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Abstract

We introduce an object called a subspace graph that formalizes the technique of multidimen-
sional quantum walks. Composing subspace graphs allows one to seamlessly combine quantum
and classical reasoning, keeping a classical structure in mind, while abstracting quantum parts into
subgraphs with simple boundaries as needed. As an example, we show how to combine a switching
network with arbitrary quantum subroutines, to compute a composed function. As another applica-
tion, we give a time-efficient implementation of quantum Divide & Conquer when the sub-problems
are combined via a Boolean formula. We use this to quadratically speed up Savitch’s algorithm for
directed st-connectivity.

1 Introduction

There are a number of graphical ways of reasoning about how the steps or subroutines of a classical
algorithm fit together. For example, it is natural to think of a (randomized) classical algorithm as
a (randomized) decision tree (or branching program), where different paths are chosen depending on
the input, as well as random choices made by the algorithm. A deterministic algorithm gives rise
to a computation path, a randomized algorithm to a computation tree. The edges of a path or tree,
representing steps of computation, might be implemented by some subroutine that is also realized by
a path (or tree) – we can abstract the subroutine’s details by viewing it as an edge, or zoom in and see
those details, as convenient. More generally, we often think of a classical randomized algorithm as a
random walk on a (possibly directed) graph, where there may be multiple parallel paths from point a
to point b, with the cost of getting from a to b being derived from the expected length of these paths.

This picture appears to break down for quantum algorithms, at least in the standard circuit
model. A quantum circuit can be thought of as a path, with edges representing its steps, but it is not
immediately clear how to augment this reasoning with subroutines. Consider calling subroutines with
varying time complexities {Ti}i in superposition. Even if the subroutines are all classical deterministic,
in the standard quantum circuit model, we tend to incur a cost of maxi Ti if we call a superposition of
subroutines, since we must wait for the slowest subroutine to finish before we can apply the next step
of the computation. This problem was addressed in [Jef22], where the technique of multidimensional
quantum walks [JZ23] was used to show how to get an average in place of a max in several settings
where a quantum algorithm calls subroutines in superposition: a general setting, as well as the setting
of quantum walks. The intuition behind this work is that a quantum walk does keep the classical
intuition of parallel paths representing a superposition of possible computations, and any quantum
algorithm can be viewed as some sort of a quantum walk on a simple underlying graph (something
like a path), but with some additional structure associated with it.

Multidimensional quantum walks, which we study more formally in this paper as an object than
has been done previously, are valuable as a way of combining quantum and classical reasoning. A
quantum algorithm can be abstracted as a graph with perhaps complicated internal structure, but a
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simple boundary with an “in” and an “out” terminal, that can be seamlessly hooked into other graph-
like structures, perhaps representing simple classical reasoning, such as a quantum random walk, or
perhaps with their own complicated very quantum parts.

Subspace Graphs While [JZ23] and [Jef22] use similar techniques, it is not formally defined what
a multidimensional quantum walk is. We formally define an object called a subspace graph (Defini-
tion 3.1) that abstracts the structures in [JZ23] and [Jef22], as well as some other previous algorithmic
techniques. A subspace graph is simply a graph with some subspaces associated with each edge
and vertex, where the structure of the graph constrains how the spaces can overlap. Defining what
we mean, precisely, by a multidimensional quantum walk (i.e. subspace graph) is the first step to
developing a general theory of recursive constructions of subspace graphs.

The recursive structure of subspace graphs is useful for composing quantum algorithms, but as a
design tool, it is also convenient to be able to view a subspace graph in varying levels of abstraction.
We can “zoom out” and view a complicated process as just a special “edge”, or zoom in on that edge
and understand its structure as an involved graph with additional structure.

We cannot hope to be able to understand all quantum algorithms using purely classical ideas –
quantum computing is not classical computing. But perhaps the next best thing is a way to seamlessly
combine classical and quantum ideas, extending the classical intuition to its limits, and then employing
quantum reasoning when needed, but with the possibility of abstracting out from it when needed as
well, using a fully quantum form of abstraction.

In this work, we consider one specific kind of composition of subspace graphs called switch com-
position – another type is implicit in [Jef22] – but we would like to emphasize the potential for more
general types of recursion, which we leave for future work.

Time-Efficient Quantum Divide & Conquer A particular type of recursive algorithm is divide
& conquer, in which a problem is broken into multiple smaller sub-problems, whose solutions, obtained
by recursive calls, are combined into a solution for the original problem. As a motivating example,
consider the recursively defined nand-tree function. Let fk,d : {0, 1}d

k → {0, 1} be defined f0,d(x) = x,
and for k ≥ 1,

fk,d(x) = 1− fk−1,d(x(1)) . . . fk−1,d(x(d)),

where each x(j) ∈ {0, 1}dk−1
, and x = (x(1), . . . , x(d)). There is a natural way to break an instance

x of fk,d into d sub-problems x(1), . . . , x(d) of fk−1,d, and combine the solutions by taking the NAND
(negated AND) of the d sub-problem solutions. Grover’s algorithm computes this NAND in O(

√
d)

queries, so we might hope for a speedup by recursive calls to this quantum algorithm. Unfortunately,
since we recurse to depth k, the constant in front of

√
d is raised to the k-th power. This kills the

quantum speedup completely when d is constant (for example, the most common setting of d = 2), and
that is not even touching on the fact that we would seem to need to amplify the success probability
of the subroutine, turning those constants into log factors. On the other hand, it is known [Rei11]
that fk,d can be evaluated in O(

√
dk) quantum queries, even though our attempt to use classical

divide-&-conquer reasoning combined with the basic Grover speedup failed.
More recently, [CKKD+22] showed how to employ divide-&-conquer reasoning in the study of

quantum query complexity, in which one only counts the number of queries to the input. They
obtained their query upper bounds by composing dual adversary solutions. The key to their results is
that dual adversary solutions exhibit perfect composition: no error, no log factors, not even constant
overhead. However, their results were not constructive, as dual adversary solutions do not fully specify
algorithms, and in particular, the time complexity analysis of their results was unknown. In this work,
we use the framework of subspace graphs to give a constructive time-complexity version of some of
the query complexity results obtained in [CKKD+22]. In particular, we show (see Theorem 4.13 for
formal statement):

Theorem 1.1 (Informal). Let {fℓ,n : Dℓ,n → {0, 1}}ℓ,n be a family of functions. Let φ be a symmetric
Boolean formula on a variables, and suppose fℓ,n = φ(fℓ/b,n, . . . , fℓ/b,n) ∨ faux,ℓ,n, for some b > 1 and
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some auxiliary function faux,ℓ,n with quantum time complexity Taux(ℓ, n). Then the quantum time

complexity of fℓ,n is Õ(T (ℓ, n)) for T (ℓ, n) satisfying:

T (ℓ, n) ≤
√
aT (ℓ/b, n) + Taux(ℓ, n).

Our framework also handles the case where fℓ,n = φ(fℓ/b,n, . . . , fℓ/b,n, faux,ℓ,n) for any formula φ
on a + 1 variables, but then some extra, somewhat complicated looking costs need to be accounted
for, and there is also a scaling in the depth, although this is not an issue if the formula has been
preprocessed to be balanced [BB94].

Comparing this with the analogous classical statement, which would have a instead of
√
a, we

get an up to quadratic speedup over a large class of classical divide-&-conquer algorithms. As an
application, we show a quadratic speedup of Savitch’s divide-&-conquer algorithm for directed st-
connectivity [Sav70].

To achieve these results, it is essential that we compose subspace graphs, rather than algorithms.
When we convert a subspace graph to a quantum algorithm, we get constant factors in the complex-
ity, and these seem necessary without at least specifying what gateset we are working in. By first
composing in the more abstract model of subspace graphs, and then only converting to a quantum
algorithm at the end, we ensure these factors only come into the complexity once. This is similar
to compositions done with other abstract models, such as span programs (of which dual adversary
solutions are a special case) [Rei09], and transducers [BJY23].

Switching Networks A switching network is a graph with Boolean variables associated with the
edges that can switch the edges on or off. Originally used to model certain hardware systems, including
automatic telephone exchanges, and industrial control equipment [Sha38], a switching network has an
associated function f that is 1 if and only if two special vertices, s and t, are connected by a path of
“on” edges. Shannon [Sha38, Sha49] showed that series-parallel switching networks are equivalent to
Boolean formulas, and Lee [Lee59] showed that switching networks can model branching programs.
These theoretical results have given this model a place in classical complexity theory, where they can
be used to study classical space complexity and circuit depth (see [Pot15]).

Quantum algorithms for evaluating switching networks1 were given in [JK17], using a span program
construction based heavily on [BR12]. Tight analysis of these span programs for any switching network
was completed in [JJKP18].

From [JK17, JJKP18], we get a quantum algorithm for evaluating any switching network when we
have query access to the edge variables. Let Rs,t(G(x)) be the effective resistance (see Definition 2.1)
in the subgraph of “on” edges whenever f(x) = 1, and whenever f(x) = 0, let Fx ⊆ E be the minimum
weight st-cut-set (see Definition 2.2) consisting of only edges that are “off”. Then the time complexity
of evaluating the switching network is√

max
x∈f−1(1)

Rs,t(G(x)) max
x∈f−1(0)

∑
e∈Fx

we,

assuming we can implement a certain reflection related to the particular switching network in unit
time. From this it follows that if we can query the variable associated with an edge e in time Te, we
can evaluate the switching network in time√

max
x∈f−1(1)

Rs,t(G(x)) max
x∈f−1(0)

∑
e∈Fx

we.max
e∈E

Te.

Here we improve this to (see Theorem 4.15):√
max

x∈f−1(1)
Rs,t(G(x)) max

x∈f−1(0)

∑
e∈Fx

weT 2
e .

1Switching networks have never been directly referred to in prior work on quantum algorithms, as far as we are aware,
but the “st-connectivity problems” referred to in [JK17] are, in fact, switching networks.
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This is analogous to results of [Jef22], which showed a similar statement, but for quantum walks
rather than switching networks2. It is also similar in flavour to the results of [Cor23, Chapter 7.2],
where span programs are used to evaluate the edge variables of a switching network. Because switching
networks perfectly model Boolean formulas, without the constant overhead we get when we convert
to a quantum algorithm, they can be used as a building block for our divide-&-conquer results.

Application to DSTCON Quantum algorithms for st-connectivity on undirected graphs, which are
closely related to evaluating switching networks, are well studied [DHHM06, BR12, JK17, JJKP18,
AJPW22], including quantum algorithms that achieve optimal time- and space-complexity simulta-
neously, in both the edge-list access model, and the adjacency matrix access model.3 In contrast,
quantum algorithms for directed st-connectivity (dstcon) – the problem of deciding if there is a di-
rected path from s to t in a directed graph – is less well understood. The algorithm of [DHHM06]
also applies to directed graphs, deciding connectivity in Õ(n) time and space4. This algorithm has
optimal time complexity, whereas its space complexity is far from optimal.

Directed st-connectivity, also called reachability, is a fundamental problem in classical space com-
plexity. In particular, understanding if this problem can be solved in log(n) space by a quantum
algorithm would resolve the relationship between quantum logspace complexity and NL, as dstcon
is NL-complete.

The best known classical (deterministic) space complexity of dstcon is O(log2(n)), using Sav-
itch’s algorithm. We apply quantum divide & conquer (Theorem 1.1) to give a quadratic speedup to

Savitch’s algorithm, achieving 2
1
2
log2(n)+O(log(n)) time, while still maintaining O(log2(n)) space (see

Theorem 5.3).

Model of Computation We work in the same model as [JZ23], where we allow not only arbitrary
quantum gates, but also assume subroutines are given via access to a unitary that applies the sub-
routine’s t-th gate controlled on the value t in some time register. This is possible, for example, with
quantum random access gates. See Section 2.1 for details.

Related and Future Work While writing this manuscript, we became aware of an independent
work that also achieves time-efficient quantum divide & conquer [ABB+23] when either (1) φ is an
OR (equivalently, an AND) or (2) φ is a minimum or maximum. OR is a Boolean formula, while
minimum/maximum is not. In that sense, our results are incomparable. The framework of [ABB+23]
also differs from our work in that they explicitly treat the complexity of computing sub-instances
(the cost of the “create” step), whereas we assume sub-instances can simply be queried in unit cost.
In one of the applications of [ABB+23], this cost is not negligible, and is even the dominating cost,
so our framework, as stated, would not handle this application. This is not an inherent limitation
of our techniques – it would be possible to take this cost into account in our framework as well.
Ref. [ABB+23] applies their framework to problems that are distinct from our applications.

We also mention that Ref. [CKKD+22] analyzes the quantum query complexity of divide & conquer
where φ is an arbitrary Boolean formula, as well as in settings where the function combining the sub-
problems is more general. While our techniques do apply to composing quantum algorithms for
arbitrary functions (already studied in [Jef22]), an issue is a poor scaling in the error of subroutines.
If we start with a bounded-error quantum algorithm for some function, we need to amplify the success
probability, as it will be called many times, incurring logarithmic factors. This becomes a serious
problem if the function is called recursively to depth more than constant. We get around this in the
case of Boolean formulas by using a switching network construction (from which a quantum algorithm
could be derived) rather than a bounded-error quantum algorithm for evaluating the formula. Our
techniques would thus also readily apply to functions for which there is an efficient quantum algorithm
derived from a switching network. For more general functions, the solution might lie in a recent

2Both this result, and [Jef22], include variable-time quantum search [Amb10] as a special case.
3We do not make a distinction between various access models, because they can simulate one another in poly(n) time

and log(n) space, so our result, which includes a 2O(logn) term, is the same in all models.
4In the edge-list access model.
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framework, transducers [BJY23], that allows for the composition of quantum algorithms without the
need for success probability amplification. We leave further investigation for future work.

We can compare the model of transducers [BJY23] to the framework of subspace graphs introduced
here. These models are related, in that they are both good for analyzing the time complexity of
composed quantum algorithms. A subspace graph gives rise to a unitary that is the product of two
reflections, and this is a transducer, as discussed in [BJY23, Section 3.2]. Compared with the model of
subspace graphs, transducers are more general, and cleaner, in particular how they are implemented
as quantum algorithms. It is not known whether subspace graphs can reproduce the composition
results of transducers in terms of error scaling. However, we feel that subspace graphs, with their
additional structure, are still useful for designing and reasoning about quantum algorithms, especially
those in which there is some classical intuition to hold onto. It seems likely that, once designed in
the framework of subspace graphs, an algorithmic construction could be converted to the transducer
framework to achieve any advantage that is missing for subspace graphs. We leave concrete exploration
of the connection for future work.

Aside from the directions already mentioned, the most interesting future direction is to study more
general compositions of subspace graphs, and see to what extent we can employ classical reasoning to
quantum algorithms, and to what extent this (hopefully gracefully) breaks down.

2 Preliminaries

2.1 Model of Computation

We will be talking about combining quantum subroutines, and here we describe the model of access
for the subroutines that we will assume. A quantum algorithm or subroutine is a sequence of unitaries
U1, . . . , UT acting on some common space H. Given a set of subroutines {(U i1, . . . , U iTi)}i∈I , all acting
on a space H, but possibly running in different times, Ti ≤ Tmax, we will assume the operator∑

i∈I |i⟩⟨i| ⊗
∑Tmax

t=1 |t⟩⟨t| ⊗ U it can be implemented in “unit cost”. We use “unit cost” to describe
a cost we are willing to accept as a multiplicative factor on all complexities (for example, O(1) or
polylogarithmic in some natural variable). This assumption is only reasonable if the unitaries each
have unit cost. It does not hold for strict gate complexity when U i1, . . . , U

i
Tmax

are arbitrary gates,
but it does hold in the fully quantum QRAM model if U i1, . . . , U

i
Tmax

are stored as a list of gates in
classical memory to which a quantum computer has read-only superposition access (sometimes referred
to as “QRAM” in previous literature), or if they satisfy certain uniformity conditions (see [JZ23,
Section 2.2]).

2.2 Graph Theory

In this paper, a graph will be an undirected graph, and we will only consider directed graphs in
Section 5. A graph G = (V,E) has vertex set V = V (G) and edge set E = E(G). For u ∈ V , we let
E(u) be the subset of edges of E that are incident to u. We assume for convenience that each edge has
an orientation, and E→(u) ⊆ E(u) are the edges oriented outwards from u, and E←(u) = E(u)\E→(u)
those oriented inwards. Then for any e ∈ E, there is a unique u ∈ V such that e ∈ E→(u), and a
unique v ∈ V such that e ∈ E←(v), and we can write e = (u, v). We can associate non-negative
weights {we}e∈E to the edges of G.

Definition 2.1. A flow on a weighted graph G is a real-valued function θ on E. Define

θ(u) :=
∑

e∈E→(u)

θ(e)−
∑

e∈E←(u)

θ(e).

We call θ a unit st-flow if θ(s) = −θ(t) = 1, and for all u ∈ V \ {s, t}, θ(u) = 0. The effective
resistance is defined

Rs,t(G) := min
unit flows θ

∑
e∈E

θ(e)2

we
.

Definition 2.2. An st-cut-set is a set F ⊆ E whose removal from G would leave s and t in different
connected components.
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2.3 Function Composition and Boolean Formulas

A Boolean formula, φ, on N variables is a rooted tree with N leaves, where each internal vertex is
labelled by either ∨ (OR) or ∧ (AND), and each leaf is labelled by a unique variable or its negation.
The depth of a formula is the length of the longest path from the root to a leaf. We assume that for
each internal vertex with d children, the outgoing edges are labelled by some d-element set, without
loss of generality, [d], so that every vertex can be labelled by a string of the labels of its path from the
root. That is: the root is labelled by the empty string, denoted ∅, and any other vertex is labelled by
the label of its parent, concatenated with the label of the edge from its parent to it. We call the set
of all strings labelling leaves Σ, so |Σ| = N . We let Σi denote the set of strings in Σ whose first letter
is i. We let Σ denote the set of labels of all vertices, so it is the set of prefixes of strings in Σ.

We label the variable associated with a leaf σ ∈ Σ by σ as well. A fixed setting of the variables
x ∈ {0, 1}Σ induces a value at each vertex of φ, as follows. If a leaf σ is labelled by an unnegated
variable, then its value is xσ, and otherwise its value is ¬xσ. If a vertex is not a leaf, if it is labelled
by ∨, then its value is the OR of all the values of its children, whereas if it is labelled by ∧, its value
is the AND of all the values of its children. We let φ(x) denote the value of the root of the tree.

Definition 2.3. We say a formula is symmetric if for every internal node, the sub-trees of its children
are identical aside from their leaves.

Note that symmetric formulas do not necessarily compute symmetric functions – functions that
only depend on the Hamming weight of the input.

Definition 2.4. We say a (family of) formulas is balanced if there is a constant c such that for every
node, if its subtree has N leaves, and it has d children, then the sub-tree of each child has at most
cN/d leaves.

For any f : {0, 1}Σ → {0, 1} and {fσ : {0, 1}mσ → {0, 1}}σ∈Σ, we define the composed function
f ◦ (fσ)σ∈Σ : {0, 1}

∑
σ∈Σmσ → {0, 1} by

f ◦ (fσ)σ∈Σ(x) = f(fσ(x
σ))σ∈Σ

where x = (xσ)σ∈Σ is the
∑

σmσ-bit string obtained by concatenating the strings {xσ}σ, and (fσ(x
σ))σ∈Σ

is the |Σ|-bit string whose σ-th bit is fσ(x
σ). We can also write f ◦ (fσ)σ∈F for some F ⊂ Σ, in which

case, we implicitly assume that fσ is the identity on {0, 1} for all σ ∈ Σ \F . For a Boolean formula φ
on Σ, we will also write φ◦(fσ)σ∈Σ as a short-hand for fφ◦(fσ)σ∈Σ, where fφ is the function computed
by the formula.

2.4 Phase Estimation Algorithms

The technique of phase estimation dates back to [Kit96], but we will use a specific application of this
technique precisely defined in [JZ23], following a blueprint that had already been used many times in
the quantum algorithms literature.

Definition 2.5 (Parameters of a Phase Estimation Algorithm). For an implicit input x ∈ {0, 1}∗,
fix a finite-dimensional complex inner product space H, a unit vector |ψ0⟩ ∈ H, and sets of vectors
ΨA,ΨB ⊂ H. We further assume that |ψ0⟩ is orthogonal to every vector in ΨB. Let ΠA be the
orthogonal projector onto A = span{ΨA}, and similarly for ΠB.

Let UAB = (2ΠA − I)(2ΠB − I). The algorithm defined by (H, |ψ0⟩,ΨA,ΨB) performs phase
estimation of UAB on initial state |ψ0⟩, to sufficient precision that by measuring the phase register and
checking if the output is 0, we can distinguish between a negative case and a positive case.

Definition 2.6 (Negative Witness). A negative witness for (H, |ψ0⟩,ΨA,ΨB) is a vector |wA⟩ ∈ A
such that |wB⟩ := |ψ0⟩ − |wA⟩ ∈ B.

Definition 2.7 (Positive Witness). A positive witness for (H, |ψ0⟩,ΨA,ΨB) is a vector |w⟩ ∈ A⊥∩B⊥
such that ⟨ψ0|w⟩ ≠ 0.
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Note that a negative witness exists if and only if |ψ0⟩ ∈ A+B, whereas a positive witness exists if
and only if |ψ0⟩ has a non-zero component in (A+B)⊥ = A⊥∩B⊥, which is if and only if |ψ0⟩ ̸∈ A+B.
The following theorem describes an algorithm for distinguishing these two cases.

Theorem 2.8 ([JZ23]). Fix (H, |ψ0⟩,ΨA,ΨB) as in Definition 2.5. Suppose we can generate the state
|ψ0⟩ in cost S, and implement UAB = (2ΠA − I)(2ΠB − I) in cost A.
Let c+ ∈ [1, 50] be some constant, and let C− ≥ 1 be a positive real number that may scale with |x|,
such that we are guaranteed that one of the following holds:

Positive Condition: There is a positive witness |w⟩ s.t. |⟨w|ψ0⟩|2
∥|w⟩∥2 ≥

1
c+

.

Negative Condition: There is a negative witness |wA⟩ s.t. ∥|wA⟩∥2 ≤ C−.

Then there is a quantum algorithm that distinguishes these two cases with bounded error in time

O
(
S+

√
C−A

)
and space O(log dimH + log C−).

The reason we assume that A and B are given by bases is that this extra structure allows us to
implement the reflections around these spaces, which we describe shortly. For this reason, we refer to
these given bases as working bases.

Definition 2.9 (Working Basis Generation). We say an orthonormal basis Ψ = {|bℓ⟩}ℓ∈L ⊂ HG can
be generated in time T if

1. The reflection around the subspace span{|ℓ⟩ : ℓ ∈ L} of HG can be implemented in time T .

2. There is a map that acts as |ℓ⟩ 7→ |bℓ⟩ for all ℓ ∈ L that can be implemented in time T .

Claim 2.10. If ΨA and ΨB are working bases for A and B, respectively, that can each be generated
in time T , then U = (2ΠA − I)(2ΠB − I) can be implemented in time T .

Proof. Run the map |ℓ⟩ 7→ |bℓ⟩ in reverse, reflect around span{|ℓ⟩ : ell ∈ L}, and then run the map
|ℓ⟩ 7→ |bℓ⟩.

We end by remarking that it is enough to have a working basis for the complement of A or B.

Corollary 2.11. If Ψ is a working basis that can each be generated in time T , then there is a basis
Ψ′ for span{Ψ}⊥ that can be generated in time T .

Proof. Suppose Ψ = {|bℓ⟩}ℓ∈L, and HG ≡ span{|ℓ⟩ : ℓ ∈ Z} where L ⊆ Z. Let UΨ be the given map
that acts as |ℓ⟩ 7→ |bℓ⟩ for ℓ ∈ L, in time T . Then define Ψ′ = {|b′ℓ⟩ = UΨ|ℓ⟩}ℓ∈Z\L. That is, Ψ′ is
generated by UΨ. Since both bases are generated by the same map, their generation has the same
time complexity.

3 Subspace Graphs for Multidimensional Quantum Walks

3.1 Subspace Graphs

Multidimensional quantum walks were introduced as such in [JZ23], although they generalize various
quantum algorithms that have appeared previously, including [Sze04, RŠ12, Bel13, BCJ+13, IJ19].
We wish to consider very general kinds of composition of multidimensional quantum walks, and in
order to be clear about the precise types of objects we are composing, we give a more formal definition
than has appeared previously.

Definition 3.1 (Subspace Graph). A subspace graph consists of a (undirected) graph G = (V,E), a
boundary B ⊆ V , and the following subspaces of a space H = HG:

7



Edge and Boundary Spaces We assume H can be decomposed into a direct sum of spaces as fol-
lows: H =

⊕
e∈E Ξe ⊕

⊕
u∈B Ξu.

Edge and Boundary Subspaces For each e ∈ E ∪ B, let ΞAe and ΞBe be subspaces of Ξe. These
need not be orthogonal, and they may each be {0}, all of Ξe, or something in between.

Vertex Spaces and Boundary Space For each u ∈ V , let Vu ⊆
⊕

e∈E(u) Ξe be pairwise orthogonal
spaces. Let VB ⊆

⊕
u∈B Ξu.

Then we define

AG =
⊕

e∈E∪B
ΞAe and BG =

⊕
u∈V
Vu + VB +

⊕
e∈E∪B

ΞBe .

We will refer to a subspace graph as simply G, with the associated spaces implicit. Let us give
some intuition for the meaning of the graph structure in a subspace graph. We will shortly see (in
Section 3.2) that there is a quantum algorithm associated with a subspace graph, which alternatively
applies reflections around AG and BG to some initial state |ψ0⟩ to distinguish between the cases:

Negative Case: |ψ0⟩ ∈ AG + BG

Positive Case: |ψ0⟩ has a (large) component, called a positive witness in (AG + BG)⊥ = A⊥G ∩ B⊥G

Then we can see all the vectors in AG and BG as linear constraints on the initial state – it must have
a large component orthogonal to all of them in the positive case. AG and BG are each decomposed
into sums of subspaces, representing subsets of constraints. The graph structure of G restricts how
the different sets of constraints are allowed to overlap – the constraints associated with vertex v only
overlap constraints associated with edges that are incident to v. This graph structure can then be
used to help analyse the algorithm. For example, a positive witness is related to a flow on G.

Remark 3.2. In [JZ23] and [Jef22], spaces are only defined for each vertex, and the spaces associated
with a pair of vertices must be orthogonal unless u and v are adjacent in G (in the words of [Jef22],
G must be an overlap graph of the spaces). Here we have found it convenient to assume that G has
been augmented by putting a vertex in the middle of each edge, which is why we have a space for each
vertex of G, and for each edge of G. This ensures, for example, that the graph is bipartite, which
is required in [JZ23] and [Jef22]. However, the important intuition about subspace graphs is that the
locality structure of the graph constrains how the spaces are allowed to overlap.

We fix some notation for talking about subspace graphs. For any e ∈ E ∪ B, we let Πe, Π
A
e and

ΠBe denote orthogonal projectors onto Ξe, Ξ
A
e , and ΞBe , respectively. For any set F ⊆ E ∪ B, we let

ΞF =
⊕

e∈F Ξe, Ξ
A
F =

⊕
e∈F ΞAe , and similarly for ΞBF . We let ΠF , Π

A
F and ΠBF denote the orthogonal

projectors onto ΞF , Ξ
A
F and ΞBF , respectively.

We will allow subspace graphs to implicitly depend on some input, and associate them with a
computation. Specifically, if we fix some initial state |ψ0⟩ ∈ HG, then this, along with AG and BG,
define a phase estimation algorithm (Section 2.4) that decides if |ψ0⟩ ∈ AG + BG. With this in mind,
we say a subspace graph that depends on some input x, computes a function f (with respect to |ψ0⟩,
which should be clear from context) if f(x) = 0 if and only if |ψ0⟩ ∈ AG + BG. We make this formal
in Section 3.2.

One motivating example from which we derive intuition is the special case of a quantum walk on
a graph. We will see other examples in later sections, and our results will mainly be based on these,
but we describe how quantum walks fit into this picture as an illustration. First, we define a special
case for Vu. While the definition of subspace graph is independent of any weights of the graph G, we
can always assume G has associated edge weights from which we derive extra structure.

Definition 3.3 (Simple Vertex). Fix a subspace graph G with associated edge weights {we}e∈E. For
u ∈ V , define

|ψ⋆(u)⟩ :=
∑

e∈E→(u)

√
we| →, e⟩+

∑
e∈E←(u)

√
we| ←, e⟩.
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A vertex u ∈ V is simple if for all e ∈ E→(u), | →, e⟩ ∈ Ξe, for all e ∈ E←(u), | ←, e⟩ ∈ Ξe, and if
u ∈ V \B Vu = span{|ψ⋆(u)⟩}; and if u ∈ B, either | →, u⟩ ∈ Ξu and Vu = span{| →, u⟩+ |ψ⋆(u)⟩} or
| ←, u⟩ ∈ Ξu and Vu = span{| ←, u⟩+ |ψ⋆(u)⟩}.

In our applications, we generally have two degrees of freedom associated with each edge, which we
can think of as having subdivided each edge into two edges (each associated with a single degree of
freedom). When we subdivide edge e by putting a vertex in the middle of it - call that vertex e - it
now has two incident edges going into it: | →, e⟩ and | ←, e⟩. To make the simple vertex definition
agree with the orientation on the edges, we let a star state |ψ⋆(u)⟩ overlap | →, e⟩ if e is an outgoing
edge of u, and | ←, e⟩ if e is an incoming edge of u.
To motivate this definition, consider the following example.

Example 3.4 (Quantum Walk on a Graph). A subspace graph G, with associated edge weights, in
which

1. all vertices are simple,

2. ΞBE∪B = {0},

3. for all e ∈ E, ΞAe = span{| →, e⟩+ | ←, e⟩},

4. B = {s} ⊔M , where for all u ∈M , ΞAu + ΞBu = {0},

is a quantum walk on the weighted graph G = (V,E). To motivate this terminology, the phase
estimation algorithm in the next section implements a quantum walk on G, in the sense that it
decides if ∃t ∈M in the same component as s5.

Simple vertices are motivated by quantum walks, and related constructions, as follows. In a random
walk on a weighted graph, in order to take a step from a vertex u ∈ V to a neighbour, the random
walker chooses an edge e ∈ E(u) to traverse, with probability we/(

∑
e′∈E(u) we′). This is precisely the

distribution obtained by measuring |ψ⋆(u)⟩/ ∥|ψ⋆(u)⟩∥. The states |ψ⋆(u)⟩ correspond to quantum walk
states – alternating a reflection around these with a reflection around the states {| →, e⟩+ | ←, e⟩}e∈E
implements a discrete-time quantum walk, as in [Sze04, MNRS11, Bel13].6

A related example is that of a switching network, which, unlike quantum walks, will actually be
one of the building blocks of our results in this paper. We first define what it means for an edge to be
a switch.

Definition 3.5 (Switch Edge). Fix a subspace graph G. We call an edge e ∈ E a switch (or switch
edge) if there is some value φ(e) ∈ {0, 1} associated with that edge (implicitly depending on the input),
such that

Ξe = span{| →, e⟩, | ←, e⟩},
ΞAe = span{| →, e⟩ − (−1)φ(e)| ←, e⟩} and ΞBe = span{| →, e⟩+ | ←, e⟩},

and moreover, if e ∈ E→(u) ∩ E←(v), (that is, e = (u, v)), then Vu ∩ Ξe = span{| →, e⟩} and
Vv ∩ Ξe = span{| ←, e⟩}.

The idea behind a switch edge is that if φ(e) = 0, ΞAe + ΞBe = Ξe, and so Ξ⊥e = {0}. Recall that
a positive witness is some |w⟩ ∈ A⊥G ∩ B⊥G (Definition 2.7). If Ξ⊥e = {0}, then |w⟩ can have no overlap
with Ξe, so e is essentially blocked from use, so we say the edge is switched off. In switching networks,
defined shortly, the positive witness is an st-flow, and it is restricted to edges in the subgraph G(x)
of edges that are switched on (we discuss this more in Section 3.3 – in particular, see (4)).

Next, we define some conditions that are satisfied by switching networks, as well as other examples
considered in this paper.

5This is if we use |ψ0⟩ = |s⟩. More generally, we can let B = S ⊔ M and let |ψ0⟩ =
∑

s∈S

√
σ(s)|s⟩ for initial

distribution σ on S.
6In some previous works, it is assumed that the graph is bipartite, and then the walk is implemented by alternating

reflections around the states |ψ⋆(u)⟩ of the two parts of the bipartition. We are actually doing the same thing here, we
have just ensured the graph is bipartite by inserting a vertex in the middle of each edge.
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Definition 3.6 (Canonical st-boundary). We say a subspace graph G has canonical st-boundary if
B = {s, t}, where:

• Ξs = span{|s⟩, | ←, s⟩}, ΞAs = span{|s⟩+ | ←, s⟩} and ΞBs = {0}, where Vs only overlaps | ←, s⟩.

• Ξt = span{| →, t⟩, |t⟩}, ΞAt = span{| →, t⟩+ |t⟩} and ΞBt = {0}, where Vt only overlaps | →, t⟩.

• | ←, s⟩+ | →, t⟩ ∈ BG.

Note that when G has canonical st-boundary, we always have |s⟩+ |t⟩ ∈ AG + BG.
As discussed in Section 1, a switching network is actually a classical object, but we overload the

term to describe a specific kind of subspace graph. This is justified by the fact that, evaluating such
a subspace graph is equivalent to evaluating a switching network (see the discussion in Section 3.3).

Definition 3.7 (Switching Network). A switching network is a subspace graph with canonical st-
boundary in which all edges are switches (Definition 3.5), and all vertices are simple (Definition 3.3).

Note that if a subspace graph is a switching network, then all its spaces are fixed by the graph
structure (V,E), and the associated weights. This is not true for subspace graphs more generally, and
in Section 3.5, we will see an example of a subspace graph with other kinds of subspaces.

We discuss more properties of switching networks, including several examples, in Section 3.3.
The examples we will detail in this paper will not be restricted to switching networks, but all, aside
from some pedagogical examples, will have canonical boundary, and we will let some of the edges be
switches.

3.2 Phase Estimation Algorithm

A subspace graph, as in Definition 3.1, gives rise to a phase estimation algorithm (see Section 2.4) with
spaces AG and BG as in Definition 3.1 and some initial state |ψ0⟩ ∈ ΞB ∩ B⊥G. Though it is possible
to consider more general states |ψ0⟩, throughout this paper, we will always assume G has canonical
st-boundary, and will let

|ψ0⟩ =
1√
2
(|s⟩ − |t⟩). (1)

To fully specify a phase estimation algorithm, we need a pair of orthogonal bases for AG and
BG that are easily generated, in order to implement their respective reflections. We therefore always
assume we have such a basis pair associated with G, which we call the working bases. For example, if
ΞBe = {0} for all e, then it suffices to have good bases for all the pairwise orthogonal spaces Vv; and
good bases for all the pairwise orthogonal spaces ΞAe . However, it is in our interest to put as much
of ΞAe + ΞBe into ΞBe as we can manage while still maintaining a good working basis for BG. That
is because of how the negative witness complexity is defined (Definition 2.6, and also Definition 3.11
below): only the part of |ψ0⟩ in AG is counted in the complexity. We will see this in action in switching
networks, in Section 3.3.

To facilitate our later constructions, we will make the following extra assumptions on the working
bases.

Definition 3.8 (Composable Bases). Fix a subspace graph with canonical st-boundary, and some
r ∈ R>0. We say a pair of working bases ΨA and ΨB (see Definition 2.9) for AG and BG are st-
composable, with scaling factor r, if they satisfy the following assumptions:

1. ΨA =
⋃
e∈E∪B ΨA(e), where ΨA(e) is an orthonormal basis for ΞAe ;

2. ΨB = Ψ−B ∪
⋃
e∈E∪B ΨB(e), for some Ψ−B , where ΨB(e) is an orthonormal basis for ΞBe ;

3. |b0⟩ ∈ Ψ−B satisfies |b0⟩ = 1√
2
(| ←, s⟩+ | →, t⟩);

4. |b1⟩ ∈ Ψ−B satisfies |b1⟩ = |←,s⟩−|→,t⟩+
√
r|b̄1⟩√

2+r
for some unit vector |b̄1⟩ that is orthogonal to | ←, s⟩

and | →, t⟩;
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5. ΨB \ {|b0⟩, |b1⟩} is orthogonal to | ←, s⟩ and | →, t⟩.

We note that generally we will be able to choose the scaling factor r by applying a linear map to HG

that scales ΞE relative to ΞB. See also the remark after Theorem 3.13.
Now we can define the special form of subspace graph that will apply to all subspace graphs studied

in this paper (aside from some examples mentioned informally):

Definition 3.9. We say a subspace graph G is st-composable if:

1. G has canonical st-boundary (Definition 3.6);

2. G is equipped with composable working bases (Definition 3.8);

3. for each e ∈ E \ E, ΞBe = {0}, where E is the set of edges that are switches.

To analyze a phase estimation algorithm, we need to exhibit positive and negative witnesses. A
positive witness for a phase estimation algorithm (Definition 2.7) is a vector |w⟩ ∈ A⊥G ∩B⊥G such that
⟨ψ0|w⟩ ̸= 0. By scaling |w⟩, we can make ⟨ψ0|w⟩ ̸= 0 take any scalar value, without impacting the
complexity c+ from Theorem 2.8. This motivates the following definition.

Definition 3.10 (Positive Witness for a Graph). We say |w⟩ ∈ A⊥G ∩ B⊥G is a positive witness for G
if it can be expressed as

|w⟩ = |s⟩ − | ←, s⟩+ΠE |w⟩+ | →, t⟩ − |t⟩.
We let W+(G) be an upper bound (over some implicit input) on the minimum ∥|w⟩∥2 of any positive
witness for G. We call |ŵ⟩ := ΠE |w⟩ the cropped witness, and we let Ŵ+(G) = W+(G) − 4 be an
upper bound on the minimum ∥|ŵ⟩∥2.

To parse the definition above, note that if ⟨ψ0|w⟩ =
√
2, then we can always express |w⟩ as

|w⟩ =
√
2|ψ0⟩+ (I − |ψ0⟩⟨ψ0|)|w⟩ = |s⟩ − |t⟩+ (I − |ψ0⟩⟨ψ0|)|w⟩,

but more than that, |w⟩ is orthogonal to |s⟩ + |t⟩ ∈ AG + BG, so (I − |ψ0⟩⟨ψ0|)|w⟩ is orthogonal to
both |s⟩ − |t⟩ and |s⟩+ |t⟩, so we have:

|w⟩ = |s⟩ − |t⟩+ (I − |s⟩⟨s| − |t⟩⟨t|)|w⟩ = |s⟩ − | ←, s⟩ − |t⟩+ | →, t⟩+ (I −ΠB)|w⟩,

since |w⟩ must be orthogonal to |s⟩ + | ←, s⟩ and |t⟩ + | →, t⟩. We consider |w⟩ with its boundary
ΠB|w⟩ removed – which we call a cropped witness – because in Section 4, when we compose subspace
graphs, we will crop off their boundary spaces to save additive constants in the witness sizes, which
become relevant when we have very deep recursive structures. Thus, we similarly define:

Definition 3.11 (Negative Witness for a Graph). We say |wA⟩ ∈ AG is a negative witness for G if
|wA⟩ − |s⟩+ |t⟩ ∈ BG. We define the corresponding cropped negative witness by |ŵA⟩ = ΠE |wA⟩.

For the above, recall that a negative witness for a phase estimation algorithm is a vector |wA⟩ ∈ A
such that |wB⟩ := |ψ0⟩ − |wA⟩ ∈ B. We have slightly modified the definition, by replacing |ψ0⟩ =
1√
2
(|s⟩ − |t⟩) with |s⟩ − |t⟩, in order to save factors of

√
2 everywhere, but this changes very little. We

will use the following later in the paper.

Lemma 3.12. Assume G has canonical st-boundary. Then |wA⟩ ∈ AG is a negative witness for G if
and only if |ŵA⟩+ | ←, s⟩ − | →, t⟩ ∈ BG.

Proof. |wA⟩ ∈ AG is a negative witness for G if and only if |wA⟩ = |s⟩− |t⟩+ |wB⟩ for some |wB⟩ ∈ BG.
Since the only vectors in AG that overlap the boundary ΞB are ΞAB = span{|s⟩+ | ←, s⟩, |t⟩+ | →, t⟩},
it must be the case that

|wA⟩ = |s⟩+ | ←, s⟩ − |t⟩ − | →, t⟩+ΠE |wA⟩︸ ︷︷ ︸
=|ŵA⟩

.

Thus, |wA⟩ is a negative witness if and only if

|wA⟩ − |s⟩+ |t⟩ ∈ BG
⇔ |ŵA⟩+ | ←, s⟩ − | →, t⟩ ∈ BG.
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In the next section, we describe what positive and negative witnesses look like for switching
networks, and compare them with the witnesses for quantum walks on a graph (see Example 3.4).

Finally, we can define the complexity of a subspace graph by:

C(G) :=
√
W+(G)W−(G).

In the case of subspaces graphs with canonical boundary, where we have defined cropped witnesses,
we will often use

Ĉ(G) :=
√
Ŵ+(G)Ŵ−(G),

which differs from C(G) by additive constants. Then it follows from Theorem 2.8 and Claim 2.10 that:

Theorem 3.13. Let G be a subspace graph that computes f : {0, 1}n → {0, 1} with respect to |ψ0⟩,
with working bases that can be generated in time T , and such that Ŵ+(G) = O(1). Then there exists

a quantum algorithm that decides f in time complexity O

(
T

√
Ŵ−(G)

)
and space O(log dimHG +

log Ŵ−(G)).

Given any subspace graph G, we can apply the linear map

ΠB +
1

Ŵ+(G)
ΠE

to HG to get a new subspace graph G′, which will still have canonical boundary if G did, and such
that

Ŵ+(G
′) = 1 and Ŵ−(G

′) = Ŵ+(G)Ŵ−(G).

This justifies thinking of Ĉ(G) as a complexity. Such a scaling preserves the basis properties in
Definition 3.8, and simply scales r. We can see this formally in Corollary 4.2.

3.3 Example: Switching Networks

We now discuss switching networks (Definition 3.7) in more detail, and give several examples. In the
classical model of switching networks, a switching network is a graph with a variable φ(e) associated
with each edge e, and two terminals s, t ∈ V . A switching network computes a function f : {0, 1}E →
{0, 1} if for any x ∈ {0, 1}E , f(x) = 1 if and only if s and t are connected in G(x), the subgraph
consisting only of edges e such that xe = 1 if φ(e) is a positive literal, and xe = 0 otherwise – that
is, edges labelled by literals that are true when the variables are set according to x. Here, we let
“switching network” refer to a special kind of subspace graph, but this subspace graph implements
the switching network, in the sense that the algorithm referred to in Theorem 3.13 decides if s and t
are connected in G(x).

We start by discussing some properties of switching networks. A switching network always has:

AG = span

{
|as⟩ :=

1√
2
(|s⟩+ | ←, s⟩), |at⟩ :=

1√
2
(|t⟩+ | →, t⟩)

}
∪
{
|ae⟩ :=

1√
2
(| →, e⟩ − (−1)φ(e)| ←, e⟩) : e ∈ E

}
, (2)

so there is a natural choice of working basis ΨA, and we immediately get the following:

Lemma 3.14. If G is a switching network and ΨA is the basis in (2), then ΨA satisfies the conditions
of Definition 3.8, and can be generated in one query to the unitary |e⟩ 7→ (−1)φ(e)|e⟩ and O(1)
additional operations.

Turning to BG, a switching network always has:

BG = span{|ψ⋆(u)⟩ : u ∈ V \ {s, t}} ∪ {| ←, s⟩+ |ψ⋆(s)⟩, | →, t⟩+ |ψ⋆(t)⟩}

+ span

{
1√
2
(| →, e⟩+ | ←, e⟩) : e ∈ E

}
. (3)

The working basis for BG is less obvious, since the first and second space are not orthogonal, but one
choice is given by the following, which we state for intuition (the proof is a simple exercise).
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Lemma 3.15. If G is a switching network,

ΨB = Ψ−B ∪
{
|be⟩ :=

1√
2
(| →, e⟩+ | ←, e⟩) : e ∈ E

}
is an orthonormal basis for BG whenever Ψ−B is an orthonormal basis for

B− = span{|ψ−⋆ (u)⟩ : u ∈ V \ {s, t}} ∪ {| ←, s⟩+ |ψ−⋆ (s)⟩, | →, t⟩+ |ψ−⋆ (t)⟩},

where

|ψ−⋆ (u)⟩ =
∑

e∈E→(u)

√
we
2

(| →, e⟩ − | ←, e⟩) +
∑

e∈E←(u)

√
we
2

(| ←, e⟩ − | →, e⟩).

For intuition, the space B− is the cut space of G, which is the span of all states that are (correctly
weighted) superpositions of “edges” – where an edge is represented by | →, e⟩ − | ←, e⟩ – that for a
cut set (their removal leaves G disconnected).

We give some intuition on the positive and negative witnesses of a switching network, which can
also, to some extent, be used for intuition about the positive and negative witnesses for the more
general subspace graphs considered in this paper. One can show that the orthogonal complement of
BG is the span of all unit st-flows (Definition 2.1) of G, by which we mean, precisely, all states of the
form

|w⟩ = |s⟩ − | ←, s⟩+
∑
e∈E

θ(e)
√
we

(| →, e⟩ − | ←, e⟩)︸ ︷︷ ︸
|ŵ⟩

+| →, t⟩ − |t⟩, (4)

where θ is a unit st-flow. For every e ∈ E such that φ(e) = 0, we add | →, e⟩ − | ←, e⟩ to AG + BG,
which adds the constraint on |w⟩ ∈ A⊥G ∩B⊥G that θ(e) = 0. Thus, θ must be a unit flow on the graph
G(x).

A negative witness exists if and only if there is no unit st-flow on G(x), meaning s and t are not
connected. In that case, there is always an st-cut-set of edges missing from G(x), F . It is a simple
exercise to show that

|wA⟩ = |s⟩+ | ←, s⟩+
∑
e∈F

√
we(| →, e⟩ − | ←, e⟩)− | →, t⟩ − |t⟩

is a cropped negative witness. However, not all witnesses have this form – superpositions of cuts
are also negative witnesses. Ref. [JJKP18] gives a tight analysis of negative witness for switching
networks.

We briefly remark here on the difference between switching networks and quantum walks. In a
quantum walk, the positive witnesses are also of the form in (4), except that they are not restricted to
a subgraph G(x), but rather, can be on all of G. Negative witnesses for quantum walks are somewhat
different, although they are also derived from s-M -cuts; they instead involve summing over all edges
in the component containing s, which should not be connected to M in the negative case. This is
because in switching networks, BG contains more, since ΞBE is non-trivial, which makes finding a basis
for BG more difficult, but makes negative witnesses smaller.

Finally, we give two examples of switching networks – for computing the OR of d bits (Section 3.3.1)
and the AND of d bits (Section 3.3.2). These examples will also be important building blocks for our
later results. Switching networks for Boolean formulas date back to work of Shannon [Sha38, Sha49],
and their analysis as subspace graphs was already implicit in the span program constructions of [JK17].
While [JK17] also analyzes the time complexity of evaluating switching networks, the reflection around
BG is done via a quantum walk on G, which results in a dependence on the relaxation time of G. In
our examples, we improve on this by giving an orthonormal basis for BG that can be used to reflect
around it directly. Such a basis that is also efficient to generate might not be available for arbitrary
switching networks, but in the case of series-parallel graphs, which correspond exactly to switching
networks for Boolean formulas, our work implies that a good basis exists.
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Figure 1: The graph Gor. The dashed lines represent dangling boundary “edges”.

3.3.1 Switching Network for OR

In this section, we describe a switching network (Definition 3.7) that computes the OR of d Boolean
variables. This serves as a simple example, and will also be a building block in our divide-and-conquer
application in Section 4.3. Formally, we prove the following.

Lemma 3.16. For any d ≥ 1, and positive weights {wi}i∈[d], there is a switching network Gor,d that

computes
∨d
i=1 φ(ei) with dimHGor,d

= 2d+ 4 such that:

1. Gor,d has st-composable working bases, with scaling factor r = 2
∑d

i=1 wi, that can be generated in

O(log d) time, assuming the state proportional to
∑d

i=1

√
wi|i⟩ can be generated in time O(log d);

2. if φ(ei) = 1 for some i ∈ [d], Gor,d has cropped positive witness |ŵ⟩ = 1√
wi
(| →, i⟩− | ←, i⟩); and

3. if φ(ei) = 0 for all i ∈ [d], Gor,d has cropped negative witness |ŵA⟩ =
∑d

i=1

√
wi(| →, i⟩−| ←, i⟩).

We remark that if wi = 1 for all i, then Lemma 3.16 implies Ŵ+(Gor,d) = 2 and Ŵ−(Gor,d) = 2d, so

by Theorem 3.13, there is a quantum algorithm for evaluating d-bit OR with time complexity Õ(
√
d),

which is optimal. This is a good sanity check, but we will mostly be interested in this construction as
a building block, rather than in its own right.

Let G = Gor,d be defined, as shown in Figure 1 by:

V = {s, t} and E = {ei : i ∈ [d]}

where each ei has endpoints s and t, so E(s) = E→(s) = E and E(t) = E←(t) = E. Since G is a
switching network, it has boundary B = V = {s, t}. We will let the graph be weighted, with weights
wei = wi. The only reason to let these vary in i is for later when we replace an edge with a gadget by
composition, but for the sake of intuition, the reader may wish to imagine wi = 1 for all i. Since G is
a switching network, every edge is a switch, which fixes the following spaces (we simplify notation by
using i to label the edge ei):

∀i ∈ [d], Ξei = span{| →, i⟩, | ←, i⟩},
ΞAei = span{| →, i⟩ − (−1)φ(ei)| ←, i⟩}, and ΞBei = span{| →, i⟩+ | ←, i⟩}.

Furthermore, as a switching network has canonical st-boundary, the following spaces are fixed:

Ξs = span{|s⟩, | ←, s⟩}, ΞAs = span{|s⟩+ | ←, s⟩}, and ΞBs = {0}
Ξt = span{| →, t⟩, |t⟩}, ΞAt = span{| →, t⟩+ |t⟩}, and ΞBt = {0}.

Finally, since all vertices are simple, the following spaces are fixed:

Vs = span

{
| ←, s⟩+

d∑
i=1

√
wi| →, i⟩︸ ︷︷ ︸
|ψ⋆(s)⟩

}
and Vt = span

{
d∑
i=1

√
wi| ←, i⟩︸ ︷︷ ︸
|ψ⋆(t)⟩

+| →, t⟩

}
.
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Then we have:

AG =
⊕

e∈E∪B
ΞAe = span{| →, i⟩ − (−1)φ(ei)| ←, i⟩ : i ∈ [d]} ∪ {|s⟩+ | ←, s⟩, |t⟩+ | →, t⟩}

and BG = Vs ⊕ Vt +
⊕
e∈E

ΞBe = Vs ⊕ Vt + span{| →, i⟩+ | ←, i⟩ : i ∈ [d]}.
(5)

By Lemma 3.14, since we assume we can query the values φ(e) in unit cost, there is a working basis
for ΨA satisfying the conditions of Definition 3.8 that can be generated in unit time. To complete the
proof of the the first item of Lemma 3.16, we prove the following.

Lemma 3.17. Let

ΨB =

{
|b0⟩ =

1√
2
(| ←, s⟩+ | →, t⟩), |b1⟩ =

| ←, s⟩ − | →, t⟩+
√
r|b̄1⟩√

2 + r

}
∪
{
|bei⟩ =

1√
2
(| →, i⟩+ | ←, i⟩) : i ∈ [d]

}
,

where

r = 2
d∑
i=1

wi and |b̄1⟩ =
1√
r

d∑
i=1

√
wi(| →, i⟩ − | ←, i⟩).

Then ΨB is an orthonormal basis for BG, and it satisfies all the conditions of an st-composable basis
in Definition 3.8. Furthermore, as long as we can generate the state proportional to

∑d
i=1

√
wi|i⟩ in

time O(log d), ΨB can be generated in time O(log d).

Proof. Note that:

| ←, s⟩+ | →, t⟩ = | ←, s⟩+
d∑
i=1

√
wi| →, i⟩︸ ︷︷ ︸

∈Vs

+
d∑
i=1

√
wi| ←, i⟩+ | →, t⟩︸ ︷︷ ︸

∈Vt

−
d∑
i=1

√
wi (| →, i⟩+ | ←, i⟩)︸ ︷︷ ︸

∈ΞBe

and

| ←, s⟩ − | →, t⟩+
√
r|b̄1⟩ = | ←, s⟩+

d∑
i=1

√
wi| →, i⟩︸ ︷︷ ︸

∈Vs

−
d∑
i=1

√
wi| ←, i⟩+ | →, t⟩︸ ︷︷ ︸

∈Vt

.

From there, it is simple to check that ΨB ⊂ BG. It is also simple to see that ΞBe ⊂ spanΨB for all e.
Thus, we check Vs and Vt. We have:

| ←, s⟩+
d∑
i=1

√
wi| →, i⟩ =

1

2

(
| ←, s⟩+

d∑
i=1

√
wi (| →, i⟩ − | ←, i⟩)− | →, t⟩

)

+
1

2
(| ←, s⟩+ | →, t⟩) + 1

2

d∑
i=1

√
wi(| →, i⟩+ | ←, i⟩),

showing that Vs ⊂ spanΨB. A similar proof shows that Vt ⊂ spanΨB.
It is clear by inspection that ΨB satisfies the properties of Definition 3.8, so to complete the proof,

it is a simple exercise to observe that the basis can be generated in O(log d) time.

To prove the second item of Lemma 3.16, we show the following.

Lemma 3.18. If φ(ei) = 1 for some i, then the following is a positive witness for G (Definition 3.10):

|w⟩ = |s⟩ − | ←, s⟩+ 1
√
wi

(| →, i⟩ − | ←, i⟩)︸ ︷︷ ︸
|ŵ⟩

+| →, t⟩ − |t⟩.
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. . .
u0 e1 u1 e2 u2 ud

Figure 2: The graph Gand. The dashed lines represent dangling boundary “edges”.

Proof. One can check that |w⟩ ∈ A⊥G ∩ B⊥G, by verifying that it is orthogonal to each of the spaces
in (5). For orthogonality with

ΞAei = span{| →, i⟩ − (−1)φ(i)| ←, i⟩},

we relied on the fact that φ(i) = 1. Otherwise, we would have ΞAei +ΞBei = Ξei , and a positive witness
must be orthogonal to Ξe, so the edge e is effectively blocked.

Finally, to prove the third item of Lemma 3.16, we show the following.

Lemma 3.19. If φ(ei) = 0 for all i, then the following is a negative witness for G (Definition 3.11):

|wA⟩ = |s⟩+ | ←, s⟩+
d∑
i=1

√
wi
(
| →, i⟩ − (−1)φ(i)| ←, i⟩

)
︸ ︷︷ ︸

|ŵA⟩

−| →, t⟩ − |t⟩.

Proof. Since φ(i) = 0 for all i ∈ [d], we have:

|s⟩ − |t⟩ = |s⟩+ | ←, s⟩︸ ︷︷ ︸
∈ΞAs

−

(
| ←, s⟩+

d∑
i=1

√
wi| →, i⟩︸ ︷︷ ︸

∈Vs⊂B

)
+

d∑
i=1

√
wi (| →, i⟩ − (−1)φ(i)| ←, i⟩)︸ ︷︷ ︸

∈ΞAei

+

(
d∑
i=1

√
wi| ←, i⟩+ | →, t⟩︸ ︷︷ ︸
∈Vt⊂B

)
− (| →, t⟩+ |t⟩︸ ︷︷ ︸

∈ΞAt

),

implying that |wA⟩ is a negative witness. Note that this crucially relies on φ(ei) = 0 for all i, otherwise
the above expression fails to hold.

3.3.2 Switching Network for AND

In this section, we describe a switching network (Definition 3.7) that computes the AND of d Boolean
variables.

Lemma 3.20. For any d ≥ 1, and positive weights {wi}i∈d, there is a switching network Gand,d that

computes
∧d
i=1 φ(ei) with dimHGand,d

= 2d+ 4 such that:

1. Gand,d has st-composable working bases, with scaling factor r = 2/
∑d

i=1(1/wi), that can be

generated in O(log d) time, assuming the state proportional to
∑d

i=1
1√
wi
|i⟩ can be generated in

time O(log d);

2. if φ(ei) = 1 for all i ∈ [d], Gand,d has cropped positive witness |ŵ⟩ =
∑d

i=1
1√
wi
(| →, i⟩− | ←, i⟩);

and

3. if φ(ei) = 0 for some i ∈ [d], Gand,d has cropped negative witness |ŵA⟩ =
√
wi(| →, i⟩ − | ←, i⟩).

As with the OR switching network in Section 3.3.1, a corollary of this lemma is that there is a
quantum algorithm for evaluating AND in optimal time Õ(

√
d).

Let G = Gand,d be the graph in Figure 2, defined by

V = {s = u0, u1, . . . , ud = t} and E = {ei = (ui−1, ui) : i ∈ [d]},
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so E(s) = E→(s) = {e1}, E(t) = E←(t) = {ed}, and for all i ∈ [d − 1], E←(ui) = {ei} and
E→(ui) = {ei+1}. Since G is a switching network, it has boundary B = {s, t}. We will let the graph
be weighted, with weights wei = wi. Since G is a switching network: every edge is a switch, which
fixes Ξei , Ξ

A
ei and ΞBei for all i ∈ [d]; G has canonical st-boundary, which fixes Ξs, Ξ

A
s , Ξ

B
s , Ξt, Ξ

A
t ,

and ΞBt ; and every vertex is simple, which fixes the spaces Vui for i ∈ {0, . . . , d}. In particular, letting
w0 = wd+1 = 1, s = 0, t = d+ 1, and i ∈ [d] label ei, we must have:

∀i ∈ {0, . . . , d}, Vui = span {
√
wi| ←, i⟩+

√
wi+1| →, i+ 1⟩} .

This fully defines

AG =
⊕

e∈E∪B
ΞAe and BG =

d⊕
i=0

Vui +
⊕
e∈E

ΞBe .

By Lemma 3.14, since we assume we can query the values φ(e) in unit cost, there is a working basis
for ΨA satisfying the conditions of Definition 3.8 that can be generated in unit time. To complete the
proof of the the first item of Lemma 3.20, we prove the following.

Lemma 3.21. Let |b2⟩, . . . , |bd⟩ be an orthonormal basis for

span{| →, i⟩ − | ←, i⟩} ∩ span

|b̄1⟩ =
∑d

i=1
1√
wi
(| →, i⟩ − | ←, i⟩)√∑d

i=1
2
wi


⊥

.

Let

Ψ−B =

{
|b0⟩ =

1√
2
(| ←, s⟩+ | →, t⟩), |b1⟩ =

| ←, s⟩ − | →, t⟩+
√
r|b̄1⟩√

2 + r

}
∪ {|b2⟩, . . . , |bd⟩} .

Then

ΨB = Ψ−B ∪
{
|bei⟩ =

1√
2
(| →, i⟩+ | ←, i⟩) : i ∈ [d]

}
is an orthonormal basis for BG when r = 2/

∑d
i=1

1
wi
, and it satisfies all the conditions of an st-

composable basis in Definition 3.8. Furthermore, as long as we can generate the state proportional to∑d
i=1

1√
wi
|i⟩ in time O(log d), ΨB can be generated in time O(log d).

Proof. First, it is easy to verify that ΨB is indeed orthonormal. For each i ∈ [d], | →, i⟩ + | ←, i⟩ is
orthogonal to Ψ−B ⊂ span{| ←, s⟩, | →, t⟩} ∪ {| →, i⟩ − | ←, i⟩ : i ∈ [d]}. Finally, Ψ−B is an orthonormal
set because for i ∈ {2, . . . , d}, ⟨ ←, s|bi⟩ = ⟨ →, t|bi⟩ = ⟨b̄1|bi⟩ = 0, and |b0⟩ and |b1⟩ are also orthogonal.

Next, observe

B = span {
√
wi| ←, i⟩+

√
wi+1| →, i+ 1⟩ : i ∈ {0, . . . , d}} ∪ {

√
wi(| →, i⟩+ | ←, i⟩) : i ∈ [d]} ,

from which it follows that dimB ≤ d + 1 + d = 2d + 1, and in fact, it is not difficult to see that
dimB = 2d+ 1.

We next argue that BG = B⊥G, where

BG = span{|s⟩, |t⟩} ⊕ span

{
| ←, s⟩ − | →, t⟩ − 2√

r
|b̄1⟩
}
. (6)

We clearly have |s⟩, |t⟩ ∈ B⊥G, and rewriting:

| ←, s⟩ − | →, t⟩ − 2√
r
|b̄1⟩ = | ←, s⟩ − | →, t⟩ −

d∑
i=1

1
√
wi

(| →, i⟩ − | ←, i⟩)

=

d∑
i=0

(
1
√
wi
| ←, i⟩ − 1

√
wi+1

| →, i+ 1⟩
)
,
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where we have used s = 0, t = d + 1, and w0 = wd+1 = 1, we see that it is also in B⊥G, so BG ⊆ B⊥G.
Since dimBG = 3, and

dimB⊥G = dimΞs +

d∑
i=1

dimΞei + dimΞt︸ ︷︷ ︸
HG

−dimB = 2 + 2d+ 2− (2d+ 1) = 3,

(see Definition 3.5 and Definition 3.6) we see that BG = B⊥G.
Next, to check that ΨB ⊆ BG, we just need to check that each element of ΨB is orthogonal to each

of the three vectors in the definition of BG. This will be sufficient, since ΨB is an orthonormal set
with |ΨB| = 2 + d− 1 + d = 2d+ 1 = dimBG. It is simple to see that everything in ΨB is orthogonal
to |s⟩ and |t⟩. It is also simple to see that everything in ΨB \Ψ−B is orthogonal to all of BG.

We turn our attention to Ψ−B . |b0⟩ is obviously orthogonal to BG. For |b1⟩, we have:

⟨b1|
(
| ←, s⟩ − | →, t⟩ − 2√

r
|b̄1⟩
)

=
1√
2 + r

(
⟨ ←, s| − ⟨ →, t|+

√
r⟨b̄1|

)(
| ←, s⟩ − | →, t⟩ − 2√

r
|b̄1⟩
)

=
1√
2 + r

(
2−
√
r
2√
r
⟨b̄1|b̄1⟩

)
= 0.

Finally, for any i ∈ {2, . . . , d}, we have:

⟨bi|
(
| ←, s⟩ − | →, t⟩ − 2√

r
|b̄1⟩
)

= − 2√
r
⟨bi|b̄1⟩ = 0,

since the |bi⟩ are all orthogonal to |b̄1⟩. Thus ΨB ⊆ BG, and so ΨB is an orthonormal basis for BG.
It is clear by inspection that ΨB satisfies the properties of Definition 3.8, so to complete the proof,

we need to argue that ΨB can be generated in O(log d) time. It is a simple exercise to observe that
the basis in (6) can be generated in O(log d) time, and then the result follows from Corollary 2.11.

To prove the second item of Lemma 3.20, we show the following.

Lemma 3.22. If φ(ei) = 1 for all i ∈ [d], then the following is a positive witness for G (Defini-
tion 3.10):

|w⟩ = |s⟩ − | ←, s⟩+
d∑
i=1

1
√
wi

(| →, i⟩ − | ←, i⟩)︸ ︷︷ ︸
|ŵ⟩

+| →, t⟩ − |t⟩.

Proof. Since φ(ei) = 1 for all i ∈ [d], we have ΞAei = ΞBei = span{| →, i⟩ + | ←, i⟩}, so clearly |w⟩ is
orthogonal to ΞAei +ΞBei for each i. One can similarly verify by inspection that it is orthogonal to ΞAs ,
as well as ΞAt . This leaves only the spaces Vui for i ∈ {0, . . . , d}, which we can verify are orthogonal
to |w⟩ by rewriting it as:

|w⟩ = |s⟩ −
d∑
i=0

(
1
√
wi
| ←, i⟩ − 1

√
wi+1

| →, i+ 1⟩
)
− |t⟩.

We used the fact that w0 = wd+1 = 1, 0 = s and d+ 1 = t. Thus, |w⟩ ∈ A⊥G ∩ B⊥G.

Finally, to prove the third item of Lemma 3.20, we show the following.

Lemma 3.23. If φ(ei) = 0 for some i ∈ [d], then the following is a negative witness for G (Defini-
tion 3.11):

|wA⟩ = |s⟩+ | ←, s⟩+
√
wj(| →, j⟩ − | ←, j⟩)︸ ︷︷ ︸

|ŵ⟩

−| →, t⟩ − |t⟩.
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. . . . . .

v0,z1

vt,z

vt+1,πt+1(z)

vT,z

V0 Vt Vt+1 VT

Figure 3: The graph G for a reversible classical deterministic algorithm with five algorithm states.
Between each set Vt and Vt+1, there is exactly one edge connected to s = v0,z1 . The dashed lines
represent dangling boundary “edges”.

Proof. First note that for any j ∈ [d], using w0 = 1 and | ←, 0⟩ = | ←, s⟩:
j∑
i=1

(
√
wi−1| ←, i− 1⟩+

√
wi| →, i⟩)︸ ︷︷ ︸

∈Vui−1⊂B

−
j−1∑
i=1

√
wi(| →, i⟩+ | ←, i⟩︸ ︷︷ ︸

∈ΞBei

)

=
√
w0| ←, 0⟩+

√
wj | →, j⟩ = | ←, s⟩+

√
wj | →, j⟩

is in BG. By a similar argument,
√
wj | ←, j⟩+ | →, t⟩ ∈ BG.

Since φ(ei) = 0, | →, i⟩ − (−1)φ(ei)| ←, i⟩ = | →, i⟩ − | ←, i⟩ is in ΞAei , we have:

|s⟩ − |t⟩ = |s⟩+ | ←, s⟩︸ ︷︷ ︸
∈ΞAs

− (| ←, s⟩+√wj | →, j⟩)︸ ︷︷ ︸
∈B

+
√
wj (| →, j⟩ − | ←, j⟩)︸ ︷︷ ︸

∈ΞAej

+
√
wj | ←, j⟩+ | →, t⟩︸ ︷︷ ︸

∈B

− (| →, t⟩+ |t⟩)︸ ︷︷ ︸
∈ΞAt

,

implying that |wA⟩ is a negative witness.

3.4 Example: Classical Deterministic Algorithms

In the next section, we will see how to turn a quantum algorithm into a subspace graph. As a warmup
example, we first see how classical deterministic algorithms fit into this framework. The simplest
example is a reversible classical algorithm, which we can model as an undirected random walk on a
line. It is not very sensible to model a classical algorithm as a random walk on a line, because we
incur a quadratic slow-down by letting the algorithm travel backwards sometimes, instead of always
forwards, but when we move from random walks to quantum walks, it is a perfectly valid thing to do,
since a quantum walker traverses a line in linear time, rather than quadratic.

A reversible classical deterministic algorithm can be described by the following objects.

• A finite set Z of the algorithm’s states;

• A sequence of permutations π1, . . . , πT : Z → Z that depend (implicitly) on the input;

• An initial state z1 ∈ Z;

• A partitioning of Z into accepting and rejecting states Z = Zacc ⊔ Zrej.

From these, we define G = (V,E) by specifying its vertices and edges:

V =

T⊔
ℓ=0

Vℓ, where Vℓ = {vℓ,z : z ∈ Z},

and E = {eℓ,z = (vℓ,z, vℓ+1,πℓ+1(z)) : 0 ≤ ℓ ≤ T − 1, z ∈ Z}.
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Note that the graph G depends on the input because the edges are specified by the permutations. The
boundary is defined B = {s} ∪M where s = v0,z1 and M = {vT,z : z ∈ Zacc}.

Next, we introduce a subspace graph structure on G in order to run a quantum walk following
Example 3.4. It is easy to see that the connected component containing s is a line with one vertex in
each of Vℓ, and the algorithm accepts if and only if the vertex in VT connected to s is in M – that
is, if and only if s is connected to some vertex in M . Thus the quantum walk will decide whether
πT ◦ . . . ◦ π1(z1) ∈ Zacc. See Figure 3 for a visualization of G. We set all edge weights to be 1, and
then, following Example 3.4, we define boundary and edge spaces:

Ξs = span{|s⟩, | ←, s⟩}, ΞAs = span{|s⟩+ | ←, s⟩}, and ΞBs = {0}
∀z ∈ Zacc, ΞvT,z = span{| →, vT,z⟩, |vT,z⟩}, and ΞAvT,z

= ΞBvT,z
= {0}

∀ℓ ∈ {0, . . . , T − 1}, z ∈ Z, Ξeℓ,z = span{| →, ℓ, z⟩, | ←, ℓ, z⟩},
ΞAeℓ,z = span{| →, ℓ, z⟩+ | ←, ℓ, z⟩}, and ΞBeℓ,z = {0},

and all vertices are simple (Definition 3.3), so:

∀z ∈ Z, Vv0,z = span{|ψ⋆(v0,z)⟩ = | →, 0, z⟩},
∀t ∈ {1, . . . , T − 1}, z ∈ Z, Vvℓ,z = span{|ψ⋆(vℓ,z)⟩ = | ←, ℓ− 1, π−1ℓ (z)⟩+ | →, ℓ, z⟩}

∀z ∈ Z, VvT,z = span{|ψ⋆(v0,z)⟩ = | ←, T − 1, π−1T (z)⟩}.

While the algorithm is represented by a path, as is the graph for AND in Section 3.3.2, in contrast to
Section 3.3.2, we represent this path in terms of the local constraints | ←, ℓ−1, π−1ℓ (z)⟩+| →, ℓ, z⟩. That
is because, unlike the path in Section 3.3.2, this path is defined sequentially. These local constraints
can be generated by calling the relevant permutation, which is one step of the algorithm, whereas one
can verify that generating a basis like that in Section 3.3.2, which includes a superposition over the
whole path, or whole sequence of algorithm steps, would require running the whole algorithm.

Unlike the other examples in this paper, to get a quantum walk algorithm, following Example 3.4,
we need |ψ0⟩ = |s⟩. We do not have B = {s, t} (assuming |Zacc| ≠ 1), so we cannot use canonical
boundary here, but it would be possible to modify this subspace graph to have canonical boundary,
as follows. We can essentially take two copies of G, G→ and G←, and identify the points M in each
of the two copies, so that the connected component of s is a line that first goes through G→ to some
vertex in VT , and then, if it has reached a point in M , goes through G← back to the second copy
of s, which we could call t. This is like a classical algorithm that computes a final state, copies out
the answer bit, and then uncomputes, which is also what we do for quantum algorithms in the next
section, except that the answer bit goes into the phase.

Another modification we could make to this subspace graph is as follows. We mentioned that
a classical reversible algorithm is like a walk on a line, but G is not a line, though the connected
component containing s always is. We can actually modify G to get a subspace graph G′ that is a
line of length T , where vℓ corresponds to the set Vℓ in G, which better captures our intuition that a
deterministic algorithm is a linear process. The edge spaces ofG′ are obtained by combining those ofG:
Ξ′eℓ =

⊕
z∈Z Ξeℓ,z , and similarly for Ξ

′A
eℓ
. The vertex spaces are similarly obtained: V ′vℓ =

⊕
z∈Z Vvℓ,z .

This is essentially what we do for quantum algorithms in the next section.

3.5 Example: Quantum Algorithms

In this section, we describe a subspace graph from any quantum algorithm. This construction is
essentially the same as the one in [Jef22], but we state it here explicitly as a subspace graph. While
the construction in [Jef22] applies to variable-time quantum algorithms, for simplicity, we will consider
algorithms that run for a fixed time T. However, Lemma 3.24 below, and all results that use it, also
apply for variable-time algorithms, replacing T with the expected running time.

A quantum algorithm is a sequence of unitaries U1, . . . , UT acting on the space

HY ⊗HZ = span{|a⟩|z⟩ : a ∈ {0, 1}, z ∈ Z}.
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v→1 e→2 v→3 e→4 v→5 v→T−1

e↔T
v←1 e←2 v←3 e←4 v←5 v←T−1

Figure 4: The graph G. The dashed lines represent dangling boundary “edges”.

We assume each unitary can be implemented in unit cost, and moreover, the unitary
∑T

r=1 |r⟩⟨r| ⊗Ur
can be implemented in unit cost.

The algorithm may implicitly depend on some input x ∈ {0, 1}n, for example, by letting some of
the unitaries be queries to x (or in any other way, we don’t care). We say the algorithm computes
some f : {0, 1}n → {0, 1} if

UT . . . U1|0, 0⟩ ∈ span{|f(x), z⟩ : z ∈ Z}

on input x. We are assuming the algorithm has no error for simplicity. In some of our conclusions,
we can always substitute an algorithm with error if the error is small enough that the algorithm is
indistinguishable from an error-free one. In this section, we will prove the following.

Lemma 3.24. From any quantum algorithm computing some f : {0, 1}n → {0, 1} with no error in
time T , and any positive weights {αr} such that α0 = 1, we can derive an st-composable subspace graph
(Definition 3.9) G that computes f with dimHG = O(|Z|T ), Ŵ+ ≤ 2

∑T
r=1

1
αr

and Ŵ− ≤ 2
∑T

r=1 αr;
with st-composable working bases that have scaling factor r = 2 and can be generated in time O(log(T )).

For example, we can set the weights all to 1, and then we get Ŵ+ and Ŵ− both at most 2T .
In order to remain consistent with [Jef22] so that we can easily use results proven there, while still

keeping the boundary of G simple, we are going to assume that U1 = −I, at the expense of potentially
making the algorithm one step longer. Thus, we will let T = T + 1, and the algorithm referred to in
Lemma 3.24 is actually U2, . . . , UT.

We define a subspace graph G = (V,E) as follows. We will assume T is even, and let:

V = {v→2ℓ−1, v←2ℓ−1}
T/2
ℓ=1, E = {e→2ℓ , e←2ℓ}

T/2−1
ℓ=1 ∪ {e↔T }, and B = {s := v→1 , t := v←1 }

with e→i = (v→i−1, v
→
i+1) (and similarly for e←i ), and e↔T = (v→T−1, v

←
T−1). We define:

∀ℓ ∈ {1, . . . ,T/2− 1}, Ξe→2ℓ := span{| →⟩|a, z⟩|2ℓ⟩, | →⟩|a, z⟩|2ℓ+ 1⟩ : a ∈ {0, 1}, z ∈ Z}
∀ℓ ∈ {1, . . . ,T/2− 1}, Ξe←2ℓ := span{| ←⟩|a, z⟩|2ℓ⟩, | ←⟩|a, z⟩|2ℓ+ 1⟩ : a ∈ {0, 1}, z ∈ Z}

Ξe↔T := span{| →⟩|a, z⟩|T⟩, | ←⟩|a, z⟩|T⟩ : a ∈ {0, 1}, z ∈ Z}
Ξs = Ξv→1 := span{|s⟩ := | →⟩|0, 0⟩|0⟩, | ←, s⟩ := | →⟩|0, 0⟩|1⟩}
Ξt = Ξv←1 := span{|t⟩ := | ←⟩|0, 0⟩|0⟩, | →, t⟩ := | ←⟩|0, 0⟩|1⟩}.

(7)

Following [Jef22, Definition 3.1], we define the following sets of vectors in HG = ΞE ⊕ ΞB to use
in the construction of our subspaces, for positive weights {αr}r such that α0 = α1 = 1.

Definition 3.25. The forward transition states are defined:

∀r ∈ {0, . . . ,T− 1}, Ψ→r :=
{
|ψ→a,z,r⟩ := | →⟩ (

√
αr|a, z⟩|r⟩ −

√
αr+1Ur+1|a, z⟩|r + 1⟩) : a ∈ {0, 1}, z ∈ Z

}
.

The backward transition states are defined:

∀r ∈ {0, . . . ,T− 1}, Ψ←r :=
{
|ψ←a,z,r⟩ := | ←⟩ (

√
αr|a, z⟩|r⟩ −

√
αr+1Ur+1|a, z⟩|r + 1⟩) : a ∈ {0, 1}, z ∈ Z

}
.

The reversal states are defined:

Ψ↔T :=
{
|ψ↔a,z,T⟩ :=

√
αT (| →⟩ − (−1)a| ←⟩) |a, z⟩|T⟩ : a ∈ {0, 1}, z ∈ Z

}
.
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Finally, let:

Ψ0 =

T/2−1⋃
ℓ=0

(Ψ→2ℓ ∪Ψ←2ℓ ) ∪Ψ↔T and Ψ1 =

T/2⋃
ℓ=0

(Ψ→2ℓ−1 ∪Ψ←2ℓ−1).

Note that since we assume U1 = −I, we have:

|ψ→0,0,0⟩ = | →⟩|0, 0⟩|0⟩ − | →⟩U1|0, 0⟩|1⟩ = |s⟩+ | →⟩|0, 0⟩|1⟩ = |s⟩+ | ←, s⟩,

and similarly,
|ψ←0,0,0⟩ = | ←⟩|0, 0⟩|0⟩+ | ←⟩|0, 0⟩|1⟩ = |t⟩+ | →, t⟩.

Then we define:

Vv→1 := span{|ψ→0,0,1⟩} and Vv←1 := span{|ψ←0,0,1⟩}
∀ℓ ∈ {2, . . . ,T/2}, Vv→2ℓ−1

:= spanΨ→2ℓ−1 and Vv←2ℓ−1
:= spanΨ←2ℓ−1

∀ℓ ∈ {1, . . . ,T/2− 1}, ΞAe→2ℓ := spanΨ→2ℓ and ΞAe←2ℓ
:= spanΨ←2ℓ

ΞAe↔T
:= spanΨ↔T

ΞAs := span{|ψ→0,0,0⟩} = span{|s⟩+ | ←, s⟩}
ΞAt := span{|ψ←0,0,0⟩} = span{|t⟩+ | →, t⟩}
VB := span{| ←, s⟩+ | →, t⟩}.

(8)

For all e ∈ E ∪ B, we will have ΞBe = {0}. Note that the subspace graph we have just defined has
canonical st-boundary (Definition 3.6). As per Definition 3.1, we have

AG = ΞAs ⊕ ΞAt ⊕
T/2−1⊕
ℓ=1

(ΞAe→2ℓ
⊕ ΞAe←2ℓ

)⊕ ΞAe↔T

BG =

T/2⊕
ℓ=1

(
Vv→2ℓ−1

⊕ Vv←2ℓ−1

)
+ VB.

(9)

In [Jef22], the vectors in Definition 3.25 form the working basis, which works perfectly fine, because
since all ΞBe are trivial, we have a decomposition of BG into orthogonal spaces Vv, so we can simply
combine their bases. However, here, we will use a slightly different working basis for BG to conform
to Definition 2.9, as follows.

Let Ψ̄→r contain normalized vectors.

ΨA =

{
|ψ̄→0,0,0⟩ =

1√
2
(|s⟩+ | ←, s⟩) , |ψ̄→0,0,0⟩ =

1√
2
(|t⟩+ | →, t⟩)

}
∪

T/2−1⋃
ℓ=1

(Ψ̄→2ℓ ∪ Ψ̄←2ℓ ) ∪ Ψ̄↔T .

Note that

|ψ→0,0,1⟩ = | →⟩|0, 0⟩|1⟩ − | →⟩U2|0, 0⟩|2⟩ = | ←, s⟩ − | →⟩U2|0, 0⟩|2⟩

and similarly,
|ψ←0,0,1⟩ = | →, t⟩ − | ←⟩U2|0, 0⟩|2⟩.

Define:

|b0⟩ :=
1√
2

(
|ψ→0,0,1⟩+ |ψ←0,0,1⟩+ (| →⟩+ | ←⟩)U2|0, 0⟩|2⟩)

)
=

1√
2
(| ←, s⟩+ | →, t⟩)

|b1⟩ :=
1

2

(
|ψ→0,0,1⟩ − |ψ←0,0,1⟩

)
=

1

2
(| ←, s⟩ − | →, t⟩ − (| →⟩ − | ←⟩)U2|0, 0⟩|2⟩)

|b2⟩ :=
1√
2
(| →⟩+ | ←⟩)U2|0, 0⟩|2⟩
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Then we have
span{|b0⟩ − |b2⟩, |b1⟩} = span{|ψ→0,0,1⟩, |ψ←0,0,1⟩} = Vv→1 ⊕ Vv←1 .

Thus

ΨB = {|b0⟩, |b1⟩, |b2⟩} ∪
T/2⋃
ℓ=2

(Ψ→2ℓ−1 ∪Ψ←2ℓ−1) ∪Ψ↔T

is an orthonormal basis for BG.
The following is given by a trivial modification of [Jef22, Lemma 3.3].

Lemma 3.26. Assuming unit-time access to
∑T

ℓ=1 |ℓ⟩⟨ℓ| ⊗ Uℓ, the working bases ΨA and ΨB can be
generated in O(log(T)) complexity.

We will also use the following states from [Jef22, Definition 3.4] in the construction of our witnesses:

Definition 3.27 (Algorithm States). Define the following algorithm states in HG:

|w0⟩ = |0⟩, ∀t ∈ [T], |wt⟩ = Ut|wt−1⟩.

The positive history state of the algorithm is defined:

|w+⟩ = (| →⟩+ (−1)f(x)| ←⟩)
T∑
t=0

1
√
αt
|wt⟩|t⟩.

The negative history state of the algorithm is defined:

|w−⟩ = (| →⟩ − (−1)f(x)| ←⟩)
T∑
t=0

√
αt(−1)t|wt⟩|t⟩.

We will use the following properties from [Jef22], using the fact that the algorithm has no error:

Claim 3.28. 1. ∥|w−⟩∥2 = 2
∑T

t=0 αt (Corollary 3.7)

2. ∥|w+⟩∥2 = 2
∑T

t=0
1
αt

(Corollary 3.7)

3. |w+⟩ ∈ spanΨ⊥0 ∩ spanΨ⊥1 (Claim 3.8).

4. |w−⟩ ∈ spanΨ0 and |w−⟩ − (| →⟩ − (−1)f(x)| ←⟩)|0⟩|0⟩︸ ︷︷ ︸
|s⟩−(−1)f(x)|t⟩

∈ spanΨ1 (Claim 3.9).

Items (1) and (2) are rather obvious in the case of fixed time quantum algorithms that we are
specializing to here in order to avoiding defining variable-time quantum algorithms. However, we
remark that in [Jef22], the more general case of variable-time algorithms is considered, so T is allowed
to be a random variable, and the expressions in (1) and (2) are replaced by expectations. The
construction in this section, which again, is just putting the construction of [Jef22] into the language
of subspace graphs, would be the same in this more general case, and thus our composition results
also hold for this more general kind of algorithm.

We have the following corollaries, which, combined with Lemma 3.26, prove Lemma 3.24.

Corollary 3.29 (Positive analysis). When f(x) = 1, |w+⟩ is a positive witness for G (see Defini-
tion 3.10) with

∥|ŵ+⟩∥2 = 2

T∑
ℓ=2

1

αℓ
.
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Proof. When f(x) = 1, since α0 = α1 = 1 and |w0⟩ = |0, 0⟩ and |w1⟩ = U1|0, 0⟩,

|w+⟩ = | →⟩|0, 0⟩|0⟩︸ ︷︷ ︸
|e⟩

− | ←⟩|0, 0⟩|0⟩︸ ︷︷ ︸
|t⟩

+ | →⟩U1|0, 0⟩|1⟩︸ ︷︷ ︸
−|←,s⟩

− | ←⟩U1|0, 0⟩|1⟩︸ ︷︷ ︸
−|→,t⟩

+ (| →⟩+ (−1)f(x)| ←⟩)
T∑
ℓ=2

1
√
αℓ
|wℓ⟩|ℓ⟩︸ ︷︷ ︸

|ŵ+⟩

.

By inspection (see (9) and Definition 3.25), we have AG ⊆ spanΨ0 and BG ⊆ spanΨ1 ∪ {|b0⟩}.
By Claim 3.28, |w+⟩ ∈ spanΨ⊥0 ∩ spanΨ⊥1 ⊂ A⊥G ∩ B⊥G, and we can see that |w+⟩ is orthogonal to
|b0⟩ = 1√

2
(| ←, s⟩+ | →, t⟩). Thus |w+⟩ is a positive witness, and

∥|ŵ+⟩∥2 = ∥(I −ΠB)|w+⟩∥2 = 2

T∑
ℓ=2

1

αℓ
.

Corollary 3.30 (Negative analysis). When f(x) = 0, |w−⟩ is a negative witness for G (see Defini-
tion 3.11) with

∥|ŵ−⟩∥2 = 2
T∑
ℓ=2

αℓ.

Thus Ŵ−(G) ≤ 2
∑T

ℓ=2 αℓ.

Proof. By Claim 3.28, we have |w+⟩ ∈ spanΨ0. Though Ψ0 is slightly bigger than AG, since we also
have |w0

+⟩ = |0, 0⟩ and |w1
+⟩ = −|0, 0⟩, we can see that |w+⟩ ∈ AG. Similarly, it is not difficult to

conclude that when f(x) = 0, |w−⟩ − (|s⟩ − |t⟩) ∈ BG, since it’s in Ψ1 (Claim 3.28), and its projection
onto |0⟩ or |1⟩ in the last register is in spanΨ→0 ∪Ψ←0 ∪Ψ→1 ∪Ψ←1 .

4 Recursion with Subspace Graphs

Subspace graphs lend themselves well to very general kinds of recursion. We can compose subspace
graphs, say G1, G2 and G3, as in Figure 5, by identifying some of the vertices on their boundaries.
In full generality, this may result in a subspace graph that is difficult to analyze. For example, if
we replace two parallel edges with subspace graphs derived from quantum algorithms, “flow” along
these edges may have complex phases that interfere on the other side. Our nice classical intuition
of flows breaks down in the fully general case, which is not surprising, since quantum algorithms are
not classical. However, an important question is in which special cases, and to what extent, we can
compose subspace graphs and keep enough classical intuition to analyze them.

One special case is implicit in [Jef22], and here we present another special case, which we call
switch composition. Switch composition generalizes a very simple kind of recursion that can be done
in switching networks. Since an st-path (or more generally, flow) is allowed to use an edge if and only
if φ(e) = 1, we can replace it with a switching network Ge for some function fe, which will have an st-
path from one endpoint to the other if and only if fe(x) = 1. We can view this as removing e from the
graph, and then adding its endpoints to the boundary, to then be identified with the boundary {s, t}
of Ge. By applying this type of composition, the OR and AND switching networks in Section 3.3.1
and Section 3.3.2 can be combined to make switching networks for any Boolean formula [JK17].

4.1 Switch Composition

Here we investigate how to compose subspace graphs with specific properties that generalize switching
networks – st-composable subspace graphs (Definition 3.9) – into the switches of a graph G. Specif-
ically, if E is the set of edges of G that are switches, we will replace e ∈ E with an st-composable
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G1 G2 G3

G1

G2 G3

G◦

Figure 5: Some perhaps complicated graphs G1, G2 and G3, but we need only consider their bound-
aries, and can abstract their internal structure. To compose them, we identify points on their bound-
aries, yielding a new graph, G◦.

graph Ge. We can assume without loss of generality that we replace every e ∈ E with some Ge, since
letting Ge be the graph consisting of a single edge from s to t is just like not replacing e. In particular,
we will prove the following theorem.

Theorem 4.1. Let G be an st-composable subspace graph (Definition 3.9) with st-composable working
bases that can be generated in time T , with scaling factor r. For each e ∈ E, the set of switches of
G, let Ge be an st-composable subspace graph with st-composable working bases that can be generated
in time at most T ′, with scaling factor re. Then there exists an st-composable subspace graph G◦ with
dimHG◦ ≤ dimHG − 2|E|+

∑
e∈E dimHGe such that:

• G◦ has st-composable working bases that can be generated in time T + T ′ + O(1), with scaling
factor r.

• If |ŵ⟩ is a cropped positive witness for G (Definition 3.10), and for each e ∈ E such that
⟨ →, e|ŵ⟩ ≠ 0, |ŵe⟩ is a cropped positive witness for Ge, then

|ŵ◦⟩ =
∑
e∈E

√
re

2
⟨ →, e|ŵ⟩|ŵe⟩+ΠE\E |ŵ⟩

is a cropped positive witness for G◦.

• If |ŵA⟩ is a cropped negative witness for G (Definition 3.11), and for each e ∈ E such that
⟨ →, e|ŵA⟩ ≠ 0, |ŵeA⟩ is a cropped negative witness for Ge, then

|ŵ◦A⟩ =
∑
e∈E

√
2

re
⟨ →, e|ŵA⟩|ŵeA⟩+ΠE\E |ŵA⟩

is a cropped negative witness for G◦.

It follows, using the observation that |ŵ⟩ must only overlap switches that are on, and |ŵA⟩ must
only overlap switches tht are off, that if G computes f and each Ge computes fe, the function computed
by G◦ is the composed function f ◦ (fe)e∈E (see Section 2.3).

Before we prove Theorem 4.1, we note the following useful corollary of Theorem 4.1 and Lemma 3.16.

Corollary 4.2. Let G be an st-composable subspace graph with st-composable working bases that
can be generated in time T that computes f . Then there is an st-composable subspace graph G◦

with st-composable bases that can be generated in time T + O(1) that computes f , and such that
dimHG◦ = dimHG +O(1), Ŵ+(G

◦) ≤ 1 and Ŵ−(G
◦) ≤ Ŵ+(G)Ŵ−(G).
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G

s
e1

e2

t

Ge1

s t

Ge2

s

t

G◦

s t

Figure 6: An example of replacing edges e1 and e2 in G with graphs Ge1 and Ge2 to obtain G◦.
Boundary “edges” are represented by dashed lines. Switching networks already lend themselves to
this type of recursion: we can replace an edge with a 2-terminal graph, and then the “edge” is
traversable if and only if the terminals are connected. The difference with the more general recursion
in Theorem 4.1 is that the subspace graphs used to replace edges (as well as other parts of G) might
have more complicated structure than just their graph structure; for example, they might encode
quantum algorithms like in Section 3.5.

Proof. Let Gor,1 be the graph from Lemma 3.16 with d = 1, and w1 =
r
2Ŵ+(G), where r is the scaling

factor of the basis for G. It is st-composable since it is a switching network. This graph has a single
edge, e1, and we will compose G into this edge using Theorem 4.1, so Gor plays the role of G in
Theorem 4.1, and G plays the role of Ge1 . If f(x) = 1, then G has a cropped positive witness |ŵ1⟩,
and using the positive witness from Lemma 3.16, by Theorem 4.1, G◦ has cropped positive witness

|ŵ◦⟩ =
√

r

2

1
√
w1
|ŵ1⟩ = 1√

Ŵ+(G)
|ŵ1⟩,

so since
∥∥|ŵ1⟩

∥∥2 ≤ Ŵ+(G), Ŵ+(G
◦) ≤ 1.

On the other hand, if f(x) = 0, then G has a cropped negative witness |ŵ1
A⟩, and using the negative

witness for Lemma 3.16, by Theorem 4.1, G◦ has cropped negative witness

|ŵ◦A⟩ =
√

2

r

√
w1|ŵ1

A⟩ =
√
Ŵ+(G)|ŵ1

A⟩,

so Ŵ−(G
◦) ≤ Ŵ+(G)Ŵ−(G).

To complete the proof, by Lemma 3.16, the basis for Gor can be generated in unit time, and thus
by Theorem 4.1, the basis for G◦ can be generated in time T +O(1).

In the remainder of this section, we prove Theorem 4.1.

Informally, we obtain G◦ from G by, for each e ∈ E, removing the edge e, and identifying its
endpoints with the vertices s = se and t = te of the graph Ge. This is illustrated in Figure 6. The
subspaces associated with G◦ are mostly inherited from G and Ge, except for those on the glued
boundaries. There, intuitively, we replace | →, e⟩ with the edges incident to s = se in Ge, and | ←, e⟩
with the edges incident to t = te in Ge. This is formalized by the map Λ̃ defined in (14).
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Definition of the Subspace Graph G◦ We now formally define G◦ and its associated spaces. We
will shortly define a working basis ΨBG◦ for BG◦ , from working bases for BG and BGe . It is actually
these bases that are most important, but by defining BG◦ and AG◦ as being built up from local spaces,
we show that the graph structure and intuition are preserved by the composition.

The composed graph G◦ has vertex and edge sets:

V ◦ = V ⊔
⊔
e∈E

(V e \Be) = V ⊔
⊔
e∈E

(V e \ {se, te})

E◦ = (E \ E) ⊔
⊔
e∈E

Ee
(10)

and boundary
B◦ = B = {s, t}.

We identify se and te in Ge with the endpoints of e in G, so that the following edges are incident to
u ∈ V ◦:

E◦(u) =

{
Ee(u) if u ∈ V e \ {se, te}

(E(u) \ E) ⊔
⊔
e∈E∩E→(u)E

e(se) ⊔
⊔
e∈E∩E←(u)E

e(te) if u ∈ V. (11)

Recall that we assume for convenience that each edge has an orientation, and E→(u) ⊆ E(u) are the
edges oriented outwards from u, and E←(u) = E(u) \ E→(u) those oriented inwards. This is simply
to decide which of the endpoints of e is identified with se and which with te.

We define the edge spaces and edge subspaces of G◦ from those of G and Ge as follows:

Ξ◦e′ =

{
Ξe′ if e′ ∈ (E \ E) ∪B
Ξee′ if e′ ∈ Ee, (12)

and similarly for Ξ◦Ae and Ξ◦Be . Note that since G has canonical st-boundary, so does G◦. Furthermore,
since the switches and non-switches of G◦ are:

E
◦
=
⊔
e∈E

E
e
and E◦ \ E◦ = (E \ E) ⊔

⊔
e∈E

(Ee \ Ee),

we inherit the property that for all e ∈ E◦ \ E◦, Ξ◦Be = {0}.
Next we define the vertex spaces. First, for each e ∈ E, we are assuming that Vese and Vete can be

written:

Vese = span{| ←, se⟩+ |ψ⋆(se)⟩}
Vete = span{| →, te⟩+ |ψ⋆(te)⟩},

(13)

for some |ψ⋆(se)⟩ ∈ ΞeEe(se) and |ψ⋆(t
e)⟩ ∈ ΞeEe(te). Then define a linear map Λ̃ on HG by:

Λ̃ =
∑
e∈E

1√
re
(|ψ⋆(se)⟩⟨ →, e|+ |ψ⋆(te)⟩⟨ ←, e|) + ΠE\E +ΠB, (14)

and let

V◦u =

{
Λ̃(Vu) if u ∈ V
Veu if u ∈ V e \ {se, te}. (15)

The following lemma shows that G◦ is a well-defined subspace graph.

Lemma 4.3. Λ̃(Vu) ⊆ Ξ◦E◦(u).

Proof. We have Vu ⊆ ΞE(u), so

Λ̃(Vu) = Λ̃
(
ΞE(u)\E ∩ Vu

)
⊕

⊕
e∈E∩E(u)

Λ̃ (Ξe ∩ Vu) ,
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We have Λ̃
(
ΞE(u)\E ∩ Vu

)
= ΞE(u)\E ∩ Vu, since Λ̃ fixes ΞE\E . Recall from Definition 3.5 that for

e ∈ E ∩ E(u)

Ξe ∩ Vu =

{
span{| →, e⟩} if e ∈ E→(u)
span{| ←, e⟩} if e ∈ E←(u).

Thus,

Λ̃ (Ξe ∩ Vu) =

{
span{Λ̃| →, e⟩} = span{|ψ⋆(se)⟩} ⊆ ΞeEe(se) if e ∈ E→(u)

span{Λ̃| ←, e⟩} = span{|ψ⋆(te)⟩} ⊆ ΞeEe(te) if e ∈ E←(u).

Thus
Λ̃(Vu) ⊆ ΞE(u)\E ⊕

⊕
e∈E∩E→(u)

ΞeEe(se) ⊕
⊕

e∈E∩E←(u)

ΞeEe(te) = ΞE◦(u)

by (11).

From these definitions, we conclude:

AG◦ =
⊕
e∈E◦

Ξ◦Ae ⊕
⊕
u∈B◦

Ξ◦Au =
⊕
e∈E\E

ΞAe ⊕
⊕
e∈E

⊕
e′∈Ee

ΞeAe′ ⊕ ΞAs ⊕ ΞAt

=
⊕
e∈E\E

ΞAe ⊕
⊕
e∈E

⊕
e′∈Ee

ΞeAe′ ⊕ ΞAs
(16)

and similarly

BG◦ =
⊕
u∈V ◦

V◦u +
⊕
e∈E\E

ΞBe ⊕
⊕
e∈E

⊕
e′∈Ee

ΞeBe′ ⊕ ΞBs ⊕ ΞBt

=
⊕
u∈V

Λ̃(Vu)⊕
⊕
e∈E

⊕
u∈V e\{s,t}

Veu +⊕
⊕
e∈E

⊕
e′∈Ee

ΞeBe′ .
(17)

Working Bases for G◦ By the assumptions of Definition 3.8, we have a working basis ΨAG
for AG

of the form:
ΨAG

=
⋃

e∈E∪B
ΨAG

(e),

where ΨAG
(e) is an orthonormal basis for ΞAe , and similarly, for each e ∈ E, we have a working basis

ΨAGe for AGe of the form:

ΨAGe =
⋃

e′∈Ee∪Be

ΨAGe (e
′).

Since the spaces Ξ◦Ae are simply inherited from the corresponding spaces in G and the Ge, their bases
can be as well. Specifically, we define a working basis

ΨAG◦ =
⋃

e∈E◦∪B◦
ΨAG◦ (e) =

⋃
e∈(E\E)∪B

ΨAG◦ (e) ∪
⋃
e∈E

⋃
e′∈Ee

ΨAG◦ (e
′).

for AG◦ , where for all e ∈ E \ E, ΨAG◦ (e) = ΨAG
(e), and for all e ∈ E and e′ ∈ Ee, ΨAG◦ (e

′) =
ΨAGe (e

′). Then we have the following.

Lemma 4.4 (Working Basis for A). ΨAG◦ can be generated in time T + T ′ +O(1).

Proof. Assume without loss of generality that for e ∈ E, ΨAG
(e), which is one-dimensional, has label

set L(e) = {e}. We let

L◦A = ({0} × (L \ E)) ⊔
⊔
e∈E

{e} × LeA,

so to map |ℓ⟩ 7→ |b◦ℓ ⟩ for ℓ = (ℓ0, ℓ1) ∈ L◦, we simply need to apply the relevant basis generation map
depending on the value of ℓ0 ∈ {0} ∪ E. We can check if ℓ = (ℓ0, ℓ1) ∈ L◦A by membership in the
relevant set, controlled on ℓ0. For example, if ℓ0 = 0, we check if ℓ1 ∈ L, and ℓ1 ̸∈ E.
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By the assumptions of Definition 3.8, we have a working basis ΨBG for BG of the form

ΨBG = Ψ−BG ∪
{

1√
2
(| →, e⟩+ | ←, e⟩) : e ∈ E

}
,

and similarly, for each e ∈ E, we have a working basis ΨBGe for BGe of the form

ΨBGe = Ψ−BGe
∪
{

1√
2
(| →, e′⟩+ | ←, e′⟩) : e′ ∈ Ee

}
,

where Ψ−BGe
⊆ H−Ge := ΞBe∪Ee\Ee⊕span{| →, e⟩−| ←, e⟩ : e ∈ Ee} contains two distinguished vectors,

|be0⟩ and |be1⟩. From these, we define the following isometry on H−G :

Λ := ΠE\E +ΠB +
∑
e∈E

1√
2
|b̄e1⟩(⟨ →, e| − ⟨ ←, e|). (18)

Then we define:

ΨB◦G = Λ(Ψ−BG) ∪
⋃
e∈E

(Ψ−BGe
\ {|be0⟩, |be1⟩})︸ ︷︷ ︸

=:Ψ−BG◦

∪

{
1√
2
(| →, e′⟩+ | ←, e′⟩)︸ ︷︷ ︸

ΨBG◦ (e
′), spans ΞeB

e′

: e′ ∈ E◦ =
⋃
e∈E

E
e

}
. (19)

In Appendix A, we prove that ΨBG◦ is indeed a basis for BG◦ . Again, this is actually not so important
– we could also have defined BG◦ from the basis, in which case, we would not need the assumption,
from canonical st-boundary, that the spaces Vese and Vete are one-dimensional. However, then it would
not be obvious that any graph structure remains, which we feel is beneficial for maintaining intuition
when working with complicated objects.

Lemma 4.5. ΨAG◦ and ΨBG◦ are st-composable bases as in Definition 3.8.

Proof. The first two properties are clear, so we check properties 3-5. Since ΨBG is composable, Ψ−BG
contains |b0⟩ = 1√

2
(| ←, s⟩+ | →, t⟩), so Ψ−BG◦ contains

|b◦0⟩ = Λ(|b0⟩) =
1√
2
(| ←, s⟩+ | →, t⟩),

establishing property 3 of Definition 3.8. Similarly, Ψ−BG contains |b1⟩ = 1√
2+r

(| ←, s⟩−| →, t⟩+
√
r|b̄1⟩),

so Ψ−BG◦ contains

|b◦1⟩ = Λ(|b1⟩) =
1√
2 + r

(| ←, s⟩ − | →, t⟩+
√
rΛ|b̄1⟩),

establishing property 4 of Definition 3.8. Finally, it is easy to verify that the remaining vectors of
ΨBG◦ are orthogonal to | ←, s⟩ and | →, t⟩, establishing property 5.

Lemma 4.6. If the working basis ΨBG has time complexity T , and for each e ∈ E, the working basis
ΨBGe has time complexity T ′, then ΨBG◦ has time complexity T + T ′ +O(1).

Proof. We have

L◦ = L− ⊔
⊔
e∈E

L−e \ {0, 1}︸ ︷︷ ︸
L−◦

⊔E◦.

As always, for any label e ∈ E◦, the mapping:

|e⟩ 7→ |b◦e⟩ =
1√
2
(| →, e⟩+ | ←, e⟩)
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has time complexity 1 (just apply a Hadamard).
For ℓ ∈ L−e \ {0, 1} for some e, apply the map |ℓ⟩ 7→ |beℓ⟩ in cost T ′.
For ℓ ∈ L−, apply the map |ℓ⟩ 7→ |bℓ⟩ in cost T , and then use the direct sum of basis maps for

Ψ̄−BGe
to map:

1√
2
(| →, e⟩ − | ←, e⟩) 7→ |1, e⟩ 7→ |b̄e1⟩.

We complete the analysis by establishing positive and negative witnesses.

Lemma 4.7. Let |w⟩ be a positive witness for G, so it necessarily only overlaps switches that are on.
For every switch e that is on, let |we⟩ be a positive witness for Ge. Then

|ŵ◦⟩ =
∑
e∈E

√
re

2
⟨ →, e|w⟩|ŵe⟩+ΠE\E |w⟩

is a positive witness for G◦.

Proof. We need to show that |w◦⟩ = |s⟩+ | ←, s⟩+ |ŵ◦⟩+ | →, t⟩+ |t⟩ is in A⊥G◦ ∩ B⊥G◦ . We start by
showing that |w◦⟩ is orthogonal to everything in AG◦ . Orthogonality with ΞAs = span{|s⟩ − | ←, s⟩}
(see Definition 3.6) is obvious. For e ∈ E \ E,

ΠAe |w◦⟩ = ΠAe ΠE\E |w⟩ = ΠAe |w⟩ = 0

since |w⟩ ∈ A⊥G (because it is a positive witness). For all e ∈ E and e′ ∈ Ee,

ΠeAe′ |w◦⟩ =
√

re

2
⟨ →, e|w⟩ΠeAe′ |ŵe⟩ =

√
re

2
⟨ →, e|w⟩ΠeAe′ |we⟩ = 0

since |ŵe⟩ = (I − ΠBe)|we⟩, and ΠeAe′ |we⟩ = 0 because |we⟩ is a positive witness for Ge. Thus
|w◦⟩ ∈ A⊥G◦ .

By an identical proof, we can show that |w◦⟩ is orthogonal to ΞBe for all e ∈ E \E, and ΞeBe′ for all
e ∈ E and e′ ∈ Ee. Thus, it remains only to show orthogonality with Ψ−BG◦ .

Note that since |b1⟩ ∝ | ←, se⟩ − | →, te⟩+
√
re|b̄e1⟩ ∈ BGe , we must have(

⟨ ←, se| − ⟨ →, te|+
√
re⟨b̄e1|

)
(|se⟩ − | ←, se⟩+ |ŵe⟩+ | →, te⟩ − |te⟩) = 0

√
re⟨b̄e1|ŵe⟩ = 2.

Thus:

Λ†|ŵ◦⟩ =
∑
e∈E

√
re

2
⟨ →, e|w⟩Λ†|ŵe⟩+ΠE\E |w⟩

=
∑
e∈E

√
re

2
⟨ →, e|w⟩⟨b̄e1|ŵe⟩

1√
2
(| →, e⟩ − | ←, e⟩) + ΠE\E |w⟩

=
∑
e∈E

√
re

2
⟨ →, e|w⟩ 2√

re
1√
2
(| →, e⟩ − | ←, e⟩) + ΠE\E |w⟩

=
∑
e∈E

⟨ →, e|w⟩ (| →, e⟩ − | ←, e⟩) + ΠE\E |w⟩

= ΠE |w⟩+ΠE\E |w⟩ = |ŵ⟩,

(20)

where we used the fact that ⟨ →, e|w⟩ = −⟨ ←, e|w⟩. It follows that Λ†|w◦⟩ = |w⟩, and thus we have,
for any |ψ⟩ ∈ Ψ−BG ,

⟨ψ|Λ†|w◦⟩ = ⟨ψ|w⟩ = 0, (21)
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since |w⟩ is a positive witness for G. To complete the proof, we show orthogonality with Ψ−BGe
\

{|be0⟩, |be1⟩} for any e ∈ E. BGe is orthogonal to |se⟩ and |te⟩, and furthermore, for i > 1, we have
⟨ ←, se|bei ⟩ = ⟨ →, te|bei ⟩ = 0. We have:

⟨bei |w◦⟩ =
√

re

2
⟨ →, e|w⟩⟨bei |ŵe⟩.

Since |ŵe⟩ is a cropped positive witness for Ge, we have:

0 = ⟨bei |w⟩ = ⟨bei |s⟩ − ⟨bei | ←, s⟩+ ⟨bei |ŵe⟩+ ⟨bei | →, te⟩ − ⟨bei |t⟩ = ⟨bei |ŵe⟩,

completing the proof.

Lemma 4.8. Let |wA⟩ be a negative witness for G that only overlaps switches that are off (this is
always true for optimal witnesses, because when a switch is on ΞBe = ΞAe , so might as well put any
overlap with Ξe into |wB⟩). For every switch e ∈ E that is off, let |weA⟩ be a negative witness for Ge.
Then:

|ŵ◦A⟩ =
∑
e∈E

⟨ →, e|wA⟩
√

2

re
|ŵeA⟩+ΠE\E |wA⟩

is a negative witness for G◦.

Proof. We will use the fact that if a switch is off, we always have Πe|wA⟩ = ⟨ →, e|wA⟩(| →, e⟩−| ←, e⟩).
This is true because a switch that is off always has ΞAe = span{| →, e⟩ − | ←, e⟩}. In particular, this
means that ΠE |ŵA⟩ ∈ Ξ−

E
, so since |ŵA⟩+ | ←, s⟩ − | →, t⟩ ∈ BG, in particular, it is in B−G. We have:

|ŵA⟩+ | ←, s⟩ − | →, t⟩ ∈ B−G
ΠE\E |ŵA⟩+

∑
e∈E

⟨ →, e|wA⟩(| →, e⟩ − | ←, e⟩) + | ←, s⟩ − | →, t⟩ ∈ B−G

Λ

ΠE\E |ŵA⟩+
∑
e∈E

⟨ →, e|wA⟩(| →, e⟩ − | ←, e⟩) + | ←, s⟩ − | →, t⟩

 ∈ BG◦
ΠE\E |ŵA⟩+

∑
e∈E

⟨ →, e|wA⟩
√
2|b̄e1⟩+ | ←, s⟩ − | →, t⟩ ∈ BG◦

|ŵ◦A⟩+
∑
e∈E

⟨ →, e|wA⟩
√

2

re

(√
re|b̄e1⟩ − |ŵeA⟩

)
+ | ←, s⟩ − | →, t⟩ ∈ BG◦ .

We complete the proof by noting that for all e ∈ E,
√
re|b̄e1⟩ − |ŵeA⟩ ∈ BG◦ . To see this, we note:

|ŵeA⟩+ | ←, s⟩ − | →, t⟩ ∈ B−Ge ∩ span{|be0⟩}⊥,

which follows from the fact that |ŵeA⟩ is a cropped negative witness, and so it is orthogonal to | ←, se⟩
and | →, te⟩, and in particular, |be0⟩ = 1√

2
(| ←, se⟩+ | →, te⟩). The only other basis vector of B−Ge that

overlaps | ←, se⟩ and | →, te⟩ is |be1⟩ ∝ | ←, se⟩ − | →, te⟩+
√
re|b̄e0⟩, from which it follows:

|ŵeA⟩ −
√
re|b̄e0⟩ ∈ B−Ge ∩ span{|be0⟩, |be1⟩}⊥ ⊂ BG◦ .

4.2 Boolean Formula Composition

In this section, we give a subspace graph computing φ ◦ (fσ)σ when φ is a symmetric formula, given
subspace graphs for each fσ. Subspace graphs for formulas φ can be obtained simply by composing the
switching networks for OR and AND in Section 3.3.1 and Section 3.3.2 (see [JK17]). Our composition
theorem, Theorem 4.1, generalizes this simple switching network composition to more general subspace
graphs with switches.

We assume that φ is balanced (see Definition 2.4), as otherwise we get a factor in the depth. In the
general balanced case, we must be able to generate certain superpositions efficiently, which is slightly
complicated to describe (beginning with Definition 4.9). The special case where φ is symmetric (see
Definition 2.3) is much simpler, as shown in Corollary 4.12.
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Definition 4.9. Fix a Boolean formula φ on {0, 1}Σ, and real values C+
σ and C−σ for each σ ∈ Σ. Let

Cσ :=
√

C+
σ C
−
σ .

For σ ∈ Σ \ Σ, let dσ be the degree of σ, and v(σ) ∈ {∨,∧} indicate the gate labelling the node σ,
so for example, if v(σ) = ∨, then the sub-formula rooted at σ is an OR of dσ sub-formulas. Define:

Cσ :=

d∑
i=1

Cσi, C+
σ =

{ ∑dσ
i=1 C

+
σi if v(σ) = ∨

C2
σ∑dσ

i=1 C
+
σi

if v(σ) = ∧, and C−σ =

{
C2
σ∑dσ

i=1 C
−
σi

if v(σ) = ∨∑dσ
i=1 C

−
σi if v(σ) = ∧.

Then note that

Cσ =
√
C+
σ C
−
σ , and also C = C∅ =

√∑
σ∈Σ

C2
σ.

We say the values {C+
σ ,C

−
σ }σ∈Σ incur logarithmic reflection cost if for every σ ∈ Σ such that

v(σ) = ∨, a state proportional to
∑

i∈[dσ ]

√
C+
σi|i⟩ can be generated in complexity O(log dσ), and for

all σ ∈ Σ such that v(σ) = ∧, a state proportional to
∑

i∈[dσ ]

√
C−σi|i⟩ can be generated in complexity

O(log dσ).

Lemma 4.10. Let φ be a balanced formula (Definition 2.4) on {0, 1}Σ. Let {fσ}σ∈Σ be Boolean func-
tions, and for each σ ∈ Σ, let Gσ be an st-composable subspace graph (Definition 3.9) computing fσ,
with working bases that can be generated in time at most T with scaling factor rσ, and log dimHGσ ≤ S.
Suppose that for each σ ∈ Σ, C+

σ is a known upper bound on rσŴ+(Gσ), and C−σ is a known upper

bound on Ŵ−(Gσ)/r
σ, so Cσ :=

√
C+
σ C
−
σ is a known upper bound on Ĉ(Gσ). Suppose the values

{C+
σ ,C

−
σ }σ∈Σ incur logarithmic reflection cost (see Definition 4.9).

Then there is an st-composable subspace graph G◦ computing φ ◦ (fσ)σ∈Σ with log dimHG◦ =
S +O(log |Σ|) and

Ĉ(G◦)2 ≤
∑
σ∈Σ

C2
σ.

Furthermore, the working bases of G◦ can be generated in time T +O(log |Σ|).

Proof of Lemma 4.10. Let c be a constant such that for each node in φ, if its subtree has N leaves,
and it has d children, then the sub-tree of each child has at most cN/d leaves (this exists because φ
is balanced), and let a be a constant such that the bases referred to in Lemma 3.16 and Lemma 3.20
can both be generated in complexity at most a log d, and let a′ be a constant such that the cost of
generating the basis of G◦ in Theorem 4.1 is T + T ′ + a′. We will show by induction on the depth
D of φ that there exists an st-composable subspace graph G◦ computing φ ◦ (fσ)σ with composable
bases with scaling factor r◦ such that:

1. r◦Ŵ+(G
◦) ≤ C+

2. Ŵ−(G◦)
r◦ ≤ C−

3. log dimHG◦ ≤ log |Σ|+ (2 + log c)D + S

4. the bases can be generated in cost at most T + (a+ a′) log(cD|Σ|).

Since φ is balanced, D = O(log |Σ|), so

(a+ a′) log(cD|Σ|) = (a+ a′) log |Σ|+ (a+ a′)D log c = O(log |Σ|).

Without loss of generality, we can assume that none of the leaves of φ is negated, because if it is,
we can just push this negation into fσ. The proof will be by induction on the depth of φ.

Base Case: If D = 0, then φ ◦ (fσ)σ∈Σ = fσ for some σ. Then we just take G◦ = Gσ, so r◦ = rσ.
We have, by assumption, that rσŴ+(Gσ) ≤ C+

σ = C+ (when the depth is 0) and Ŵ−(Gσ)/r
σ ≤ C−σ =

C−. We also have, by assumption, that the working bases of Gσ can be generated in time T , and
log dimHGσ ≤ S, completing the base case.
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OR Case: First, suppose φ has depth D > 0, with φ =
∨d
i=1 φi for some d and some formulas φi

of depth D − 1. Let G = Gor,d be the subspace graph from Lemma 3.16, which is st-composable,
because it is a switching network, and let Gφ1 , . . . , Gφd

be the st-composable subspace graphs whose
existence is promised by the induction hypothesis. For all i ∈ [d], we will compose the graphs Gφi into
the switch edge ei of G using Theorem 4.1, to obtain G◦. If φi(x) = 1 for some i, then Gφi must have
some cropped positive witness |ŵi⟩, and using the cropped positive witness |ŵ⟩ from Lemma 3.16, by
Theorem 4.1, G◦ has a cropped positive witness

|ŵ◦⟩ =
√

ri

2

1
√
wi
|ŵi⟩,

where ri is the scaling factor of the basis for Gφi . Thus, if we choose

wi = C+
i /2, so r◦ = 2

d∑
i=1

wi =
d∑
i=1

C+
i

we get

Ŵ+(G
◦) ≤ ri

2wi
Ŵ+(Gφi) ≤

C+
i

C+
i

= 1, and so r◦Ŵ+(G
◦) ≤

d∑
i=1

C+
i = C+

using the induction hypothesis, which says that riŴ+(Gφi) ≤ C+
i .

On the other hand, suppose for all i ∈ [d], φi(x) = 0 and so there exists a cropped negative witness
|ŵiA⟩ for Gφi . Then using the cropped negative witness from Lemma 3.16, by Theorem 4.1, we have
a cropped negative witness for G◦:

|ŵ◦A⟩ =
d∑
i=1

√
2

ri
√
wi|ŵiA⟩.

Thus:

Ŵ−(G
◦) ≤

d∑
i=1

2wi
ri
Ŵ−(Gφi) ≤

d∑
i=1

C+
i C
−
i =

d∑
i=1

C2
i = C2,

by the induction hypothesis, which says that
Ŵ−(Gφi )

ri
≤ C−i .

By the induction hypothesis, the cost of generating the bases for any Gφ is at most:

T ′ := (a+ a′) log
(
cD−1c|Σ|/d

)
= (a+ a′) log

(
cD|Σ|/d

)
.

Thus, by Theorem 4.1, since the bases of G can be generated in cost at most T = a log d – assuming

the state proportional to
∑

i

√
wi|i⟩ ∝

∑
i

√
C+
i |i⟩ can be generated in O(log d) time – we can generate

the bases of G◦ in cost

T + T ′ + a′ = (a+ a′) log(cD−1(c|Σ|/d)) + a log d+ a′ ≤ (a+ a′) log(cD|Σ|),

as needed.
Similarly, by Theorem 4.1, we have

dimHG◦ ≤ dimHG − 2d+

d∑
i=1

dimHGφi

≤ 2d+ 4− 2d+ d2log(|Σi|)+(2+log c)(D−1)+S ≤ 4d2log(|Σi|)+(2+log c)(D−1)+S

by the induction hypothesis and Lemma 3.16. Thus,

log dimHG◦ ≤ 2 + log d+ log
c|Σ|
d

+ (2 + log c)(D − 1) + S = log |Σ|+ (2 + log c)D + S.
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AND Case: Next, suppose φ =
∧d
i=1 φi for some formulas of depth D − 1. Let G = Gand,d be the

graph from Lemma 3.20, which is a switching network, and hence st-composable. Let Gφ1 , . . . , Gφd

be the st-composable subspace graphs whose existence is promised by the induction hypothesis. We
will compose the graphs Gφi into the switch edge ei of G to obtain G◦. If φi(x) = 1 for all i, then
there exist cropped positive witnesses |ŵi⟩ for each Gφi , so using the cropped positive witness for G
from Lemma 3.20, by Theorem 4.1, G◦ has cropped positive witness

|ŵ◦⟩ =
d∑
i=1

√
ri

2

1
√
wi
|ŵi⟩.

Thus, setting

wi =
1

2C−i
, so

1

r◦
=

d∑
i=1

1

2wi
=

d∑
i=1

C−i ,

we have:

Ŵ+(G
◦) ≤

d∑
i=1

ri

2wi
Ŵ+(Gφi) ≤

d∑
i=1

C−i C
+
i =

d∑
i=1

C2
i = C2,

by the induction hypothesis, which says that riŴ+(Gφi) ≤ C+
i .

On the other hand, suppose φi(x) = 0 for some i ∈ [d], so there exists a cropped negative witness
|ŵiA⟩ for Gφi . Then using the cropped negative witness from Lemma 3.20, by Theorem 4.1, we have
a cropped negative witness for G◦:

|ŵ◦A⟩ =
√

2

ri
√
wi|ŵiA⟩.

Thus, we have:

Ŵ−(G
◦) ≤ 2wi

ri
Ŵ−(Gφi) ≤

C−i
C−i

= 1, and so
Ŵ−(G

◦)

r◦
≤

d∑
i=1

C−i = C−,

using the induction hypothesis, which says that
Ŵ−(Gφi )

ri
≤ C−i .

A similar argument about the basis efficiency and dimension of HG◦ as in the OR case completes
the proof.

We will prove a more easily-applied corollary for the case where φ is symmetric. We will use the
following two lemmas.

Lemma 4.11. Let φ be a symmetric formula (see Definition 2.3) of depth D, and for D′ ∈ [D], let
dD′ be the out-degree of the nodes whose subtrees have depth D′. Assume without loss of generality
that the nodes whose children are leaves are ∧ gates. Suppose for all σ ∈ Σ, C−σ = L− is a known
upper bound on Ŵ−(Gσ)/r

σ, independent of σ; and C+
σ is a known upper bound on Ŵ+(Gσ)Ŵ−(Gσ).

Let {C+
σ ,C

−
σ ,Cσ}σ∈Σ be as in Definition 4.9. Then for all σ ∈ Σ \ Σ whose subtrees have depth D′,

C+
σ =

C2
σ

L−
∏⌈D′/2⌉
j=1 d2j−1

and C−σ = L−
⌈D′/2⌉∏
j=1

d2j−1

Proof. First note that we can assume without loss of generality that the nodes with D′ odd are labelled
by ∧, and D′ even are labelled by ∨.

We will prove the statement by induction. Since Cσ =
√
C+
σ C
−
σ , it is sufficient to prove the

statement about C−σ .

Base Case: Let σ ∈ Σ, so D′ = 0. Then, indeed, C−σ = L− = L−
∏0
j=1 d2j−1.
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Odd Case: Let D′ > 0 be odd. By the induction hypothesis, and since D′−1 is even, for all i ∈ [dD′ ]

C−σi = L−
(D′−1)/2∏
j=1

d2j−1.

Since D′ is odd, v(σ) = ∧, and so

C−σ =

dD′∑
i=1

C−σi = dD′L
−

(D′−1)/2∏
j=1

d2j−1 = L−
⌈D′/2⌉∏
j=1

d2j−1.

Even Case: Let D′ > 0 be even. By the induction hypothesis, for all i ∈ [dD′ ]

C+
σi =

C2
σi

C−σi
=

C2
σi

L−
∏⌈(D′−1)/2⌉
j=1 d2j−1

=
C2
σi

L−
∏⌈D′/2⌉
j=1 d2j−1

.

Since D′ is even, v(σ) = ∨, and so

C+
σ =

dD′∑
i=1

C+
σi =

∑dD′
i=1 C

2
σ,i

L−
∏⌈D′/2⌉
j=1 d2j−1

=
C2
σ

L−
∏⌈D′/2⌉
j=1 d2j−1

.

Thus

C−σ =
C2
σ

C+
σ

= L−
⌈D′/2⌉∏
j=1

d2j−1.

Corollary 4.12. Let φ be a symmetric formula (Definition 2.3) on {0, 1}Σ. Let {fσ}σ∈Σ be Boolean
functions, and for each σ ∈ Σ, let Gσ be an st-composable subspace graph (Definition 3.9) com-
puting fσ, with working bases that can be generated in time at most T with scaling factor rσ, and
log dimHGσ ≤ S. Suppose that for each σ ∈ Σ, L− is a known upper bound on Ŵ−(Gσ)/r

σ, and C+
σ is

a known upper bound on rσŴ+(Gσ). Let Cσ =
√

C+
σ C−, which is then a known upper bound on Ĉ(Gσ).

For any σ ∈ Σ \ Σ (i.e. proper prefixes of the strings in Σ), if the children of σ in φ are labelled by
[d], define

Cσ =

√∑
i∈[d]

C2
σi,

and suppose a state proportional to
∑

i∈[d] Cσi|i⟩ can be generating in cost O(log d). Then there is an
st-composable subspace graph G◦ computing φ ◦ (fσ)σ∈Σ with log dimHG◦ = S +O(log |Σ|) and

r◦Ŵ+(G
◦) ≤

∑
σ∈Σ C2

σ

L−
∏⌈D/2⌉
j=1 d2j−1

and Ŵ−(G
◦)/r◦ ≤ L−

⌈D/2⌉∏
j=1

d2j−1

so
Ĉ(G◦)2 ≤

∑
σ∈Σ

C2
σ.

Furthermore, the working bases of G◦ can be generated in time T +O(log |Σ|).

Proof. By Lemma 4.11, since we can generate
∑

i∈[d] Cσi|i⟩ in log d complexity, our upper bounds C±σ
incur logarithmic reflection cost, so we can apply Lemma 4.10.
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4.3 Quantum Divide & Conquer

In this section, we state our time-efficient quantum divide-&-conquer results. For an instance x of a
function fℓ,n, we say that a sub-instance x′ of fℓ′,n′ for some ℓ′ ≤ ℓ and n′ ≤ n is unit-time computable
if any bit x′i of x

′ can be computed as a function of x and i in unit time. The following is a time-efficient
version of Strategy 1 in [CKKD+22]. Note that it is fairly natural to assume φ = φ′(z1, . . . , za)∨ za+1

for some formula φ′, since often za+1 = faux(x) simply handles the base case of the recursion. We
prove the statement for symmetric formulas, however, using Lemma 4.10 instead of Corollary 4.12, a
similar statement, possibly with extra time overhead, holds for any balanced formula φ, as long as we
can account for the possibly more complicated reflection costs.

Theorem 4.13. Fix a function family fℓ,n : Dℓ,n → {0, 1}. Fix unit-time-computable functions
λ1, λ2 : N→ N, and a formula φ on {0, 1}a+1 such that φ = φ′(z1, . . . , za) ∨ za+1 for some symmetric
formula φ′. Suppose {Paux,ℓ,n}ℓ,n∈N is a family of quantum algorithms such that:

• Paux,ℓ,n decides some faux,ℓ,n : Dℓ,n → {0, 1} with time and space complexities Taux(ℓ, n) and
Saux(ℓ, n);

• if ℓ ≤ ℓ0, fℓ,n(x) = faux,ℓ,n(x);

• if ℓ > ℓ0, fℓ,n = φ ◦ (fi)i∈[a+1] where each fi for i ∈ [a] is such that fi(x) = fλ1(ℓ),λ2(n)(x
i)

for some unit-time-computable instance xi of fλ1(ℓ),λ2(n), and fa+1(x) = faux,ℓ,n(x
a+1) for some

unit-time computable instance xa+1 of faux,ℓ,n.

Then there is a bounded-error quantum algorithm that compute fℓ,n with time complexity Õ(T (ℓ, n)),
and space complexity O(Saux(ℓ, n) + log T (ℓ, n)), where for all ℓ > ℓ0:

T (ℓ, n) :=
√
aT (λ1(ℓ), λ2(n))2 + 4Taux(ℓ, n)2 ≤

√
aT (λ1(ℓ), λ2(n)) + 2Taux(ℓ, n)

and for ℓ ≤ ℓ0, T (ℓ, n) = 2Taux(ℓ, n).

We remark that, while we assume the subroutine Paux,ℓ,n has no error, if it has sufficiently small
error inversely proportional to the number of times it is called, the algorithm must still work, as this
cannot be distinguished from having no error. Amplifying a bounded-error quantum algorithm to
have such small error incurs factors logarithmic in the number of times it is called, so 2Taux(ℓ, n)
becomes O(Taux(ℓ, n) log T (ℓ, n)). We stress that these log factors are only acceptable because we do
not recursively call Paux,ℓ,n.

Proof. We will use the shorthand λ(ℓ, n) = (λ1(ℓ), λ2(n)). Let Dφ′ be the depth of φ′, and for
each j ∈ [Dφ′ ], let dj be the number of children of any node at distance j from the leaves. Define

d̄ =
∏⌈Dφ/2⌉
j=1 dj for Dφ′ . Let Taux,0 be an upper bound on Taux(ℓ, n) when ℓ ≤ ℓ0. For all (ℓ, n), let

C−(ℓ, n) be defined recursively, as follows.

C−(ℓ, n) :=

 Taux,0 if ℓ ≤ ℓ0
T (ℓ,n)2

aT (λ(ℓ,n))2

d̄C−(λ(ℓ,n))
+4Taux(ℓ,n)

else.

The proof will be by induction. Specifically, we will show that there is an st-composable subspace
graph Gℓ,n that computes fℓ,n with

1. dimHG ≤ 2S(ℓ,n);

2. Ŵ−(Gℓ,n)/rℓ,n ≤ C−(ℓ, n), and Ĉ(Gℓ,n) ≤ T (ℓ, n) =: C(ℓ, n);

3. log dimHGℓ,n
= Sℓ,n ≤ cD log(2a) + cSaux(ℓ, n) + c log Taux(ℓ, n);

4. and basis generation cost Lℓ,n := Dc′ log(2a) + c log Taux(ℓ, n),

where D is the depth of recursion, and c and c′ are sufficiently large constants.
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Base case: For the base case, suppose ℓ ≤ ℓ0. Then we let Gℓ,n be the subspace graph from
Lemma 3.24 derived from the algorithm Paux,ℓ,n and using αr = 1 for all r. Then Gℓ,n computes faux,ℓ,n
with dimHGℓ,n

≤ c(Saux(ℓ, n) + log Taux(ℓ, n)), and basis generation cost at most c log Taux(ℓ, n), for
sufficiently large constant c. By Lemma 3.24, we also have

Ŵ−(Gℓ,n)/rℓ,n ≤ 2Taux(ℓ, n)/2 ≤ Taux,0, and Ĉ(Gℓ,n) ≤ 2Taux(ℓ, n).

Induction Case: For the induction step, let Gλ(ℓ,n) be the subspace graph whose existence is guar-
anteed by the induction hypothesis. First, we will use Corollary 4.12, where G1, . . . , Ga are each
copies of Gλ(ℓ,n) – so Ci := C(λ(ℓ, n)) = T (λ(ℓ, n)) and L− := C−(λ(ℓ, n)) are known upper bounds on

Ĉ(Gi) and Ŵ−(Gi)/ri, by the induction hypothesis – to get a subspace graph Gφ
′

ℓ,n. In order to apply

Corollary 4.12, we have used the fact that L− does not depend on i. By Corollary 4.12, we have

Ŵ−(G
φ′

ℓ,n)/r ≤ L−d̄ = C−(λ(ℓ, n))d̄ =: C−0 (ℓ, n)

and Ĉ(Gφ
′

ℓ,n)
2 ≤

a∑
i=1

C2
i = aT (λ(ℓ, n))2 =: C0(ℓ, n)

2.

Next, we will use Lemma 4.10, with the formula x0 ∨ x1, and subspace graphs G′0 = Gφ
′

ℓ,n and G′1
a subspace graph computing faux,ℓ,n from Lemma 3.24, using the known upper bounds C0(ℓ, n) and

C−0 (ℓ, n) defined above, and C−1 (ℓ, n) := Taux(ℓ, n) ≥ Ŵ−(G
′
1)r
′
1 and C1(ℓ, n) := 2Taux(ℓ, n) ≥ Ĉ(G′1)

from Lemma 3.24. This gives a subspace graph Gℓ,n computing fℓ,n with

Ĉ(Gℓ,n)2 ≤ C0(ℓ, n)
2 + C1(ℓ, n)

2 ≤ aT (λ(ℓ, n))2 + 4Taux(ℓ, n)
2 = T (ℓ, n)2

Ŵ−(Gℓ,n)/rℓ,n ≤
C0(ℓ, n)

2 + C1(ℓ, n)
2

C0(ℓ,n)2

C−0 (ℓ,n)
+ C1(ℓ,n)2

C−1 (ℓ,n)

≤ T (ℓ, n)2

aT (λ(ℓ,n))

d̄C−(λ(ℓ,n))
+ 4Taux(ℓ,n)2

Taux(ℓ,n)

= C−(ℓ, n).

In order to apply Lemma 4.10, we must be able to generate a state proportional to√
C0(ℓ, n)2

C−0 (ℓ, n)
|0⟩+

√
C1(ℓ, n)2

C−1 (ℓ, n)
|1⟩

in constant complexity. Since the amplitudes are fixed, input-independent values, we can do this with
a single 2-local unitary.

The cost of generating the bases for each of the graphs G1, . . . , Ga is at most

Lλ(ℓ,n) = (D − 1)c′ log(2a) + c log Taux(ℓ, n)

by the induction hypothesis, and so by Corollary 4.12, the cost to generate the bases for Gφ
′

ℓ,n is at
most

c′ log(a) + Lλ(ℓ,n).

The cost to generate the basis for G′1 is at most c log Taux(ℓ, n) ≤ c′ log(a) + Lλ(ℓ,n), by Lemma 3.24.
Then by Lemma 4.10 the cost to generate the basis for Gℓ,n is at most:

c′ log(2) + c′ log(a) + Lλ(ℓ,n) ≤ c′ log(2a) + (D − 1)c′ log(2a) + c log Taux(ℓ, n)

= Dc′ log(2a) + c log Taux(ℓ, n) = Lℓ,n,

as needed. Finally, we note that for all i ∈ [a], by the induction hypothesis

log dimHGi ≤ c(D − 1) log(2a) + cSaux(λ(ℓ, n)) + c log Taux(λ(ℓ, n))

≤ c(D − 1) log(2a) + cSaux(ℓ, n) + c log Taux(ℓ, n)

and so by Corollary 4.12,

log dimH
Gφ′

ℓ,n

≤ c(D − 1) log(2a) + cSaux(ℓ, n) + c log Taux(ℓ, n) + c log(a).
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By Lemma 3.24,
log dimHG′1

≤ cSaux(ℓ, n) + c log Taux(ℓ, n).

Thus, by Lemma 4.10, if c is a sufficiently large constant,

log dimHGℓ,n
≤ c(D − 1) log(2a) + cSaux(ℓ, n) + c log Taux(ℓ, n) + c log(a) + c log(2)

= cD log(2a) + cSaux(ℓ, n) + c log Taux(ℓ, n) = Sℓ,n.

This completes the induction. To complete the proof of the theorem, we first apply Corollary 4.2
to get a subspace graph G′ℓ,n with Ŵ+ ≤ 1, and then apply Theorem 3.13, which turns G′ℓ,n into a
bounded-error quantum algorithm for fℓ,n with time complexity

O
(
Lℓ,n

√
T (ℓ, n)

)
,

and space complexity O(Sℓ,n + log T (ℓ, n)). We complete the proof by noting that

log T (ℓ, n) ≥ log
√
a
D
=
D

2
log a ≥ D

4
log(2a),

so Lℓ,n = O(log(T (ℓ, n))), and Sℓ,n = O(Saux(ℓ, n) + log T (ℓ, n)).

4.4 Switching Networks with Subroutines

The following is similar to Lemma 4.10, except that we generalize to any switching network, not just
those arising from Boolean formulas (series-parallel switching networks), and we specialize to the case
where the composed subspace graphs are of the form in Section 3.5 (this specialization is not necessary,
but it is not clear what we gain from the more general result).

Lemma 4.14. Let G be any switching network computing a Boolean function f , with working bases
that can be generated in time Tbasis. For each e ∈ E, let {U er }Ter=1 be a quantum algorithm computing a
Boolean function fe with bounded error. Let Tmax be an upper bound on Te for all e, and Fx an st-cut-
set of G(x) whenever f(x) = 0. Then there is a subspace graph G◦ computing f ◦(fe)e∈E with complexi-
ties Ŵ+(G

◦) = O
(
maxx∈f−1(1)Rs,t(G(x)) log Tmax

)
and Ŵ−(G

◦) = O
(
maxx∈f−1(0)

∑
e∈Fx

weT
2
e

)
, and

its bases can be generated in time Tbasis +O(log Tmax).

We remark that sometimes a better negative witness for G can be obtained by taking a superpo-
sition of different st-cut-sets. This also gives a better negative witness for G◦, but its form is more
complicated, so we omit describing this.

Proof. For each e ∈ E, let Ge be the subspace graph from Lemma 3.24 derived from the algorithm
{U er }r, using weights αr = r+1. Thus Ge computes fe. We will apply Theorem 4.1 to G, and the Ge.

Positive Analysis: A positive input for f ◦ (fe)e gives rise to a positive input for f – let |ŵ⟩ be a
positive witness for G under that input. This only uses edges that are turned on, so for each e that
is on (i.e. fe = 1), let |ŵe⟩ be a cropped positive witness for Ge. By Theorem 4.1, there is a cropped
positive witness for G◦:

|ŵ◦⟩ :=
∑
e∈E

√
re

2
⟨ ←, e|ŵ⟩|ŵe⟩,

since E = E, where re = 2 is the scaling factor of Ge’s basis. Since G is a switching network, its
positive witness is a unit st-flow, in the sense of (4), so ⟨ ←, e|ŵ⟩ = θ(e)√

we
, so we have:

|ŵ◦⟩ =
∑
e∈E

θ(e)
√
we
|ŵe⟩,

and

Ŵ+(G
◦) ≤ ∥|ŵ◦⟩∥2 =

∑
e∈E

θ(e)2

we
∥|ŵe⟩∥2 =

∑
e∈E

θ(e)2

we
Ŵ+(G

e).
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Because we have set αr = r + 1, by Lemma 3.24, we have

Ŵ+(G
e) ≤

Te∑
r=1

1

r + 1
= O(log Te),

so

Ŵ+(G
◦) ≤

∑
e∈E

θ(e)2

we
log Tmax = Rs,t(G(x)) log Tmax.

Negative Analysis: Similarly, for a negative input to f ◦ (fe)e, let x be its corresponding negative
input to f , and let |ŵA⟩ be a negative witness for G on input x. For each e such that fe = 0, let |ŵeA⟩
be a negative witness for Ge. By Theorem 4.1, there is a cropped negative witness for G◦:

|ŵ◦A⟩ =
∑
e∈E
⟨ ←, e|ŵA⟩|ŵeA⟩.

Since G is a switching network, we can always choose a negative witness of the form

|ŵA⟩ =
∑
e∈Fx

√
we(| →, e⟩ − | ←, e⟩),

where Fx is an st-cut-set of G(x). Then:

Ŵ−(G
◦) ≤ max

x∈f−1(0)

∑
e∈Fx

we ∥|ŵeA⟩∥
2 = max

x∈f−1(0)

∑
e∈Fx

weŴ−(G
e)

≤ max
x∈f−1(0)

∑
e∈Fx

we

Te∑
r=1

(r + 1) = O

(
max

x∈f−1(0)

∑
e∈Fx

weT
2
e

)
.

Basis Generation: By Theorem 4.1, since the bases of Ge can be generated in time O(log Te), the
bases of G◦ can be generated in time Tbasis +O(log Tmax), completing the proof.

Then the main theorem of this section follows directly.

Theorem 4.15. Let G be any switching network computing a Boolean function f , with working bases
that can be generated in time Tbasis. For each e ∈ E, let {U er }

Te
r=1 be a quantum algorithm computing

a Boolean function fe with bounded error. Let Tmax be an upper bound on Te for all e, and Fx an
st-cut-set of G(x) whenever f(x) = 0. Then there is a bounded error quantum algorithm for f with
complexity

Õ

Tbasis√ max
x∈f−1(1)

Rs,t(G(x)) max
x∈f−1(0)

∑
e∈Fx

weT 2
e

 .

Proof. Let G◦ be the subspace graph from Lemma 4.14. By Corollary 4.2, there is a subspace graph
G′, also computing f ◦ (fe)e, whose bases can also be generated in time Tbasis +O(log Tmax), and such
that Ŵ+(G

′) ≤ 1 and Ŵ−(G
′) ≤ Ŵ+(G

◦)Ŵ−(G
◦). Then we can apply Theorem 3.13 to G′ to get a

bounded error quantum algorithm for f ◦ (fe)e with complexity:

O

(
(Tbasis + log Tmax)

√
Ŵ+(G◦)Ŵ−(G◦)

)

= O

(Tbasis + log Tmax)

√
max

x∈f−1(1)
Rs,t(G(x)) max

x∈f−1(0)

∑
e∈Fx

weT 2
e log Tmax

 .
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5 Application to DSTCON

In this section we consider the directed st-connectivity problem. First, we specify the graph access
model. We will work in the adjacency matrix model, where we assume that for a directed graph
G = (V,E) the input is given as an oracle OG that can be queried in unit cost, where for any u, v ∈ V

OG : |u⟩|v⟩|0⟩ 7→

{
|u⟩|v⟩|1⟩ if (u, v) ∈ E
|u⟩|v⟩|0⟩ otherwise.

Without loss of generality, we assume (u, u) ∈ E for any u ∈ V . This doesn’t change the presence or
absence of paths in G.
However, we note that the time complexity 2

1
2
log2 n+O(logn) in Theorem 5.3 also holds for the edge list

model, in which the algorithm can query the i-th out- or in-neighbour of a vertex. That is because
given such access, we can implement a query to OG in poly(n) time and O(log n) space, and poly(n)
factors are suppressed in 2O(logn).

Problem 5.1 (dstcon). Given access to a directed graph G = (V,E) via the oracle OG, and two
vertices s, t ∈ V , decide whether there is a directed path from s to t in G.

There is a classical recursive algorithm for dstcon that operates in the low-space regime due to
Savitch [Sav70]. We first describe the subroutine pathℓ(OG, u, v) that will be called recursively in the
algorithm. This subroutine decides whether there is a path of length at most ℓ from u to v in G. For
ℓ ≥ 2, the subroutine searches over all vertices for some w such that there are paths of length at most
ℓ/2 from s to w and w to t:

Subroutine 1: pathℓ(OG, u, v) for ℓ ≥ 2

Input: Oracle OG, u, v ∈ V
Output: 1 if there is a path of length ≤ ℓ from u to v in G; 0 otherwise.
for w ∈ V do

bw := path(ℓ/2, u, w) ∧ path(ℓ/2, w, v);
end
return ∨w∈V bw;

Next, we describe the base case. When ℓ = 1, the subroutine simply performs a single query OG(u, v)
and outputs:

path1(OG, u, v) =

{
1 if (u, v) ∈ E
0 otherwise.

Then Savitch’s algorithm simply outputs pathn(OG, s, t), where n = |V |, to decide if there is a path
from s to t.

Algorithm 2: Savitch’s algorithm for dstcon

Input: Oracle OG for G = (V,E) with |V | = n, s, t ∈ V
Output: 1 if there is a path from s to t in G; 0 otherwise.
return pathn(OG, s, t);

The following result of Savitch is easy to verify.

Theorem 5.2. Algorithm 2 decides dstcon in time O((2n)logn = 2log
2 +O(logn)) and space O(log2 n).

Next, we show a quantum speedup for Savitch’s algorithm via application of Theorem 4.13.

Theorem 5.3. Let G = (V,E) be a directed graph, |V | = n. Then there exists a recursive quantum

algorithm that decides dstcon on G with bounded error in time Õ((
√
2n)logn) = 2

1
2
log2 n+O(logn) and

space O(log2 n).
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Proof. To show existence of such a quantum algorithm, we will rephrase algorithm 2 in terms of the
condition of Theorem 4.13 and analyze its complexity. We start with defining a function corresponding
to dstcon.

fℓ,n : {0, 1}n2 × {0, 1}logn × {0, 1}logn → {0, 1}

(G, u, v) 7→

{
1 if there is a path from u to v in G of length ≤ ℓ
0 otherwise,

where G encodes a directed graph on n vertices and u,v encode two vertices in G.

Next, we define λ1(ℓ) = ℓ/2 and λ2(n) = n. This specifies the recursion. Finally, we set ℓ0 = 1
and define

faux,1,n(G, u, v) =

{
1 if (u, v) ∈ E
0 otherwise.

and faux,ℓ,n = 0 for all ℓ > 1. Then Paux,ℓ,n is a single edge query when ℓ = 1 and does nothing
otherwise. This implies Taux(ℓ, n) = O(1) and Saux(ℓ, n) = O(log n) as this is the space needed to
write down a vertex name. We have everything to write down fℓ,n recursively, in terms of a symmetric
formula φ′ in a = 2n variables:

fℓ,n(G, u, v) =
∨
w∈V

(fℓ/2,n(G, u,w) ∧ fℓ/2,n(G,w, v))︸ ︷︷ ︸
φ′

∨faux,ℓ,n(G, u, v).

Now we apply Theorem 4.13 to everything described above and conclude that there is a recursive
bounded error quantum algorithm that computes fℓ,n with time complexity Õ(T (ℓ, n)) and space
complexity O(Saux(ℓ, n) + log T (ℓ, n)), such that we have for all ℓ > 1:

T (ℓ, n) =
√
2nT (ℓ/2, n) +O(1),

and T (1, n) = O(1). By solving the recursion, we obtain

T (n, n) = O((
√
2n)logn) = O

(
2

1
2
(log2 n+logn)

)
.

The space complexity of the algorithm for fn,n is thus

O(Saux(n, n) + log T (n, n)) = O(log2 n).

Since fn,n precisely describes the problem dstcon, this concludes the proof.
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A Recovering the Local Structure

In this appendix, we prove that the following spaces are equal.

BG◦ =
⊕
u∈V

Λ̃(Vu)⊕
⊕
e∈E

⊕
u∈V e\{s,t}

Veu +
⊕
e∈E

⊕
e′∈Ee

ΞeBe′ (22)

BG◦ = spanΛ(Ψ−BG) ∪
⋃
e∈E

(Ψ−BGe
\ {|be0⟩, |be1⟩})︸ ︷︷ ︸

=:Ψ−BG◦

∪

 1√
2
(| →, e′⟩+ | ←, e′⟩) : e′ ∈ E◦ =

⋃
e∈E

E
e

︸ ︷︷ ︸
spans Ξ◦B

E
◦=

⊕
e∈E

⊕
e′∈Ee ΞeB

e′

. (23)

Lemma A.1. For any e ∈ E,

spanΨ−BGe
\ {|be0⟩, |be1⟩} ⊕ ΞeB

E
e = BGe ∩ {| ←, se⟩, | →, te⟩}⊥ =

⊕
u∈V e\{s,t}

Veu + ΞeB
E

e .

Proof. It is clear that

spanΨ−BGe
\ {|be0⟩, |be1⟩} ⊕ ΞeB

E
e ⊆ BGe = spanΨ−BGe

⊕ ΞeB
E

e

and also
⊕

u∈V e\{s,t}

Veu + ΞeB
E

e ⊆ BGe =
⊕
u∈V e

Veu + ΞeB
E

e .
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Since we also have everything in spanΨ−BGe
\ {|be0⟩, |be1⟩},

⊕
u∈V e\{s,t} Veu and ΞeB

E
e orthogonal to both

| ←, se⟩ and | →, te⟩, we have:

spanΨ−BGe
\ {|be0⟩, |be1⟩} ⊕ ΞeB

E
e ⊆ BGe ∩ {| ←, se⟩, | →, te⟩}⊥

and
⊕

u∈V e\{s,t}

Veu + ΞeB
E

e ⊆ BGe ∩ {| ←, se⟩, | →, te⟩}⊥.

For the other direction, suppose |ϕ⟩ ∈ BGe ∩ {| ←, se⟩, | →, te⟩}⊥. Since it is in BGe , for some
|ϕ−⟩ ∈ spanΨ−BGe

\ {|be0⟩, |be1⟩} and |ϕ+⟩ ∈ ΞeB
E

e , and scalars a0 and a1, we can express it as:

|ϕ⟩ = a0|be0⟩+ a1|be1⟩+ |ϕ−⟩+ |ϕ+⟩

= a0
1√
2
(| ←, se⟩+ | →, te⟩) + a1

| ←, se⟩ − | →, te⟩+
√
re|b̄1⟩√

2 + re
+ |ϕ−⟩+ |ϕ+⟩.

Since |ϕ−⟩, |ϕ+⟩, and |b̄1⟩ are all orthogonal to both | ←, se⟩ and | →, te⟩, since |ϕ⟩ is as well, we must
have a0 = a1 = 0. Thus |ϕ⟩ ∈ spanΨ−BGe

\ {|be0⟩, |be1⟩} ⊕ ΞeB
E

e .
Similarly, we can express |ϕ⟩ as

|ϕ⟩ = a′0(| ←, s⟩+ |ψ⋆(se)⟩) + a′1(| →, t⟩+ |ψ⋆(te)⟩) + |ϕV ⟩+ |ϕ′+⟩

for |ϕV ⟩ ∈
⊕

u∈V e\{s,t} Veu and |ϕ′+⟩ ∈ ΞeB
E

e . By the same reasoning as above, we must have a′0 = a′1 = 0,

so |ϕ⟩ ∈
⊕

u∈V e\{s,t} Veu + ΞeB
E

e .

Lemma A.2. For any e ∈ E,

Λ̃(| →, e⟩+ | ←, e⟩) ∈ BGe ∩ {| ←, se⟩, | →, te⟩}⊥.

Proof. Since Ves + Vet ⊂ BGe , we have

| ←, se⟩+ |ψ⋆(se)⟩, | →, te⟩+ |ψ⋆(te)⟩ ∈ BGe .

Since | ←, s⟩+ | →, t⟩ ∈ BGe (because Ge is st-composable),

√
reΛ̃(| →, e⟩+ | ←, e⟩) = |ψ⋆(se)⟩+ |ψ⋆(te)⟩

= | ←, se⟩+ |ψ⋆(se)⟩+ | →, te⟩+ |ψ⋆(te)⟩ − (| ←, s⟩+ | →, t⟩),

so Λ̃(| →, e⟩ + | ←, e⟩) ∈ BGe . Clearly Λ̃(| →, e⟩ + | ←, e⟩) is also orthogonal to | ←, se⟩ and | →, te⟩,
concluding the proof.

Lemma A.3. Let Λ̃ be as in (14), and define

B̃G◦ = span Λ̃(Ψ−BG) ∪
⋃
e∈E

(Ψ−BGe
\ {|be0⟩, |be1⟩})︸ ︷︷ ︸

=:Ψ̃−BG◦

⊕
⊕
e∈E

⊕
e′∈Ee

ΞeBe′ .

Then B̃G◦ = BG◦.

Proof. Let |b̃e⟩ = 1√
re
(|ψ⋆(se)⟩ − |ψ⋆(te)⟩). Then

| ←, se⟩ − | →, te⟩+
√
re|b̃e⟩ ∈ Ves + Vet ⊆ span{|be0⟩, |be1⟩, . . . , |beℓ⟩} ⊕ ΞeB

E
e .

Then since the only vector that overlaps | ←, se⟩ − | →, te⟩ is |be1⟩ = 1√
2+re

(| ←, se⟩ − | →, te⟩) +√
re

2+re |b̄
e
1⟩, we must have:

⟨be1|(| ←, se⟩ − | →, te⟩+
√
re|b̃e⟩) =

√
2 + re,
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from which it follows that ⟨b̄e1|b̃e⟩ = 1, and we can write:

|b̃e⟩ = |b̄e1⟩+ |de⟩ (24)

for some |de⟩ ∈ BGe that is orthogonal to both | ←, se⟩ − | →, te⟩ and | ←, se⟩ + | →, te⟩, so by
Lemma A.1, |de⟩ ∈ spanΨ−BGe

\ {|be0⟩, |be1⟩} ⊕ ΞeB
E

e .

Suppose |ψ̃⟩ ∈ B̃G◦ , so we can express it, for some scalars ae, |ψE\E⟩ ∈ ΞE\E and |ψ′⟩ ∈ spanΨ−BGe
\

{|be0⟩, |be1⟩} ⊕ ΞeB
E

e as:

|ψ̃⟩ = Λ̃

(∑
e∈E

ae
1√
2
(| →, e⟩ − | ←, e⟩) + |ψE\E⟩︸ ︷︷ ︸

∈spanΨ−BG

)
+ |ψ′⟩

=
∑
e∈E

ae|b̃e⟩+ |ψE\E⟩+ |ψ
′⟩

=
∑
e∈E

ae|b̄e1⟩+ |ψE\E⟩+
∑
e∈E

ae|de⟩+ |ψ′⟩

= Λ

(∑
e∈E

ae
1√
2
(| →, e⟩ − | ←, e⟩) + |ψE\E⟩︸ ︷︷ ︸

∈spanΨ−BG

)
+

∑
e∈E

ae|de⟩+ |ψ′⟩︸ ︷︷ ︸
∈spanΨ−BGe

\{|be0⟩,|be1⟩}⊕ΞeB
E
e

∈ BG◦ .

(25)

Thus, B̃G◦ ⊆ BG◦ .
For the other direction, suppose |ψ⟩ ∈ BG◦ . Then similar to above, we can express it as

|ψ⟩ = Λ

(∑
e∈E

ae
1√
2
(| →, e⟩ − | ←, e⟩) + |ψE\E⟩︸ ︷︷ ︸

∈spanΨ−BG

)
+ |ψ′⟩

=
∑
e∈E

ae|b̄e1⟩+ |ψE\E⟩+ |ψ
′⟩

=
∑
e∈E

ae|b̃e1⟩+ |ψE\E⟩ −
∑
e∈E

ae|de⟩+ |ψ′⟩

= Λ̃

(∑
e∈E

ae
1√
2
(| →, e⟩ − | ←, e⟩) + |ψE\E⟩︸ ︷︷ ︸

∈spanΨ−BG

)
−

∑
e∈E

ae|de⟩+ |ψ′⟩︸ ︷︷ ︸
∈spanΨ−BGe

\{|be0⟩,|be1⟩}⊕ΞeB
E
e

∈ B̃G◦ .

(26)

Thus BG◦ ⊆ B̃G◦ .

Theorem A.4. Let BG◦ = spanΨBG◦ where ΨBG◦ is as in (19) (see also (23)), and BG◦ as in (17)
(see also (22)). Then BG◦ = BG◦.

Proof. We will show that BG◦ = B̃G◦ , which is sufficient, by Lemma A.3. We first show that B̃G◦ ⊆
BG◦ . First, for any e ∈ E, it follows from Lemma A.1 that

Ψ−BGe
\ {|be0⟩, |be1⟩} ⊕ ΞeB

E
e =

⊕
u∈V e\{s,t}

Veu + ΞeB
E

e ⊆ B′G◦ . (27)

Next, for any |ψ⟩ ∈ Ψ−BG ⊆
⊕

u∈V Vu, we have

Λ̃(|ψ⟩) ∈ Λ̃

(⊕
u∈V
Vu

)
=
⊕
u∈V

Λ̃(Vu) ⊆ B′G◦ . (28)
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From (27) and (28), it follows that B̃G◦ ⊆ BG◦ .
We now show the other direction, BG◦ ⊆ B̃G◦ . As in (27), for any e ∈ E,⊕

u∈V e\{s,t}

Veu + ΞeB
E

e = Ψ−BGe
\ {|be0⟩, |be1⟩} ⊕ ΞeB

E
e ⊆ B̃G◦ . (29)

Next, for any u ∈ V and |ψ⟩ ∈ Vu ⊆ BG = spanΨ−BG ⊕ ΞB
E
, we can write

|ψ⟩ = |ψ−⟩+
∑
e∈E

ae(| →, e⟩+ | ←, e⟩)

for some |ψ−⟩ ∈ spanΨ−BG and scalars ae. Then:

Λ̃(|ψ⟩) = Λ̃|ψ−⟩︸ ︷︷ ︸
∈spanΛ̃(Ψ−BG )⊆B̃G◦

+
∑
e∈E

aeΛ̃(| →, e⟩+ | ←, e⟩). (30)

By Lemma A.2, for each e, Λ̃(| →, e⟩+ | ←, e⟩) ∈ BGe∩{| ←, s⟩, | →, t⟩}⊥, which is equal to spanΨ−BGe
\

{|be0⟩, |be1⟩}⊕ΞeB
E

by Lemma A.1. Since spanΨ−BGe
\{|be0⟩, |be1⟩}⊕ΞeB

E
⊆ B̃G◦ , we have Λ̃|ψ⟩ ∈ B̃G◦ , from

which it follows that
Λ̃(Vu) ⊆ B̃G◦ . (31)

Combining (29) and (31) establishes BG◦ ⊆ B̃G◦ , completing the proof.
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