the constants of BPAδǫ-I
and axioms postulating that 〈X |S〉 stands for the X-component of the unique
solution of S are added to the axioms of BPAδǫ-I. We write BPAδǫ-I+REC for
the resulting theory.

We write Prec for the set of all closed BPAδǫ-I+REC terms of sort P. We
write ⊢ t = t′, where t and t′ are BPAδǫ-I+REC terms of sort P, to indicate
that the equation t = t′ is derivable from the axioms of BPAδǫ-I+REC.
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6 Algorithm Processes

In this section, a connection is made between proto-algorithms and the processes
considered in the imperative process algebra BPAδǫ-I. It is assumed that m ∈ V .

Definition. Let Σ = (F, P ) be an alphabet. Then a Σ-algorithm process is
a constant 〈X |S〉 of BPAδǫ-I, where S is finite, Xǫ ∈ vars(S), and for each
Y ∈ vars(S):

– the recursion equation for Y in S has one of the following forms:

(1) Y = t :→ [m := ini(m)] · Z,

(2) Y = t :→ [m := o(m)] · Z,

(3) Y = (p(m) = 1) :→ [m :=m] · Z + (p(m) = 0) :→ [m :=m] · Z ′,

(4) Y = t :→ [m := fin(m)] ·Xǫ,

(5) Y = t :→ ǫ,

where o ∈ F̃ , p ∈ P , and Z,Z ′ ∈ vars(S) \ {Xǫ};
– the recursion equation for Y in S is of the form (1) iff Y ≡ X;
– the recursion equation for Y in S is of the form (5) iff Y ≡ Xǫ.

We write AlgoGraphΣ and AlgoProcessΣ, where Σ is an alphabet, for the set
of all Σ-algorithm graphs and the set of all Σ-algorithm processes, respectively.

Definition. Let Σ = (F, P ) be an alphabet. Then the graph-to-process function
g2pΣ is a total function from AlgoGraphΣ to AlgoProcessΣ such that, for each
Σ-algorithm graph G = (V,E, Lv, Le, l, r), g2pΣ(G) = 〈X |S〉, where 〈X |S〉 is a
Σ-algorithm process such that:

X = t :→ [m := ini(m)] ·Xv′ ∈ S iff (r, v′) ∈ E;

Xv = t :→ [m := o(m)] ·Xv′ ∈ S iff v ∈ V , l(v) = o, o ∈ F̃ , (v, v′) ∈ E;

Xv = p(m) = 1 :→ [m :=m] ·Xv′ + p(m) = 0 :→ [m :=m] ·Xv′′ ∈ S

iff v ∈ V , l(v) = p, p ∈ P , (v, v′), (v, v′′) ∈ E, l((v, v′)) = 1, l((v, v′′)) = 0;

Xv = t :→ [m := fin(m)] ·Xǫ ∈ S iff v ∈ V , l(v) = fin;

Xǫ = t :→ ǫ;

where, for all v ∈ V , Xv ∈ X and, for all v′ ∈ V , Xv = Xv′ only if v = v′.

The function g2pΣ is uniquely defined up to renaming of variables.
The following theorem tells us that the function g2pΣ is a bijection from

AlgoGraphΣ to AlgoProcessΣ up to isomorphism of algorithm graphs and re-
naming of variables in algorithm processes.

Theorem 3. Let Σ be an alphabet. Then, for all 〈X |S〉 ∈ AlgoProcessΣ, there
exists a unique G ∈ AlgoGraphΣ up to ∼= such that 〈X |S〉 and g2pΣ(G) are
identical up to consistent renaming of variables.

Proof. Let Σ = (F, P ) be an alphabet, and let 〈X |S〉 ∈ AlgoProcessΣ . Then we
construct a G = (V,E, Lv, Le, l, r) ∈ AlgoGraphΣ from 〈X |S〉 as follows:
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– V = vars(S) \ {Xǫ};
– E is the set of all (Y, Z) ∈ V × V for which there exists an equation in S

such that Y is its left-hand side and Z occurs in its right-hand side;
– Lv = F ∪ P ;
– Le = {0, 1};
– l is defined as follows:
• l(X) = ini;
• l(Y ) = o if Y = t :→ [m := o(m)] · Z ∈ S for some Z ∈ vars(S);
• l(Y ) = p if Y = (p(m) = 1) :→ [m :=m] ·Z+(p(m) = 0) :→ [m :=m] ·Z ′ ∈ S
for some Z,Z ′ ∈ vars(S);

• l(Y ) = fin if Y = t :→ [m := fin(m)] ·Xǫ ∈ S;
• l((Y, Z)) is undefined if Y = t :→ [m := o(m)] · Z ∈ S for some o ∈ F ;
• l((Y, Z)) = 1 if Y = (p(m) = 1):→[m:=m]·Z+(p(m) = 0):→[m:=m]·Z ′ ∈ S
for some p ∈ P and Z ′ ∈ vars(S);

• l((Y, Z)) = 0 if Y = (p(m) = 1):→[m:=m]·Z ′+(p(m) = 0):→[m:=m]·Z ∈ S
for some p ∈ P and Z ′ ∈ vars(S);

– r = X .

It is easy to see that g2pΣ(G) and 〈X |S〉 are identical up to consistent renaming
of variables and that, for allG′ ∈ AlgoGraphΣ , g2pΣ(G

′) and 〈X |S〉 are identical
up to consistent renaming of variables only if G′ ∼= G. ⊓⊔

It is easy to obtain the signature ΣD and the minimal algebra D of signature
ΣD for a given alphabet Σ and a given Σ-interpretation (D,Din, Dout, I) after
the following issues have been addressed: (a) D∪Din∪Dout must be taken as D’s
carrier of sortD and consequently the interpretation of each symbol fromΣ must
be extended to D∪Din∪Dout and (b) each member of Din must be representable
by a closed term of sort D. Any extension of the functions concerned may be
chosen here because we comply with the convention to use each of them only if
it is known that the value to which it is applied belongs to its original domain.
For simplicity, we take all members of Din as constants of sort D.

Below, we write [m 7→ d], where d is a member of D’s carrier of sort D, for
a fixed but arbitrary ρ ∈ VVal such that ρ(m) = d.

The graph-to-process function g2pΣ allows to characterize the algorithmic
step function of a proto-algorithm A = (Σ,G, I) in BPAδǫ-I+REC.

Lemma 1. Let A = (Σ,G, I) be a proto-algorithm, where I = (D,Din, Dout, I)
and G = (V,E, Lv, Le, l, r) ∈ AlgoGraphΣ, let 〈X |S〉 ∈ AlgoProcessΣ be such
that 〈X |S〉 = g2pΣ(G). Then, for all v, v1, v2 ∈ V , d, d1, d2 ∈ D, din ∈ Din, and
dout ∈ Dout:

δaA(din) = (v, d) iff ⊢ V[m 7→din](〈X |S〉) = [m := d] · V[m 7→d](〈Xv|S〉),

δaA((v1, d1)) = (v2, d2) iff ⊢ V[m 7→d1](〈Xv1 |S〉) = [m := d2] · V[m 7→d2](〈Xv2 |S〉),

δaA((v, d)) = dout iff ⊢ V[m 7→d](〈Xv|S〉) = [m := dout] · V[m 7→dout](〈Xǫ|S〉).

Proof. This follows easily from the definition of the algorithmic step function
δaA, the definition of the graph-to-process function g2pΣ , and the axioms of
BPAδǫ-I+REC. ⊓⊔
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There exists a sound method for proving algorithmic equivalence of two proto-
algorithms A = (Σ,G, I) and A′ = (Σ,G′, I) based on the graph-to-process
function g2pΣ .

Theorem 4. Let A = (Σ,G, I) and A′ = (Σ,G′, I) be proto-algorithms, where
I = (D,Din, Dout, I). Then A ≡a A

′ if, for all d ∈ Din, ⊢ V[m 7→d](g2pΣ(G)) =
V[m 7→d](g2pΣ(G

′)).

Proof. Suppose that G = (V,E, Lv, Le, l, r) and G
′ = (V ′, E′, Lv, Le, l

′, r′). Let
〈X |S〉, 〈X |S′〉 ∈ AlgoProcessΣ and let din ∈ Din.

Starting from V[m 7→din](〈X |S〉), either there exists an n ∈ N, such that, for
some v1, . . . , vn+1 ∈ V , d1, . . . , dn+1 ∈ D, and dout ∈ Dout:

⊢ V[m 7→din](〈X |S〉) = [m := d1] · V[m 7→d1](〈Xv1 |S〉),

⊢ V[m 7→di](〈Xvi |S〉) = [m := di+1] · V[m 7→di+1](〈Xvi+1
|S〉)

for each i ∈ {1, . . . , n},

⊢ V[m 7→dn+1](〈Xvn+1
|S〉) = [m := dout] · V[m 7→dout](〈Xǫ|S〉)

or, for some v1, v2, . . . ∈ V and d1, d2, . . . ∈ D:

⊢ V[m 7→din](〈X |S〉) = [m := d1] · V[m 7→d1](〈Xv1 |S〉),

⊢ V[m 7→di](〈Xvi |S〉) = [m := di+1] · V[m 7→di+1](〈Xvi+1
|S〉)

for each i ∈ N.

From this, using ⊢ V[m 7→din](g2pΣ(G)) = V[m 7→din](g2pΣ(G
′)) and the fact that

⊢ α · t = α′ · t′ (where α, α′ ∈ A and t, t′ ∈ Prec) only if ⊢ α = α′ and ⊢ t = t′,
it follows by an inductive argument that (for i ∈ {1, . . . , n} or i ∈ N):

⊢ V[m 7→din](〈X |S〉) = [m := d1] · V[m 7→d1](〈Xv1 |S〉) only if

⊢ V[m 7→din](〈X |S′〉) = [m := d1] · V[m 7→d1](〈Xv′

1
|S′〉) for some v′1 ∈ V ′,

⊢ V[m 7→di](〈Xvi |S〉) = [m := di+1] · V[m 7→di+1](〈Xvi+1
|S〉) only if

⊢ V[m 7→di](〈Xv′

i
|S′〉) = [m := di+1] · V[m 7→di+1](〈Xv′

i+1
|S′〉) for some v′i, v

′

i+1 ∈ V ′,

⊢ V[m 7→dn+1](〈Xvn+1
|S〉) = [m := dout] · V[m 7→dout](〈Xǫ|S〉) only if

⊢ V[m 7→dn+1](〈Xv′

n+1
|S′〉) = [m := dout] · V[m 7→dout](〈Xǫ|S

′〉) for some v′n+1 ∈ V ′.

From this, using Lemma 1, it directly follows that (for i ∈ {1, . . . , n} or i ∈ N):

δaA(din) = (v1, d1) only if δaA′(din) = (v′1, d1) for some v′1 ∈ V ′,

δaA((vi, di)) = (vi+1, di+1) only if

δaA′((v′i, di)) = (v′i+1, di+1) for some v′i, v
′

i+1 ∈ V ′,

δaA((vn+1, dn+1)) = dout only if

δaA((v
′

n+1, dn+1)) = dout for some v′n+1 ∈ V ′.

This means that there exists an algorithmic simulation of A by A′. In the same
way, we can show that there exists an algorithmic simulation of A′ by A. Hence,
A ≡a A

′. ⊓⊔
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We do not have that A ≡a A
′ only if, for all d ∈ Din, ⊢ V[m 7→d](g2pΣ(G)) =

V[m 7→d](g2pΣ(G
′)). The following example illustrates this. Take proto-algorithms

A = (Σ,G, I) and A′ = (Σ,G′, I), where Σ = (F, P ), G = (V,E, Lv, Le, l, r),
I = (D,Din, Dout, I), and G

′ is obtained from G by interchanging the labels of
two vertices v, v′ ∈ V for which (v, v′) ∈ E, indegree(v′) = 1, l(v), l(v′) ∈ F
and, for all d ∈ D, I(l(v))(I(l(v′))(d)) = I(l(v′))(I(l(v))(d)). This means that
two steps, the latter of which is always immediately preceded by the first, and
that consist of performing an operation, where the operations in question are
independent, are interchanged. It is easy to see that A and A′ are algorith-
mically equivalent. However, because of a different order of certain assignment
actions in g2pΣ(G) and g2pΣ(G

′), we do not have that ⊢ V[m 7→d](g2pΣ(G)) =
V[m 7→d](g2pΣ(G

′)).
We also do not have that A ∼= A′ if, for all d ∈ Din, ⊢ V[m 7→d](g2pΣ(G)) =

V[m 7→d](g2pΣ(G
′)). This is illustrated by the same example as the one used to

illustrate that we do not have that A ∼= A′ if A ≡a A
′.

7 Discussion of Generalizations

The notion of a proto-algorithm introduced in this paper is based on the classical
informal notion of an algorithm. Several generalizations of that notion have been
proposed, e.g. the notion of a non-deterministic algorithm, the notion of a parallel
algorithm, and the notion of an interactive algorithm.

The generalization of the notion of a proto-algorithm to a notion of a non-
deterministic proto-algorithm is easy: weaken, in the definition of a Σ-algorithm
graph, the outdegree of vertices labeled with a function symbol other than fin

to greater than zero. In the case of a non-deterministic proto-algorithm, most
definitions involving one or more proto-algorithms and the definition of a Σ-
algorithm process need an obvious adaptation. However, the definition of algo-
rithmic equivalence needs an adaptation that is not obvious at first sight: two
non-deterministic proto-algorithms A and A′ are algorithmically equivalent if
there exist an algorithmic simulation R of A by A′ and an algorithmic simula-
tion R′ of A′ by A such that R′ = R−1. The condition R′ = R−1 is necessary to
guarantee that A and A′ have the same choice structure. With this adaptation,
Theorem 4 goes through for non-deterministic proto-algorithms.

The generalization of the notion of a proto-algorithm to a notion of a parallel
proto-algorithm is not so easy. The main reason for this is that there is no
consensus about what properties are essential for a parallel algorithm. A parallel
algorithm is usually informally described by a sentence like “A parallel algorithm
is an algorithm in which more than one step can take place simultaneously”. The
term parallel algorithm was introduced after the first studies on parallelization
of ‘classical’ algorithms (see e.g. [7]). One of the earliest uses of the term in
the computer science literature was in [23]. In that paper, a formalization of
the notion of a parallel algorithm is given that does not depend on a particular
machine model. However, the formalization is far from covering everything that
is currently considered a parallel algorithm.
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Since the introduction of the first models of parallel computation, it is com-
mon practice to identify parallel algorithms with the abstract machines consid-
ered in a particular model of parallel computation. Many adjustments of early
models based on random access machines have been proposed, in particular of
those introduced in [5,8,9,11]. The resulting wide variety of proposed models of
parallel computation does not make it easier to come up with a formal notion
of a parallel algorithm that encompasses everything considered a parallel algo-
rithm. It therefore seems useful to start with distinguishing different types of
parallel algorithms and generalizing the notion of a proto-algorithm to a notion
of a parallel algorithm per type of parallel algorithms.

The generalization of the notion of a proto-algorithm to a notion of an inter-
active proto-algorithm is not so easy too. As with parallel proto-algorithms, the
main reason for this is that there is no consensus on which properties are essen-
tial for an interactive algorithm. An interactive algorithm is usually informally
described by a sentence like “An interactive algorithm is an algorithm that can
interact with the environment in which it takes place”. In [4], a specific view
on the nature of interactive algorithms is discussed in detail, culminating in a
characterization of interactive algorithms by a number of postulates. This view
is the only one found in the computer science literature so far. Some of its details
are based on choices whose impact on the generality of the characterization is
not clear.

Recently, several models of interactive computation have been proposed.
They are based on variants of Turing machines, to wit interactive Turing ma-
chines [18], persistent Turing machines [10], and reactive Turing machines [2].
These models are closely related. In [2], it is established that reactive Turing
machines are at least as expressive as persistent Turing machines. Moreover, it
is established in that paper that the behaviour of a reactive Turing machine
can be defined by a recursive specification in a process algebra closely related to
ACPτ

ǫ [1, Section 5.3], an extension of BPAδǫ that includes parallel composition.

8 Concluding Remarks

I have reported on a quest for a satisfactory formalization of the notion of an
algorithm. I have introduced the notion of a proto-algorithm. Algorithms are ex-
pected to be equivalence classes of proto-algorithms under an appropriate equiv-
alence relation. I have defined three equivalence relations on proto-algorithms.
Two of them give bounds between which an appropriate equivalence relation
must lie. The third one, called algorithmic equivalence, lies in between these
two and is likely an appropriate one. I have also presented a sound method for
proving algorithmic equivalence of two proto-algorithms using the imperative
process algebra BPAδǫ-I+REC.

The notion of a proto-algorithm defined in this paper does not depend on any
particular machine model or algorithmic language, and also has most properties
that are generally considered to belong to the important ones of an algorithm.
This makes it neither too concrete nor too abstract to be a appropriate basis
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for investigating what exactly an algorithm is in the setting of emerging types
of computation, such as interactive computation.

Due to the connection between proto-algorithms and processes that is ex-
pressed by Theorem 4, ACPτ

ǫ -I+REC [20], an extension of BPAδǫ-I+REC that
includes among other things parallel composition, is potentially a suitable tool
to find out how to generalize the notion of a proto-algorithm to the different
types of parallel algorithms.

Appendix: Axioms of BPAδǫ-I+REC

The axioms of BPAδǫ-I+REC are presented in Table 1. In this table, t stands for
an arbitrary term from P , φ and ψ stand for arbitrary terms from C, e stands
for an arbitrary term from D, a stands for an arbitrary basic action from A, v
stands for an arbitrary flexible variable from V , ρ stands for an arbitrary flexible
variable valuation from VVal , X stands for an arbitrary variable from X , S
stands for an arbitrary linear recursive specification over BPAδǫ-I. The notation
〈t|S〉 is used in axiom RDP for t with, for all X ∈ vars(S), all occurrences of
X in t replaced by 〈X |S〉. The homomorphic extensions of a flexible variable
valuation ρ from V to D and C are denoted in axioms V3 and V5 by ρ as well.
The notation ρ{e/v} is used in axiom V3 for the flexible variable valuation ρ′

defined by ρ′(v′) = ρ(v′) if v′ 6= v and ρ′(v) = e.

Table 1. Axioms of BPAδǫ-I+REC

x+ y = y + x A1

(x+ y) + z = x+ (y + z) A2

x+ x = x A3

(x+ y) · z = x · z + y · z A4

(x · y) · z = x · (y · z) A5

x+ δ = x A6

t :→ x = x GC1

f :→ x = δ GC2

φ :→ δ = δ GC3

φ :→ (x+ y) = φ :→ x+ φ :→ y GC4

φ :→ x · y = (φ :→ x) · y GC5

φ :→ (ψ :→ x) = (φ ∧ ψ) :→ x GC6

(φ ∨ ψ) :→ x = φ :→ x+ ψ :→ x GC7

δ · x = δ A7

x · ǫ = x A8

ǫ · x = x A9

〈X|S〉 = 〈t|S〉 if X= t ∈ S RDP

S ⇒ X = 〈X|S〉 if X ∈ vars(S) RSP

Vρ(ǫ) = ǫ V1

Vρ(a · x) = a · Vρ(x) V2

Vρ([v := e] · x) = [v := ρ(e)] · Vρ{ρ(e)/v}(x) V3

Vρ(x+ y) = Vρ(x) + Vρ(y) V4

Vρ(φ :→ y) = ρ(φ) :→ Vρ(x) V5

e = e′ if D |= e = e′ IMP1

φ = ψ if D |= φ ⇔ ψ IMP2
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