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Exploring Vulnerabilities of No-Reference Image
Quality Assessment Models: A Query-Based

Black-Box Method
Chenxi Yang, Yujia Liu, Dingquan Li, Tingting Jiang

Abstract—No-Reference Image Quality Assessment (NR-IQA)
aims to predict image quality scores consistent with human
perception without relying on pristine reference images, serving
as a crucial component in various visual tasks. Ensuring the
robustness of NR-IQA methods is vital for reliable comparisons
of different image processing techniques and consistent user
experiences in recommendations. The attack methods for NR-
IQA provide a powerful instrument to test the robustness of NR-
IQA. However, current attack methods of NR-IQA heavily rely
on the gradient of the NR-IQA model, leading to limitations when
the gradient information is unavailable. In this paper, we present
a pioneering query-based black box attack against NR-IQA
methods. We propose the concept of score boundary and leverage
an adaptive iterative approach with multiple score boundaries.
Meanwhile, the initial attack directions are also designed to
leverage the characteristics of the Human Visual System (HVS).
Experiments show our method outperforms all compared state-
of-the-art attack methods and is far ahead of previous black-
box methods. The effective NR-IQA model DBCNN suffers a
Spearman’s rank-order correlation coefficient (SROCC) decline
of 0.6381 attacked by our method, revealing the vulnerability
of NR-IQA models to black-box attacks. The proposed attack
method also provides a potent tool for further exploration into
NR-IQA robustness.

Index Terms—No-reference image quality assessment, black-
box attack, query-based attack, robustness.

I. INTRODUCTION

IMAGE Quality Assessment (IQA) aims to predict image
quality scores consistent with human perception, which

can be categorized as Full-Reference (FR), Reduced-Reference
(RR), and No-Reference (NR) according to the access to
the pristine reference images. Among them, NR-IQA has
witnessed substantial development recently and has emerged
as a suitable method for real-world scenarios [1], [2] because
it does not rely on reference images. NR-IQA models also
serve as a crucial component in various visual tasks, such
as evaluating image processing algorithms [3] and optimizing
image recommendation systems [4]. The robustness of NR-
IQA methods is vital for providing a stable and dependable
basis for comparing different image processing techniques and
ensuring consistent user experiences.

To scrutinize the robustness of NR-IQA models, recent
research has conducted preliminary investigations, shedding
light on the vulnerability of IQA models to various attacks [5]–
[7]. These attack methods are designed to generate adversarial
examples by causing significant deviations in the predicted
quality scores from those of the original samples in two sce-
narios. In a white-box scenario that the entire NR-IQA model
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Fig. 1. An NR-IQA model (DBCNN) is attacked in a black-box scenario. The
top left shows the predicted quality scores by DBCNN on the LIVE dataset
for original images and adversarial examples generated by our attack method.
The bottom left shows the SROCC/PLCC/KROCC before and after the attack.
The right figures show two sample images before and after the attack as well
as the predicted scores.

under attack is available, generating adversarial examples us-
ing gradient-based optimization with the model’s gradients is
straightforward [5], [6], [8]. However, this white-box scenario
becomes unrealistic when the model parameters are unknown
to the attacker. In a black-box scenario, attackers possess
limited knowledge of the NR-IQA model, often confined
to only its output. Korhonen et al. utilized a transfer-based
method employing a substitute model to generate adversarial
examples, which are then transferred to attack unknown target
models [7]. However, the performance of transfer-based black-
box methods is limited, highly depending on the choice of
substitute models and constraints [5].

This situation raises a challenging and intricate question:
How can we attack IQA models in the black-box scenario,
and without using substitute models? A potential resolution is
to leverage query-based black-box attack methods, which are
extensively explored in classification tasks [9], [10]. These
approaches aim to design attack direction with stochasticity
and prior information to generate adversarial examples that
cross the classification boundary (i.e. the prediction of the
attacked model changed).

However, unlike widely studied black-box attacks for
classification problems, attacking NR-IQA presents distinct
challenges. Firstly, quantifying the success of attacks on
regression-based IQA problems is not straightforward. Differ-
ent from classification, which naturally defines a classification
boundary for determining attack success, regression-based
IQA lacks a direct measure of attack “success” due to its
continuous output. Secondly, identifying the attack direction
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becomes particularly challenging when the gradient of an IQA
model is unavailable. Unlike classification tasks, where a small
perturbation like Gaussian noise may easily lead to successful
attacks, the IQA problem demands a more deliberate design
of the attack direction to generate substantial changes in the
predicted quality scores. In our preliminary experiment where
we attacked images for the classification and NR-IQA task
with the Gaussian noise, the misclassification rate achieved
92.6% but the quality score only changed by 2.09 on average,
with the predicted image quality score within the range of
[0, 100]. The result shows that the efficiency of this stochastic
attack direction dropped dramatically in the context of NR-
IQA. This disparity emphasizes the need for a more thoughtful
and delicate design of attack directions in the context of NR-
IQA. Thirdly, NR-IQA tasks are more sensitive to image
quality variation than classification tasks. So attacking NR-
IQA models has a more strict constraint for the perceptual
similarity between the adversarial example and its original
image, which implies that the perturbation is expected to be
imperceptible for humans but could cause misjudgments by
NR-IQA models. These intricate challenges underscore the
significance of developing tailored black-box attack strategies
for NR-IQA methods.

We address these three challenges in this paper. Firstly,
the concept of score boundary is introduced to quantify
the success of individual attacks and systematically intensify
attacks by setting multiple score boundaries, which enables a
more measurable assessment of attack effectiveness. Secondly,
leveraging the sensitivity of deep neural networks (DNNs) to
texture information [11] and sparse noise [12], we extract the
texture and sparse noise from natural images and use them to
design the attack direction. We constrain the attack region to
the edges and salient areas of an image to enhance the efficacy
of the attack. Thirdly, to ensure perturbation invisibility, we
generate adversarial examples with the help of Just Notice-
able Difference (JND) [13]. JND accounts for the maximum
sensory distortion that the Human Visual System (HVS) does
not perceive, and it provides a threshold for perturbation for
each pixel in an image. When the perturbation of each pixel
satisfies the constraint of the JND threshold, the perturbation
of the whole image can be considered invisible to human
eyes. To optimize the final attack, we employ the SurFree
framework [14]. This framework capitalizes the geometric
properties of score boundaries and provides an effective query-
based attack.

The efficacy of our attack method is evaluated on four NR-
IQA methods across two datasets. The assessment employs
three correlation metrics and Mean Absolute Error (MAE)
to quantify the performance of the attack. Additionally, two
perceptual similarity metrics SSIM [15] and LPIPS [16]
are employed to measure the visibility of perturbations. We
compare our approach to three transfer-based attack methods.
The results demonstrate that while maintaining comparable
invisibility of the perturbations, our method achieves superior
attack effects. One intuitive case of our attack performance is
shown in Fig. 1.

Our contributions are as follows:
• A novel query-based black box attack method against

NR-IQA methods is proposed, featuring adaptive iterative
attacks with initial attack direction guidance. To the best
of our knowledge, this is the first work to design the
query-based black-box attack for NR-IQA.

• We propose the concept of score boundary for NR-IQA
attacks and develop adaptive iterative score boundaries to
adjust the attack intensity of different images. With prior
knowledge of NR-IQA, we design initial attack directions
based on the edge and salient areas of the attacked image.
Besides, the constraint of JND is introduced, effectively
reducing the visibility of the perturbation.

• Extensive experiments show our attack achieves the best
black-box performance on different NR-IQA methods,
which reveals the vulnerability of NR-IQA under black-
box attacks. Our exploration of black-box attacks on NR-
IQA provides a convenient tool for further research of
NR-IQA robustness.

II. RELATED WORK

A. Adversarial Attack in Classification Tasks

Adversarial attack is an important problem considering the
security and reliability of models. It has been studied exten-
sively in classification, whose goal is to generate adversarial
examples misclassified by the model, under the constraint
of small perturbations around original images. It can be
categorized into white-box attacks and black-box attacks. In
white-box scenarios, attackers have access to all details of the
target models, including their structures, parameters, and other
relevant information [17], [18]. Most white-box attacks gener-
ate adversarial examples by solving a constrained optimization
problem, where the constraint ensures the similarity between
the original images and the generated examples. Commonly
used conditions for this constraint include ℓ∞ norm [19], ℓ2
norm [20] and others [12], [21].

While in black-box scenarios, attackers possess little knowl-
edge about the target model, often limited to just its out-
put [22], [23]. In practical applications, black-box attacks are
more common and challenging [24]. There are two primary
approaches for designing black-box attacks: transfer-based
methods and query-based methods. Transfer-based methods
first leverage known substitution models to generate adver-
sarial examples, which are then transferred to attack unknown
target models. Papernot et al. [25] train a model to substitute
for the target model, use the substitute to craft adversarial
examples, and then transfer them to target models. On the
other hand, query-based methods directly approximate the
gradient by querying the target model and obtaining its output,
allowing them to design adversarial perturbations based on
the gradient. These methods do not require training a substi-
tute model, focusing instead on direct interactions with the
target model. For instance, Guo et al. [9] propose a strat-
egy where adversarial examples are generated by iteratively
adding or subtracting vectors from a predefined orthonormal
basis, although this method requires a significant number of
queries to ensure attack success. To address the inefficiency
of high query demands, Thibault et al. [14] introduce a
method that capitalizes on the geometric properties of classifier
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decision boundaries to reduce the number of required queries.
Meanwhile, using frequency mixup techniques, Li et al. [10]
effectively generate adversarial examples with limited queries.

B. Image Quality Assessment

IQA plays an important role in evaluating the perceptual
quality of images, aiming to align closely with human visual
judgment, commonly quantified as the Mean Opinion Score
(MOS). IQA models strive to predict image quality in a
cost-efficient manner compared to extensive human rating
processes. Among them, FR-IQA measures the perceptual
difference between the distorted image and its undistorted ver-
sion, while NR-IQA predicts the image quality of a distorted
image with no reference image. Some IQA methods consider
the signal-level information like luminance and edge in the
spatial domain [15], [26] and natural scene statistics in the
frequency domain [27], [28]. FSIM index [26] is an exemplary
method that quantifies image similarity, taking into account
factors like chrominance and phase congruency between a
pristine reference and a distorted image. Furthermore, the
image semantic information is also considered in the IQA
task [1], [29]–[31]. The SFA method [29] designs statistics
derived from features extracted via neural networks trained on
classification tasks. HyperIQA [1] utilizes similar features to
predict parameters of a quality prediction network. DDNet [31]
used a dynamic filtering module to extract content-adaptive
features. An additional dimension in IQA research considers
the JND. It models the minimum visibility threshold of the
HVS, as a critical component in several IQA methods [32],
[33]. Recent years have also seen the exploration of un-
supervised methods [34], [35], multi-modality method [36],
and other innovative techniques, addressing the application
scenarios appearing in recent years.

Distortions in images are typically categorized into synthetic
and authentic distortion. The former is artificially created and
the latter occurs naturally during the image production process.
Authentic distortion has a broader variety and complexity than
synthetic distortion.

C. Adversarial Challenges in Quality Assessment Tasks

For attacking IQA, a general goal is to generate the adver-
sarial example within a small perturbation around the original
image while the image quality score changes a lot against the
original image. In the white-box scenario, Zhang et al. [5]
employ a gradient-based optimization strategy, incorporating
the Lagrangian method with a Full-Reference IQA (FR-IQA)
as a perceptual constraint, to generate adversarial examples;
Shumitskaya et al. [6] propose a universal adversarial perturba-
tion to train a single adversarial perturbation applicable across
an entire dataset. They further propose four different attack
methods with universal adversarial perturbation to verify the
adversarial robustness of IQA models in [37].

In the black-box scenario, Korhonen and You [7] utilize
a substitute model to generate adversarial examples and then
attack target models. The efficacy of such attacks is signifi-
cantly influenced by the choice of the substitute model and the
dataset used for training. For example, when Zhang et al. [5]
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Fig. 2. The framework of the proposed attack method.

demonstrate a notable variance in attack performance against
the CORNIA model [38] depending on the substitute model
employed, illustrating a disparity of 0.1151 in the Spearman’s
Rank-Order Correlation Coefficient (SROCC) when using dif-
ferent substitute models (UNIQUE [39] vs. BRISQUE [40]).

This scenario underlines the necessity for black-box ap-
proaches that operate independently of substitute models,
aiming to mitigate the reliance on specific training datasets
and models. In the domain of Video Quality Assessment
(VQA), Zhang et al. [41] propose a patch-based random search
technique coupled with a score-reversed boundary loss for
executing query-based black-box attacks on videos. While its
score-reversed boundary loss provides effective guidance to
the attack, there is still room for improving the efficiency due
to its patch-based random search.

III. METHODOLOGY

In this section, we will introduce our method in a top-down
order. We will first illuminate the Global-Local optimization
objective of the entire attack process. Then the score boundary
for a single-step attack and progressive score boundaries for
multi-step attacks are defined. Finally, the optimization method
with HVS prior for a single-step attack and adaptive score
boundaries are described in detail. The framework of the attack
is shown in Fig. 2.

A. Global-Local Optimization Objective

To attack an NR-IQA model f , a primary goal is to make
the predicted quality score f(x0 + δ) of the attacked image
deviate from the original score f(x0) as much as possible,
where δ is the perturbation on the image x0. Meanwhile,
the rank correlation of the predicted score with MOS is also
important for NR-IQA, so we also hope to “perceive” rank
correlation through adversarial samples. To disturb the rank
correlation in an image set, we propose a Global-Local (GL)
optimization objective for a more reasonable attack. For an
image set I, we split it into the higher quality part Ih and the
lower quality part Il according to the original image score
f(x0). Our goal involves inducing the model to misjudge
a high-quality image with a lower quality, and vice versa.



4

A larger f(x0) corresponds to a higher quality of x0. The
optimization objective is

max
δ

S(x0) ∗ (f(x0 + δ)− f (x0)) ,

s.t. x0 + δ ∈ DJND(x0),
(1)

where
S(x0) =

{
1, x0 ∈ Il
−1, x0 ∈ Ih

. (2)

And to restrain the visibility of perturbation, the adversarial
sample x0+δ is restrained to the JND neighborhood DJND(x0)
of x0. The neighborhood DJND (x0) of an image x0 could be
written as:

DJND (x0) =
{
x
∣∣ |x(l, j, k)− x0(l, j, k)| < m(l, j, k),

0 ≤ l < H, 0 ≤ j < W, 0 ≤ k < C} ,
(3)

where m(l, j, k) is the minimum visibility threshold at pixel
x0(l, j, k) located on (l, j, k) on image x0 predicted by a JND
model. The height, weight, and channel of x0 are H,W , and
C respectively. The JND model is to estimate the pixel-wise
threshold for an image, the perturbed image cannot be visually
distinguished from the original image x0 if the perturbation
is under the threshold [13].

B. Iterative Score Boundaries for Optimization

To qualify the variation of the predicted quality score during
attacking, we propose the concept of score boundary. For
example, for an image x0 ∈ Il, and maximum and minimum
MOS value MOSmax,MOSmin in the dataset, we set the score
boundary Bl

γ(x0) as

Bl
γ(x0) = {x|f(x) = f(x0) + γ(MOSmax − f(x0))}. (4)

This boundary includes samples with a higher quality score
than x0. Then the attack is γ-success if f(x0 + δ) >
f(x0) + γ(MOSmax − f(x0)). And γ is a scalar to adjust
the distance from x0 to Bl

γ(x0), which corresponds to the
attack intensity. While for x0 ∈ Ih, Bh

γ (x0) = {x|f(x) =
f(x0) + γ(MOSmin − f(x0))}. So we define the adversarial
example x0 + δ is γ-success if:

f(x0 + δ)

{
> f(x0) + γ(MOSmax − f(x0)),x0 ∈ Il
< f(x0) + γ(MOSmin − f(x0)),x0 ∈ Ih

. (5)

With the criterion in Eq. (5), the success of a single-step attack
with intensity γ could be obtained.

Further, to determine the maximum attack intensity of
an image, multiple score boundaries are applied. For
x0 ∈ Il and initial γ0, γ−1, a series of score boundaries
Bl

γ1
(x0), ..., B

l
γN

(x0) are set with γi = γi−1 + (γi−1 −
γi−2), i = 1, ..., N . With the multi-step attacks, a series
of adversarial images x1, ...,xN could be generated, which
satisfy the property that xi is γi-success (i = 1, ...N ). And
xN is used as the final adversarial example for x0. The
algorithm for iterative attacks is shown in Algorithm 1. The
iterative boundaries guarantee the attack intensity of each
iteration is moderate, while multiple boundaries ensure the
considerable attack intensity of the whole attack. Further
adaptive optimization for iterative score boundaries will be
shown in Sec. III-D.

Algorithm 1 Algorithm for Iterative Attacks
Input: Original image x0, maximum number of score bound-
aries N , initial γ0 = 1/100, γ−1 = 0
Output: Adversarial point xN

1: for i← 1, ..., N do
2: γi ← γi−1 + (γi−1 − γi−2)
3: xi, γi ← SingleAttack(xi−1, γi, ...) // Algorithm 2
4: end for
5: return xN

Algorithm 2 SingleAttack (Algorithm for A Single-Step
Attack)
Input: Start point xi−1, original image x0, JND neigh-
bourhood DJND (x0), score boundary Bγi

(x0), image dtex,
maximum search times for a single-step attack Tmax
Output: Adversarial point xi

1: Search times T ← 0
2: Generate Maskedge∪sal(x0)
3: Set initial attack direction

ûi ← τ · dtex ⊙Maskedge∪sal(x0), τ ∼ U(−0.1, 0.1).
4: di ← ||ProjDJND(x0)

(ûi)||,ui ← ProjDJND(x0)
(ûi)/di

5: if xi−1 + diui is not γi-success or di < 1 then
6: T ← T + 1
7: if T > Tmax then
8: // To decrease γi
9: γi ← γi − (γi − γi−1)/2, go to line 1

10: else
11: go to line 2
12: end if
13: end if
14: if xi−1 + diui is (γi + 2(γi − γi−1))-success then
15: // To increase γi
16: γi ← γi + (γi − γi−1)
17: end if
18: Set another stochastic attack direction vi

19: x(θ, i)← di cos θ (ui cos θ + vi sin θ) + xi−1

20: θ∗ ← argmin
θ,x(θ,i) is γi-success

∥x(θ, i)− xi−1∥

21: xi ← ProjDJND(x0)
(x(θ∗, i))

22: return xi, γi

C. Optimization Method for A Single-Step Attack

With the target decomposition in Sec. III-B, the attack
objective of the ith-step attack of x0 could be set with:

Find xi ∈ DJND(x0), subject to xi is γi-success.
To solve this problem, we leverage a query-based black-

box method [14] for classification attack, which reaches low
query amounts in attacking classification tasks by utilizing
geometrical properties of the classifier decision boundaries. In
our attack on NR-IQA, the same analysis could be used. With a
start point xi−1, a preset unit attack direction ui and a distance
di which satisfies xi−1 + diui is γi-success, and a stochastic
unit direction vi orthogonal to ui, the polar coordinate of a
point z near xi−1 could be represented as

z(α, θ, i) = di(1− α)(ui cos θ + vi sin θ) + xi−1, (6)
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where α ∈ [0, 1], θ ∈ [−π, π]. Given α, the trajectory of
z(α, θ, i) is an arc, which is shown as the red arc in the lower
part of Fig. 2 for θ ∈ [0, π/2]. The goal is to choose (α, θ) to
raise the probability of z(α, θ, i) being adversarial. With the
theoretical analysis in [14], when α = 1 − cos θ, probability
of z(α, θ, i) being adversarial reaches maximum. So we mark
z(1− cos θ, θ, i) as the candidate point x(θ, i):

x(θ, i) = di cos θ (ui cos θ + vi sin θ) + xi−1. (7)

The adversarial example xi := x(θ, i) can be solved by

min
x(θ,i)

∥x(θ, i)− xi−1∥ ,

s.t. x(θ, i) ∈ DJND (x0) ,x(θ, i) is γi-success.
(8)

There are three questions in attacking NR-IQA: 1) The rea-
sonable preset direction ui should be deliberately designed to
guarantee an efficient attack. 2) The preset direction vi should
be designed to guarantee the orthogonality with ui. 3) The
generated adversarial example should satisfy the constraint of
DJND, which is difficult in solving Eq. (8).

For the design of attack direction ui, in attacking classi-
fication tasks, a common approach is to employ stochastic
perturbations, such as Gaussian noise, as the attack direction
ui in Eq. (7). However, this strategy, while effective for
classification tasks, often proves inadequate when targeting
NR-IQA models. For instance, when applying the attack
perturbation δ with preset values δ ∼ 0.15 · N (0, 1) to
the starting point x0 (normalized to the range [0, 1]) of the
classification task, we observe a high success rate of 92.6%
for inducing misclassification of x0 + δ in 500 random
trials. However, when utilizing the same attack direction to
target the NR-IQA model HyperIQA, the resulting average
change between f(x0) and f(x0 + δ) is merely 2.09 (within
the range of predicted image scores [0, 100]). The efficiency
of this stochastic attack direction dropped dramatically in
the context of NR-IQA. In our pursuit of a more effective
attack perturbation, we introduce a method that disrupts image
regions that are sensitive to NR-IQA models while ensuring
the perturbation remains invisible to the human eye.

1) Designing the preset direction ui: We generate ui with
three steps. Firstly, we design an initial perturbation dtex,
which contains image texture and sparse noise. Secondly, the
perturbation ûi is obtained by confining dtex to special image
regions. Finally, the attack direction ui is obtained by applying
the projection and normalization operation on ûi.

In the first step, regarding the initial perturbation dtex, we are
inspired by existing work exploring the sensitivity of DNNs to
both image texture [11] and sparse noise [12], [42], and lever-
age the texture information and sparse noise extracted from the
high-quality natural images Inat. The extracted information is
denoted as high-frequency information Ihreq = g(Inat), with
an extraction function g(·). Meanwhile, dtex is crafted to match
the dimensions of the attacked image xi−1. More options for
dtex are explored in Sec. IV-D1.

In the second step, for designing ûi, our idea is to add
disruption to the sensitive image regions for NR-IQA models,
while the disruption is not visible to the human eye. Noting
that the edge region and salient region are often critical

to the judgment of IQA models [26], [33], we introduce a
mask Maskedge∪sal(x0) to confine attacks to these specific
regions, whose role is to preserve perturbations in the edge
and salient regions of x0, and remove perturbations in other
regions. The designed perturbation could be formulated as
ûi = τ · dtex ⊙Maskedge∪sal(x0), where ⊙ is the Hadamard
product, τ is a stochastic scalar drawn from a uniform distri-
bution U(−0.1, 0.1). The τ introduces different intensities in
searching for ûi, enhancing the versatility and adaptability of
the proposed method.

In the third step, to obtain the initial attack direction ui,
ûi is firstly modified by a projection to DJND. The projection
operation is defined as:

ProjDJND(x0)
(ûi) := argmin

ũ,xi−1+ũ∈DJND(x0)

∥ũ− ûi∥. (9)

Then the resulting projected vector is then normalized to
obtain ui:

di =||ProjDJND(x0)
(ûi)||,

ui =
ProjDJND(x0)

(ûi)

di
.

(10)

To ensure ui ∈ DJND, any ûi with di < 1 is discarded and a
new ûi is regenerated.

2) Designing the preset direction vi: For vi, we follow the
practice in [14] and generate vi with the stochastic sample on
the low-frequency subband of the original image. Firstly the
image is transformed to the frequency domain with the full
Discrete Cosine Transform (DCT) as in [43]. Then a fraction
ρ of the transform coefficients is selected in the low-frequency
subband. These selected transform coefficients are reassigned
values uniformly distributed over {−1, 0, 1}, while the remain-
ing coefficients are set to 0. The inverse DCT transform yields
the direction vi. Then, to guarantee the orthogonality between
ui and vi, the Gram-Schmidt process [44] is employed.

3) Generation of adversarial examples with DJND: With ui

and vi, Eq. (8) could be solved with a binary search of θ to

xi = ProjDJND(x0)
(x(θ∗, i)) := argmin

x̃,x̃∈DJND(x0)

∥x̃− x(θ∗, i)∥.

(11)
The algorithm for a single-step attack is shown in Algorithm 2.

D. Adaptive Optimization for Score Boundaries

To fine-tune attack intensity for different images, we lever-
age an adaptive optimization for iterative score boundaries to
set adjustable {γi}Ni=0, which means the score boundaries are
adaptive for each image and each iteration. When the boundary
is too difficult to cross, a closer boundary with a smaller
γ is set. When the boundary is too easy to cross, a more
distant boundary with a larger γ is set. The benefit of adaptive
boundaries is to guarantee a stronger attack, by adjusting the
score boundary dynamically.

For two neighboring score boundaries γi−1, γi of an image,
there are Decreasing and Increasing strategies: a) Decreas-
ing strategy: when maximum search times for initial attack
direction ui is achieved in a single-step attack, we decrease
γi to γi − (γi − γi−1)/2. b) Increasing strategy: when initial
attack direction ui and distance di satisfy that xi−1 + diui is
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(γi +2(γi− γi−1))-success, increase γi to (γi +(γi− γi−1)).
These strategies are outlined in lines 9 and 16 of Algorithm 2.
When the γi is decreased and the difference γi−γi−1 < 1/400,
the attack will be early stopped. This indicates that the attack
intensity is nearing saturation in recent iterations.

IV. EXPERIMENTS

In this section, we first present the setting of attacks, includ-
ing attacked NR-IQA methods, and the experimental results
compared with other methods. Then the effect of different
parts of our attack is explored. Additionally, the visualization
of adversarial examples is presented. Finally, the comparisons
with other attack methods are shown.

A. Experimental Setups

1) NR-IQA Models and Datasets: We choose four NR-
IQA models DBCNN [2], HyperIQA [1], SFA [29], and
CONTRIQUE [34], which are based on the various quality
features extracted by DNN and are all widely recognized
in the NR-IQA field. The LIVE dataset [45] with synthetic
distortions and CLIVE dataset [46] with authentic distortions
are chosen to train and attack NR-IQA models respectively.
80% data of the dataset are split for training and the rest for
testing and the attack. No image content overlaps between
the training and the test set. NR-IQA models are retrained on
LIVE and CLIVE with their public code. The predicted scores
are normalized to [0, 100]. For the attack, we use a random
cropping with 224×224 for each image. And cropped images
are fixed for all experiments.

2) Setting of Attacking Experiments: We set the number
of score boundaries N = 20, with γ0 = 0.01 for Bγ0(x0).
Maximum search times Tmax is set to 200, MOSmax = 100
and MOSmin = 0. The Ih and Il are split by whether
f(x0) exceeds 50. The saliency maps of x0 is predicted
with MBS [47], and edges of x0 are extracted by Canny
operation [48]. In Maskedge∪sal(x0), the pixel with a positive
value in the salient map or edge map of x0 is set to 1 and other
pixels are set to 0. The JND model of Liu et al. [13] is used,
which predicts a single-channel JND map of an image x0. We
subsequently apply this JND map on each color channel of the
image, as the DJND(x0). For the convenience of optimization,
the norm in the optimization target of Eq. (9) and (11) is set
to L2 norm. For Ihfre, two high-quality images I60 and I71
are selected from the KADID-10k dataset [49] as Inat. The
high-frequency information Ihfre is obtained by:

Ihfre = g(Inat) = Inat − gblur(Inat), (12)

where gblur(·) is a Gaussian blur operation with a 3×3 kernel.
The select Inat and their extracted Ihfre are shown in the first
two images in the first row and second rows of Fig. 3. For
each single-step attack, one of two Ihfre is randomly selected
as the initial attack direction dtex. The ρ for the generation of
vi is set to 0.5 in our experiments. For the whole attack of an
image, the maximum number of queries is limited to 8000.

3) Evaluation of Attack Performance: To evaluate the at-
tack performance, we consider the effects of attacks on both
individual images and a set of images. For a single image, the
absolute error between the predicted score of the adversarial
example and MOS is calculated, and it is presented for the
whole test set as MAE. For a set of images, we analyze
the correlation between the predicted quality scores and MOS
in the test set, employing three correlation indices: SROCC,
Pearson linear correlation coefficient (PLCC), and Kendall
rank-order correlation coefficient (KROCC). SROCC measures
the monotonicity of the relation between MOS and predicted
quality scores. PLCC measures the linear correlation between
MOS and predicted quality scores, which accounts for the pre-
diction accuracy. And KROCC measures the rank correlation
with pairwise comparison. For M images within an image set,
with MOS values represented as l1, ..., lM and predicted scores
as f1, ..., fM , the correlation indices are calculated as follows:

SROCC =1−
6
∑M

i=1 d
2
i

M(M2 − 1)
, (13)

PLCC =

∑M
i=1(li − µl)(fi − µf )√∑M
i=1(li − µl)2(fi − µf )2

, (14)

KROCC =
2(Fcon − Fdis)

M(M − 1)
, (15)

where di is the rank difference between the MOS and predicted
score for ith image. µl and µf denote the mean values of MOS
and predicted scores, respectively. And Fcon and Fdis indicate
the count of concordant and discordant pairs. in the image
set. Furthermore, we introduce an analysis of robustness, R, as
initially proposed by Zhang et al. [5], to evaluate the variation
in predicted quality scores before and after the attack:

R =
1

M

M∑
i=1

log

(
max {fi − β1, β2 − fi}

|fi − f⋆
i |

)
, (16)

where fi and f∗
i are the predicted scores of the original and

attacked version of ith image be attacked. M is the total
number of attacked images. And β1 and β2 correspond to
the minimum and maximum values of MOS in the image set.
A smaller R value corresponds to a stronger attack for the
attacker. In our experiments, β1, β2 are 3.42, 92.43 for the
LIVE dataset, and 3.50, 90.55 for the CLIVE dataset. For the
invisibility performance, we use SSIM [15] and LPIPS [16]
to calculate the perceptual similarity between original images
and adversarial examples.

4) Compared Attack Methods: To compare with the exist-
ing method, we choose the only black-box attack method for
NR-IQA from Korhonen and You [7]. It utilizes a variant of
ResNet50 [50] as its substitute model. We use a learning rate
of 2 to generate the adversarial examples with its public code
from the authors and mark it as Korhonen. For a comprehen-
sive comparison, two white-box attack methods trained with
substitute models are compared as transfer-based black-box
methods, marked as UAP [6] and Zhang [5]. For UAP, we use
the perturbation generated with the substitute model PaQ-2-
PiQ [51]. The amplitude for the perturbation is set to 0.024.
For Zhang [5], we re-generate adversarial examples with
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TABLE I
BLACK-BOX ATTACK PERFORMANCES ON FOUR NR-IQA MODELS. THE BEST AND SECOND ATTACK PERFORMANCES ARE MARKED WITH BOLD AND

UNDERLINE.

LIVE CLIVE
Attack Performance Invisibility Attack Performance InvisibilityAttacked

NR-IQA
Attack
Method SROCC↓ PLCC↓ KROCC↓ MAE↑ SSIM↑ LPIPS↓ SROCC↓ PLCC↓ KROCC↓ MAE↑ SSIM↑ LPIPS↓

Original 0.9529 0.9460 0.8058 9.79 - - 0.8133 0.8467 0.6292 8.39 - -
Korhonen 0.8766 0.8671 0.6928 19.43 0.867 0.186 0.6799 0.6856 0.4986 14.73 0.865 0.113
UAP 0.8311 0.8145 0.6409 17.38 0.792 0.141 0.7026 0.7083 0.5196 13.10 0.650 0.159
Zhang - - - - - - - - - - - -

DBCNN

Ours 0.3985 0.4952 0.2802 20.93 0.867 0.082 0.1148 0.1943 0.0854 18.25 0.891 0.100
Original 0.9756 0.9746 0.8714 4.09 - - 0.8543 0.8816 0.6762 8.13 - -
Korhonen 0.9161 0.9007 0.7417 12.33 0.867 0.186 0.6652 0.6630 0.4861 14.38 0.865 0.113
UAP 0.8685 0.8525 0.6959 10.73 0.792 0.141 0.7847 0.7750 0.5909 10.89 0.650 0.159
Zhang 0.9664 0.9557 0.8421 5.99 0.853 0.084 0.8208 0.8428 0.6347 9.26 0.791 0.113

HyperIQA

Ours 0.8334 0.8293 0.6525 13.01 0.868 0.065 0.4055 0.5240 0.2823 14.59 0.879 0.111
Original 0.8425 0.8379 0.6546 11.99 - - 0.8050 0.8322 0.6205 9.23 - -
Korhonen 0.7479 0.7606 0.5585 21.22 0.867 0.186 0.5967 0.6029 0.4249 22.33 0.865 0.113
UAP 0.7458 0.7435 0.5469 13.58 0.792 0.141 0.5999 0.6307 0.4257 14.92 0.650 0.159
Zhang 0.8519 0.8404 0.6612 11.33 0.853 0.084 0.7534 0.7912 0.5677 10.79 0.791 0.113

SFA

Ours 0.5953 0.6578 0.4335 15.47 0.867 0.079 0.3368 0.3818 0.2329 16.52 0.882 0.101
Original 0.8682 0.8386 0.6797 14.73 - - 0.7143 0.7177 0.5216 18.23 - -
Korhonen 0.8042 0.8092 0.6066 16.16 0.867 0.186 0.6748 0.7003 0.4898 15.92 0.865 0.113
UAP 0.7221 0.7171 0.5203 17.64 0.792 0.141 0.7204 0.7264 0.5322 18.12 0.650 0.159
Zhang 0.8213 0.8048 0.6259 16.70 0.853 0.084 0.5614 0.5695 0.3983 16.71 0.791 0.113

CONTRIQUE

Ours 0.5705 0.6063 0.4046 19.40 0.901 0.040 0.0667 0.1234 0.0509 21.26 0.896 0.078

substitute model DBCNN [2] with the perceptual constraint
of LPIPS [16], and Lagrangian multiplier λ = 9× 106.

B. Attacking Results

We present the prediction performance of NR-IQA models
before (marked as Original) and after the attack in Table I. Our
method has superior attack effectiveness under the premise
of maintaining good invisibility. It consistently leads to sub-
stantial performance degradation across not only correlation
metrics but also the MAE. Specifically, the attack on CON-
TRIQUE within the CLIVE dataset results in an SROCC
reduction from above 0.7 to under 0.1, indicating a substantial
disruption in the order relationship within the image set.
Meanwhile, Zhang presents unstable attack performances with
failure in attacking SFA on the LIVE dataset. For instance,
the SROCC for SFA unexpectedly increases from under 0.85
before the attack to above 0.85 after the attack. The Korhonen
method performs a better MAE value than our attack in
targeting SFA because the substitute model it used is similar
to the model used in SFA. But our method still achieves better
SROCC/PLCC/KROCC performance.

Attack performance compared with the R metric is shown
in Table II. Our method shows superior results, either ranking
the best or second-best in attacking all four NR-IQA models. It
achieves an R value of 0.826 attacking DBCNN on the CLIVE
dataset, significantly surpassing the second-best method by
over 0.14. When considering the SFA, we observe that the
Korhonen method attains a lower R value on both datasets.
This can be explained by the similarity between the substitute
model employed by Korhonen and the model utilized in SFA.

For the robustness of NR-IQA models, all models present
the vulnerability to black-box attacks on both synthetic dis-
tortions in the LIVE dataset and authentic distortions in

TABLE II
ATTACK PERFORMANCE COMPARISON WITH THE R METRIC. THE BEST

AND SECOND PERFORMANCES ARE MARKED WITH BOLD AND
UNDERLINE.

Attacked
NR-IQA

Attack
Method

Attack Performance (R↓)
LIVE CLIVE

DBCNN

Korhonen 1.571 0.982
UAP 0.942 1.805
Zhang 1.544 1.185
Ours 0.869 0.826

HyperIQA

Korhonen 0.987 0.762
UAP 0.870 1.153
Zhang 1.403 1.220
Ours 0.982 0.890

SFA

Korhonen 0.654 0.495
UAP 1.168 0.866
Zhang 1.510 1.107
Ours 0.843 0.887

CONTRIQUE

Korhonen 1.516 1.123
UAP 1.256 1.038
Zhang 1.537 1.064
Ours 1.058 0.851

the CLIVE dataset, which alarms the necessity to explore
the security of NR-IQA. Among the four NR-IQA models,
DBCNN and SFA suffer the most performance degradation
with low correlation metrics, MAE, and R value. Meanwhile,
NR-IQA models are less robust against attacks on images with
authentic distortions compared to synthetic ones. This could
be attributed to the more complex and variable patterns in
authentic distortions, presenting an easier target for attacks. It
is worthy to be further explored in future work.
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C. Analysis of Adaptive Iterative Score Boundaries
In this subsection, we explore the impact of proposed adap-

tive iterative score boundaries, namely “iterative boundaries”
and “adaptive optimization”. The experiments are conducted
on attacking the DBCNN model within the LIVE dataset.

1) Iterative Boundaries Analysis: Adversarial examples are
generated with different numbers of adaptive score boundaries.
In part B of Table III, the number N of score boundaries
directly affects the intensity of the attack. Totally, an increase
in N correlates with a heightened attack intensity. This cor-
relation underscores the direct impact of iterative numbers on
the intensity of adversarial examples generated.

TABLE III
BLACK-BOX ATTACK PERFORMANCE WITH DIFFERENT SETTINGS OF

SCORE BOUNDARIES. EXPERIMENTS ARE CONDUCTED ON ATTACKING
THE DBCNN MODEL WITHIN THE LIVE DATASET.

Setting Attack Performance Invisibility
SROCC↓ MAE↑ SSIM↑ LPIPS↓

A. Original - 0.9529 9.79 - -

B. #Score
Boundaries

N = 5 0.8147 16.55 0.900 0.055
N = 10 0.5042 20.50 0.864 0.108
N = 20 0.3985 20.93 0.867 0.082
N = 40 0.3963 21.74 0.855 0.090

C. Adaptive
Boundaries

Fixed 0.8849 15.17 0.919 0.061
Adaptive 0.3985 20.93 0.867 0.082

2) Adaptive Optimization Analysis: Fixed boundaries with
γi = 0.01i, i = 1, ..., N are attempt comparing with adaptive
optimization. N is set to 20. Results are shown in part C of
Table III. In contrasting fixed boundaries with adaptive opti-
mization, we observe that fixed boundaries, despite resulting
in less perceptible perturbations, generally yield inferior attack
performance. Adaptive optimization, where γi is dynamically
adjusted across images and iterations, distinctly enhances
attack intensity. This adaptability ensures that each attack is
optimally tailored to a different target image, facilitating a
stronger attack intensity.

D. Analysis of Different Settings for Initial Perturbation dtex

For the initial perturbation dtex in Sec. III-C, the high-
frequency information I freq is employed. Different settings for
dtex are explored by attacking the DBCNN model within the
LIVE dataset.

1) Different Options for dtex: There are different options for
dtex, like natural images Inat and high-frequency information
Ihfre. We verify the effect of different options for dtex: utilizing
Inat or Ihfre as dtex. For Inat, four high-quality images are
randomly selected from the KADID-10k dataset, as shown in
the first two images in the first row of Fig. 3, and one of them is
randomly chosen as the dtex in a single-step attack. For Ihfre,
the high-frequency information extracted from the first two
images in Fig. 3 are used, and one of them is randomly chosen
as the dtex in a single-step attack. The attack performance is
shown in the first part of Table IV. Utilizing Inat as the dtex
proves to be effective to some degree, which makes SROCC
decrease by around 0.15. Using Ihfre extracted from the same
natural images achieves much better attack performance. It
is attributed to the role of image texture and sparse noise in
high-frequency images.

TABLE IV
BLACK-BOX ATTACK PERFORMANCE WITH DIFFERENT SETTINGS FOR
dTEX . EXPERIMENTS ARE CONDUCTED ON ATTACKING THE DBCNN

MODEL WITHIN THE LIVE DATASET.

Setting Attack Performance Invisibility
SROCC↓ MAE↑ SSIM↑ LPIPS↓

A. Original - 0.9529 9.79 - -
B. Options
of dtex

Inat 0.7925 16.95 0.907 0.039
Ihfre 0.3985 20.93 0.867 0.082

C.
Components
of dtex

Sparse Noise 0.7930 15.62 0.928 0.030
Image Texture 0.4086 20.67 0.869 0.102

Both 0.3985 20.93 0.867 0.082

TABLE V
THE MEAN AND STANDARD DEVIATION OF ATTACK PERFORMANCE

MATRICES AND INVISIBILITY MATRICES WITH 10 IHFRE RELATED TO
DIFFERENT CONTENTS. THE EXPERIMENTS ARE CONDUCTED ON
ATTACKING THE DBCNN MODEL WITHIN THE LIVE DATASET.

High-Frequency
Image Name

Attack Performance Invisibility
SROCC↓ MAE↑ SSIM↑ LPIPS↓

Original 0.9529 9.79 - -
I60 0.5848 19.89 0.890 0.070
I71 0.5263 19.40 0.876 0.070
I03 0.5456 20.04 0.885 0.068
I52 0.6494 18.46 0.898 0.055
I66 0.5339 20.18 0.887 0.069
I35 0.6461 19.35 0.899 0.065
I36 0.5964 19.44 0.883 0.068
I31 0.5757 20.23 0.894 0.066
I77 0.4843 20.61 0.877 0.070
I22 0.4121 21.00 0.894 0.067

Mean 0.5555 19.86 0.888 0.067
Std 0.0723 0.73 0.008 0.004

2) Different Contents Related to Ihfre: When using Ihfre =
g(Inat) as dtex, whether the image content of Inat influences
attack performance and invisibility of adversarial attacks? We
randomly select 10 high-quality images Inat with different
image contents from the KADID-10K dataset, as shown in
Fig. 3, which vary from scenarios and contents. Their cor-
responding Ihfre are regarded as ten different dtex. The same
test set within the LIVE dataset is attacked ten times with
these different dtex respectively. As shown in Table V, the
standard deviations of SROCC and MAE are merely under 0.1
and 1, which implies the variations among different dtex are
remarkably low. Meanwhile, the variation of SSIM and LPIPS
are also minimal. It implies the image content of high-quality
images has little effect on the performance and invisibility of
the attack.

3) Image Texture vs. Sparse Noise in Ihfre: As shown in
Fig. 3, Ihfre is composed of two components: image texture
and sparse noise. When using Ihfre as dtex, what are the
effectiveness of different components of Ihfre? To examine it,
we segment1 the high-freq image Ihfre into image texture and
sparse noise, and regard them as the initial perturbation dtex
respectively. The high-quality images I60 and I71 are selected
from the KADID-10k dataset [49] as Inat. The result of attack-
ing DBCNN on the LIVE dataset is shown in Table IV. Both
image texture and sparse noise contained in Ihfre are effective
for attacking. Image texture witnesses a small SROCC and

1The segmentation was done manually on https://segment-anything.com.
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I60

I77

I03 I52 I66

I35 I36 I31

I71

I22

Fig. 3. High-quality images randomly selected from the KADID-10k dataset in the first/third row, their names are labeled in the top left corner. The
corresponding extracted texture and noised images are in the second/fourth row.

larger MAE value, which implies it plays a more important
role. Meanwhile, when both image texture and sparse noise are
utilized (i.e. the whole Ihfre is used), the attack performance
achieves the best among them. It confirms the role of image
texture and sparse noise in high-frequency images when used
as the initial attack direction.

E. Ablation Study

To examine the effectiveness of different parts of our
attack method, we conduct a detailed performance analysis
by attacking the DBCNN model within the LIVE dataset for
different settings in Table VI. The original performance on
unattacked images is shown in part A of Table VI.

TABLE VI
BLACK-BOX ATTACK PERFORMANCE WITH DIFFERENT SETTINGS. THE
EXPERIMENTS ARE CONDUCTED ON ATTACKING THE DBCNN MODEL

WITHIN THE LIVE DATASET.

Setting Attack Performance Invisibility
SROCC↓ MAE↑ SSIM↑ LPIPS↓

A. Original - 0.9529 9.79 - -
B. Operation on
Initial Attack
Direction

Edge 0.4650 20.81 0.878 0.093
Sal. 0.7207 17.14 0.900 0.076

Edge+Sal. 0.3985 20.93 0.867 0.082
C. Strategy for
Optimization

Incr. 0.8801 20.54 0.893 0.098
GL 0.3985 20.93 0.867 0.082

D. Constraint
of JND

w/o JND -0.2989 29.91 0.729 0.212
with JND 0.3985 20.93 0.867 0.082

1) Effect of Maskedge∪sal in Sec. III-C: The employment of
edge mask and saliency mask operation confine perturbations
to specific regions, as detailed in sec. III-C. The effect of these
operations (marked as Edge and Sal. respectively) are explored
in part B of Table VI. Compared to the original performance,
both operations lead to an effective attack. Only using the edge
mask performs a more important role with an MAE above 20.
Utilizing both masks together yields the most potent attack.

2) Effect of GL Optimization in Sec. III-A: The GL op-
timization strategy, formulated in Eq. (1), aims to attack
high-quality images to obtain lower quality scores and vice
versa. To verify the effect of GL optimization, we compare it
with an increasing strategy, as recommended in [6], [7]. The
increasing strategy aims to obtain higher quality scores for
all attacked images (marked as Incr.). The results are shown
in part C of Table VI. Both Incr. and GL strategies provide
effective attacks compared to the original performance, with
a larger MAE value compared to the original performance.
Meanwhile, the employment of GL optimization provides a
dramatic decline in SROCC. It is primarily attributed to, in GL
optimization, the different strategies for higher/lower quality
images significantly altering the ranking of predicted scores
after the attack.

3) Effect of JND Constraint in Sec. III-C: The JND con-
straint in Sec. III-C is designed to preserve the quality of
adversarial examples, ensuring their perceptual invisibility. As
shown in part D of Table VI, the absence of this constraint
significantly compromises the attack’s invisibility, highlighting
the JND constraint’s critical role in balancing effectiveness
with imperceptibility.

F. Visualization of Adversarial Examples

The imperceptibility of perturbation is an important part of
the adversarial attack. We guarantee it with the JND constraint.
Meanwhile, to verify the effectiveness of the JND constraint,
we calculated the perceptual similarity between the adversarial
example and its original image with two metrics.

For an intuitive exhibition, we show the visualization of
adversarial examples generated on the LIVE and CLIVE
datasets in Fig. 4 and Fig. 5, respectively. It is noticeable our
adversarial examples show good similarity with the original
images. The perturbations generated by our method are more
concentrated in the high-frequency region, like the rocks in
Fig. 4 (c), and the black wires in Fig. 5 (b). Other methods
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Original: 71.1 Korhonen: 71.9 UAP: 68.9 Zhang:  77.6 Ours: 64.6(a) DBCNN

Original: 70.5 Korhonen: 76.8 UAP: 50.8 Zhang:  60.2 Ours: 50.5(b) HyperIQA

(c) SFA

(d) CONTRIQUE

Original: 36.8 Korhonen: 58.2 UAP: 34.0 Zhang:  31.6 Ours: 52.5

Original: 39.2 Korhonen: 34.2 UAP: 40.0 Zhang:  42.3 Ours: 47.2

0.866

0.941 0.849 0.931 0.934

0.737 0.824 0.874

0.491 0.024 0.625 0.889

0.827 0.734 0.805 0.970

Original: 88.8 Korhonen: 90.7 UAP: 64.4 Zhang:  76.1 Ours: 67.3(b) HyperIQA

0.957 0.643 0.736 0.858

jpeg/img198 

Original: 72.0 Korhonen: 72.8 UAP: 67.1 Zhang:  80.7 Ours: 63.9(a) DBCNN

0.913 0.420 0.548 0.717

Fig. 4. Adversarial examples from different attack methods on the LIVE dataset. Each row shows one attacked NR-IQA model, and each column corresponds
to one attack method. The predicted quality score is shown on the top of each image. The SSIM value between the adversarial example and the original
image is shown at the bottom of each image. Our method is marked with bold.

Original: 70.9 Korhonen: 71.8 UAP: 70.1 Zhang:  74.9 Ours: 62.2(a) DBCNN

Original: 65.2 Korhonen: 68.7 UAP: 63.9 Zhang:  69.1 Ours: 57.1(b) HyperIQA

(c) SFA

(d) CONTRIQUE

Original: 69.8 Korhonen: 87.9 UAP: 86.2 Zhang:  71.2 Ours: 91.3

Original: 34.1 Korhonen: 27.0 UAP: 34.3 Zhang:  38.4 Ours: 38.6

0.907 0.810 0.811 0.942

0.811 0.375 0.559 0.756

0.863 0.904 0.834 0.960

0.911 0.501 0.416 0.807

(c) SFA Original: 83.2 Korhonen: 92.9 UAP: 78.4 Zhang:  87.3 Ours: 70.5

0.862 0.895 0.784 0.917

973

Original: 65.2 Korhonen: 68.7 UAP: 63.9 Zhang:  69.1 Ours: 57.1(b) HyperIQA

0.811 0.375 0.559 0.756

Fig. 5. Adversarial examples from different attack methods on the CLIVE dataset. Each row shows one attacked NR-IQA model, and each column corresponds
to one attack method. The predicted quality score is shown on the top of each image. The SSIM value between the adversarial example and the original
image is shown at the bottom of each image. Our method is marked with bold.
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tend to have more perturbations in the low-frequency region,
like the sky in Fig. 4 (c), and the wall in Fig. 5 (b), which
are easier to be captured by the human eye. It implies the
necessity of our constraint with Maskedge∪sal. On the other
hand, our attack performs a good invisibility on the blurred
images like Fig. 4 (c) and Fig. 5 (d). In contrast, the other
three attack methods generate textures that appear unnatural
in these images, resulting in poor invisibility.

G. Comparison with Other Attack Methods

1) Comparison with Black-Box Attack in Image Classifi-
cation Task: Although there are many existing query-based
black-box attack methods proposed for the image classification
task. They face the problem that classification boundaries can
not be transferred to NR-IQA tasks and the querying without
any prior is inefficient.

To compare our attack method with existing black-box
attacks in classification tasks, we adopt a classical query-based
black-box attack method SimBA [9] to the attack of NR-IQA.
SimBA uses pixel-wise search to decrease the probability of
correct classification predicted by the attacked model. To adopt
SimBA for attacking NR-IQA, we utilize the optimization
objective in Eq. (1). The loss function is:

J(x0,d) = S(x0) ∗ (f(x0 + d)− f (x0)),

s.t. x0 + d ∈ DJND(x0),
(17)

where
S(x) =

{
−1, x ∈ Il
1, x ∈ Ih

. (18)

The adopted algorithm SimBA-IQA is shown in Algorthm 3.
We use step size ϵ = 20/255 for SimBA-IQA. The Cartesian
basis of orthogonal search vectors Q is selected, which corre-
sponds to each iteration we are increasing or decreasing one
color of a single randomly chosen pixel.

The performance when attacking DBCNN on the LIVE
dataset is shown in Table VII. Within the same number
of queries, SimBA-IQA obtains substantially weaker attack
intensity than our attack. With increasing the number of
queries to 20, 000, the attack intensity of SimBA-IQA is
improved, but it is still weaker than our attack, which is only
8, 000 query times used. Though SimBA-IQA guarantees a
better SSIM value than ours, visual results (Fig. 6) indicate
that human observers can not notice the difference between
ours and SimBA-IQA. SimBA-IQA performs a low efficiency
in attacking NR-IQA, cause it does not consider the prior
information for attacking NR-IQA, and it uses the pixel-
wise attack mechanism. Meanwhile, the set of initial attack
directions and the optimization with SurFree in our attack
method guarantee both effective attack intensity and a low
number of queries.

2) Comparison with Black-Box Attack in VQA Task: In the
field of VQA, Zhang et al. [41] propose a black-box attack
method for videos. It employs a patch-based random search
method, to assign a universal perturbation m to randomly
selected patches across video frames. Each element in m is
independently sampled from a discrete set {+γ,−γ}. Addi-
tionally, a score-reversed boundary loss is used to mislead

Algorithm 3 Algorithm for SimBA-IQA
Input: Original image x0, the set of orthogonal search vectors
Q, and the step size ϵ
Output: Adversarial example x

1: d← 0
2: Ĵ ← J(x0,0)
3: while T < Tmax do
4: Pick randomly without replacement: q ∈ Q
5: for α ∈ {ϵ,−ϵ} do
6: J ′ = J(x0, αq)
7: if J ′ < Ĵ then
8: d← d+ αq
9: Ĵ ← J ′

10: end if
11: end for
12: end while
13: return x0 + d

TABLE VII
PERFORMANCE COMPARISON WITH BLACK-BOX METHOD SIMBA-IQA.
EXPERIMENTS ARE CONDUCTED ON ATTACKING THE DBCNN MODEL

WITHIN THE LIVE DATASET.

Attack
Method #Queries Attack Performance Invisibility

SROCC↓ MAE↑ SSIM↑ LPIPS↓
Original - 0.9157 12.07 - -
SimBA-IQA 8,000 0.7713 16.23 0.956 0.006
SimBA-IQA 20,000 0.7127 17.77 0.946 0.007
Ours 8,000 0.3985 20.93 0.867 0.082

the VQA model to inaccurately predict quality scores: lower
scores for high-quality videos and vice versa. The difference
between [41] and our attack is the perturbation generation
strategy. Unlike a universal perturbation, our strategy leverages
specific characteristics of the image content, such as texture
or saliency information, to craft perturbations, which are more
efficient and effective.

To evaluate our proposed attack against this method, we
adopt it with the NR-IQA task, denoted as PatchAttack-IQA.
In this adaptation, the height and width of the universal

Original: 30.5 SimBA-IQA: 54.0 Ours: 60.9
(a) DBCNN

Original: 96.2 Ours: 69.8

0.978 0.910

0.916 0.843

SimBA-IQA: 79.5

Fig. 6. Adversarial examples generated from SimBA-IQA and our attack
against DBCNN on the LIVE dataset. The quality score predicted by the
DBCNN/SSIM value is on the top/bottom of the images. Although the SSIM
value of SimBA-IQA is a little higher, we can hardly distinguish the difference
between adversarial samples generated by ours and SimBA-IQA.
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perturbation m are set to 14× 14, with γ set to 12/255. The
performance when attacking DBCNN on the LIVE dataset
is shown in Table VIII. PatchAttack-IQA shows effective
attack performance with a decline of SROCC with near 0.08
when the number of queries is 8, 000. Meanwhile, under the
same number of queries, our attack shows a better attack
performance with a decline of SROCC exceeding 0.6. With
increasing the number of queries to 40, 000, the attack inten-
sity of PatchAttack-IQA increased but was still weaker than
our method. Though PatchAttack-IQA utilizes a score-reversed
boundary loss similar to our GL optimization, its performance
in the NR-IQA context is notably limited. This limitation
can be attributed to its simplistic perturbation generation
strategy, where no prior information on images is taken into
consideration. Conversely, our method shows a more efficient
attack with better invisibility.

TABLE VIII
PERFORMANCE COMPARISON WITH THE BLACK-BOX METHOD

PATCHATTACK-IQA. EXPERIMENTS ARE CONDUCTED ON ATTACKING
THE DBCNN MODEL WITHIN THE LIVE DATASET.

Attack
Method #Queries Attack Performance Invisibility

SROCC↓ MAE↑ SSIM↑ LPIPS↓
Original - 0.9529 9.79 - -
PatchAttack-IQA 8, 000 0.8739 12.06 0.786 0.136
PatchAttack-IQA 40, 000 0.8579 11.18 0.784 0.140
Ours 8, 000 0.3985 20.93 0.867 0.082

V. CONCLUSION

In this paper, we propose the query-based black-box attack
for NR-IQA for the first time. We propose the definition of
score boundary and leverage an adaptive iterative approach
with multiple score boundaries. Meanwhile, the design of
attack directions ensures the effectiveness and invisibility
of the attack. With the attack, the robustness of four NR-
IQA models is examined. It reveals the vulnerability of NR-
IQA models to black-box attacks and gives a clue for the
exploration of the robustness of NR-IQA models.
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