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Variational quantum algorithms (VQAs) have demonstrated considerable potential in solving NP-
hard combinatorial problems in the contemporary near intermediate-scale quantum (NISQ) era. The
quantum approximate optimisation algorithm (QAOA) is one such algorithm, used in solving the
maximum cut (Max-Cut) problem for a given graph by successive implementation of L quantum
circuit layers within a corresponding Trotterised ansatz. The challenge of exploring the cost function
of VQAs arising from an exponential proliferation of local minima with increasing circuit depth has
been well-documented. However, fewer studies have investigated the impact of circuit depth on
QAOA performance in finding the correct Max-Cut solution. Here, we employ basin-hopping global
optimisation methods to navigate the energy landscapes for QAOA ansätze for various graphs, and
analyse QAOA performance in finding the correct Max-Cut solution. The structure of the solution
space is also investigated using discrete path sampling to build databases of local minima and the
transition states that connect them, providing insightful visualisations using disconnectivity graphs.
We find that the corresponding landscapes generally have a single funnel organisation, which makes
it relatively straightforward to locate low-lying minima with good Max-Cut solution probabilities.
In some cases below the adiabatic limit the second lowest local minimum may even yield a higher
solution probability than the global minimum. This important observation has motivated us to
develop broader metrics in evaluating QAOA performance, based on collections of minima obtained
from basin-hopping global optimisation. Hence we establish expectation thresholds in elucidating
useful solution probabilities from local minima, an approach that may provide significant gains in
elucidating reasonable solution probabilities from local minima.

I. INTRODUCTION

The initial setback of implementing practical quan-
tum algorithms utilising the quantum phase esti-
mation (QPE) architecture onto current-day near
intermediate-scale quantum (NISQ) devices [1–3],
which typically possess short decoherence times [4]
and significant quantum noise [5], has prompted the
rapid development of variational quantum algorithms
(VQAs) with shorter quantum circuit depths [6–8].
VQAs typically operate within a hybrid classical-
quantum optimisation framework [9], where an initial
quantum state is evolved by a parameterised circuit
ansatz on a quantum device. After the final evolved
wavefunction is measured, a classical optimiser evalu-
ates the cost function from the measurement and sub-
sequently suggests new parameters that are fed back
into the parameterised quantum circuit. This inter-
face between classical and quantum computers iter-
ates until a suitable convergence criterion is attained.
VQAs have proved to be surprisingly robust in tack-
ling various sources of noise attributed to NISQ de-
vices, such as decoherence [10] and depolarisation [11].
These properties are ascribed to the innate variational
nature acting as a parametric lever, which can be
flexibly adjusted even under noisy environments [12].
Coupled with the recent advances in error-mitigation
methods [13–15], it is anticipated that VQAs will en-
able the realisation of practical quantum advantage
before the advent of fault-tolerant devices equipped
with error-correction protocols [16].

The quantum approximate optimisation algorithm
(QAOA) is a VQA that monotonically improves in
performance as the number of quantum circuit lay-
ers in the ansatz increases [17]. Variational quan-
tum eigensolver (VQE) algorithms typically utilise the
global minimisation of the cost landscape directly as

the solution of interest [18]. In contrast, QAOA uses
the resulting final wavefunction to obtain approximate
solutions based on the states in the computational ba-
sis with the highest frequency when measurement af-
ter circuit evolution is carried out. Hence QAOA is
a particularly attractive algorithm for solving combi-
natorial optimisation problems, such as Max-Cut [19],
with promising applications in portfolio optimisation
[20] and chemistry [21, 22].

The expansion of VQAs has also motivated the
study of their potential shortcomings in solving prac-
tical large-scale problems from a software perspective.
In particular, for various VQA ansätze there is an ex-
ponential growth in the barren plateau problem as
the number of qubits and circuit layers required to
encode a given problem increases [23–25]. Recently,
more insight has also been gained into the challenges
of exploring the cost landscapes of VQAs that arise
from a proliferation in the number of local minima
and other stationary points as the complexity of the
problem increases [26, 27]. However, further analy-
sis of the organisation of the global cost landscapes
of VQAs, and how this structure impacts the qual-
ity of the solutions obtained, is needed, especially for
QAOA [28, 29].

Here, we seek to address these gaps in understand-
ing using the well-established theory and associated
computational methodology of molecular energy land-
scapes [30, 31]. We characterise the cost optimisa-
tion landscapes of QAOA for various weighted and
unweighted graphs in solving the Max-Cut problem
using basin-hopping global optimisation methods [32–
34] to locate global minima, and discrete path sam-
pling [35, 36] to create connected databases of minima
and the transition states that connect them. Recently,
energy landscape techniques have demonstrated con-
siderable utility for quantum computing in the anal-
ysis of hardware-efficient ansätze for the VQE algo-
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rithm [37], and optimisation of electronic wavefunc-
tions in a combined discrete space of operators and
continuous parameter amplitudes [38]. Our new re-
sults for QAOA show that the solution landscapes
below the adiabatic limit generally possess single-
funnelled structures associated with self-organising
systems where locating the global minimum is rela-
tively straightforward [30, 39, 40]. Furthermore, we
find that local minima sufficiently close in energy to
the global minimum may also exhibit good solution
probabilities for the Max-Cut problem. In some in-
stances, the second lowest minimum has a higher so-
lution probability than the global minimum, high-
lighting the importance of studying the VQA solu-
tion landscape globally. This observation leads us to
introduce metrics that take into account the distri-
bution of minima in evaluating the performance and
robustness of QAOA. We also utilise the convex hull
of the solution space in estimating expectation cut-
offs for the location of local minima with reasonable
solution probabilities. We hope that these techniques
can advance the feasibility of implementing QAOA for
problems with numerous local minima in noisy envi-
ronments.

II. METHODOLOGY

Given an undirected graph G = (V,E), with
weights wij assigned to edges eij ∈ E for connected
vertices i, j ∈ V , the Max-Cut problem seeks to par-
tition V into two distinct sets such that the sum of
weights between the two sets is maximised. If wij = 1
for all eij , then G is said to be an unweighted graph;
otherwise G is a weighted graph. It follows that the
Max-Cut problem can be mapped to a two-spin Ising-
type cost Hamiltonian ĤC corresponding to N imple-
mentable qubits:

ĤC =
1

2

∑
eij∈E

wij(Zi ⊗ Zj), (1)

where the states |s⟩ = {|α⟩ , |β⟩}⊗N encode the de-
sired solution strings to the Max-Cut problem, with
|α⟩ = |0⟩ if and only if |β⟩ = |1⟩, and vice versa. Thus,
the aim of QAOA is to approximate the ground-state
energy or the lowest eigenvalue of ĤC via a suitable
ansatz with unitary operator Û(θ) to evolve an initial
state |ψ0⟩, and subsequently use the final evolved state

|Ψ(θ)⟩ = Û(θ) |ψ0⟩ to approximate |s⟩. This objective
can be achieved on a quantum device by performing
a certain number of shots per experiment and mea-
suring all qubits in the computational basis, taking
the state possessing the greatest number of shots to
best approximate |s⟩ for that experiment. We seek to
simulate this procedure classically by considering the
probability of measuring the state |s⟩ in the compu-
tational basis, p(|s⟩):

p(|s⟩) = | ⟨s|Ψ(θ)⟩ |2. (2)

The objective function to be minimised by the classi-
cal computer is the expectation of ĤC , ⟨ĤC⟩:

⟨ĤC⟩ = E(θ) = ⟨ψ0| Û†(θ)ĤCÛ(θ) |ψ0⟩. (3)

The QAOA ansatz with parameters θ = {γ, δ} can
be assembled as a Trotterised variational schedule,
comprising a cost circuit layer with unitary operator
ÛC(γ), followed by a mixer circuit layer with unitary

operator ÛM (δ) up to a circuit depth L:

|Ψ(γ, δ)⟩ =
L∏
l=1

ÛM (δl)ÛC(γl) |ψ0⟩ , (4)

where |ψ0⟩ = |+⟩⊗N
is the state encoding for all pos-

sible partitions of V with equal probability. The cost
layer encapsulating ĤC can be compiled as a sequence
of two-qubit parameterised Rzz quantum gates for
qubits qi and qj , with γ scaled based on the weights
of eij :

ÛC(γ) = e−iγĤC

=
∏
eij∈E

Rzz(−wijγ).
(5)

The mixer layer performs a time-evolution of the

mixer Hamiltonian ĤM = −
∑N

i=1Xi, which anti-

commutes with ĤC and has |ψ0⟩ as an eigenvector.
The mixer layer can be realised as a parallelisation of
single-qubit parameterised Rx quantum gates:

ÛM (δ) = e−iδĤM

=

N⊗
i=1

Rx(2δ).
(6)

It has been shown that QAOA conforms to the adia-
batic theorem, i.e. for L → ∞ the final evolved state
|Ψ(θ)⟩ converges exactly to the ground state of ĤC ,
and thus gives the optimal p(|s⟩) [17]. In practice,
such an implementation is unfeasible in the NISQ
regime, hence we are interested in considering Lad

for a given system, defined as the minimum num-
ber of circuit layers required to reach the adiabatic
limit, assuming that Lad can be attained. As we will
demonstrate in our analysis of the energy landscapes
of QAOA, it is also important to distinguish Lad from
Lmin, where Lad ≥ Lmin. Here, Lmin is the min-
imum number of layers needed to achieve the maxi-
mum p(|s⟩) in the corresponding global minimum. Lo-
cal minima with lower p(|s⟩) may be present due to un-
derparametrisation of the circuit ansatz, and hence a
less thorough exploration of states in the Hilbert space
may be sufficient to obtain a useful solution. We hy-
pothesise that the exponential increase in the number
of local minima is attributable to circuit ansätze with
1 ≤ L ≤ Lmin layers. The behaviour of local minima
may vary for Lmin < L ≤ Lad layers if Lmin < Lad,
and we observe for various graphs that the number of
local minima may increase first before decreasing to
the adiabatic limit, or instead decrease monotonically.

For each graph considered and L, we generate an
initial set of minima via basin-hopping global opti-
misation [32–34] using the GMIN program [41]. The
analytic gradients of the parameterised rotation gates
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were calculated via the parameter-shift rule [42] (see
Appendix A for more details):

∂E(θ)

∂θi
=

1

2

[
E
(
θ +

π

2
ei

)
− E

(
θ − π

2
ei

)]
. (7)

Local minimisation for the basin-hopping steps em-
ployed a limited-memory Broyden [43], Fletcher [44],
Goldfarb [45], Shanno [46] (L-BFGS) procedure [47,
48] equipped with the Metropolis criterion for accept-
ing/rejecting steps [49]. The resulting minima were
then employed as the starting points for construc-
tion of a kinetic transition network [50–52]. Discrete
path sampling [35, 36] (DPS) was used via connection
attempts for selected minima pairs with final states
|Ψ(θµ)⟩ and |Ψ(θν)⟩. The doubly-nudged [53, 54] elas-
tic band [55–58] approach was used to locate candi-
dates for accurate transition state refinement by hy-
brid eigenvector-following [59–61]. The missing con-
nection algorithm [62] was used to select pairs of min-
ima to fill in the gaps in incomplete pathways via Di-
jkstra’s shortest path algorithm [63] combined with
a distance metric based on the state overlap between
local minima, Sµν :

Sµν = 1− | ⟨Ψ(θµ)|Ψ(θν)⟩ |. (8)

Any new minima are added to the database along with
the transition states and connection information. The
resulting cost landscapes can be visualised using dis-
connectivity graphs, where the local minima are segre-
gated into disjoint sets for regular thresholds in the en-
ergy [39, 64]. In these graphs, the bottom of a branch
corresponds to the energy of a local minimum, and the
branches are joined when the corresponding minima
can interconvert via a pathway below the given thresh-
old. Visualisation of the energy landscape can be fur-
ther enhanced by colouring each minimum with the
corresponding probability of finding the correct Max-
Cut solution; we find this construction especially use-
ful in comparing the solution landscapes as L varies.

×𝐿

(a) (b)

FIG. 1. (a) (left) Weighted graph G1 encoded with four
qubits. (b) (right) Corresponding QAOA ansatz for G1.

As an example, consider the weighted graph G1

with four vertices (Fig. 1a), where the Max-Cut prob-
lem can be encoded as a four-qubit QAOA ansatz
with varying L (Fig. 1b). We note that although
the ansatz cost circuit layer can be compiled in nu-
merous ways, the arrangement in Fig. 1b is ideal in
reducing the overall circuit depth. This ordering does
not require swap gates to permute non-neighbouring
qubits corresponding to their respective edges, which
is an important consideration when transpiling QAOA
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FIG. 2. (a) (left) Contour plot of ⟨ĤC⟩ for graph G1 and
its QAOA ansatz with L = 1 against the parameters γ and
δ. The solid line depicts the minimum of each vertical slice
of the contour plot, with the global minimum (GM, green
circle), local minimum (LM, red triangle) and the transi-
tion state connecting them (TS, black cross) situated on
the pathway that is also plotted. (b) (right) Correspond-
ing disconnectivity graph of the contour plot in Fig. 2a,
with both the GM and LM coloured (grayscaled) based
on their respective probabilities of obtaining the correct
Max-Cut solution of |αβαβ⟩.

onto planar superconducting processors [65]. The
cost landscape of the L = 1 circuit ansatz features a
global and a local minimum connected by a transition
state (Fig. 2a), and the corresponding disconnectiv-
ity graph is shown in Fig. 2b, where the branches
are coloured with the probabilities of finding the state
|αβαβ⟩, which corresponds to the Max-Cut solution
of G1.

III. RESULTS

A. Complete unweighted graphs

We begin by examining the QAOA circuit ansätze
for the complete unweighted graph series KN from
N = 3 to N = 8 and from L = 1 to L = 3, where each
vertex is connected to every other vertex with unit
weight. It follows that the Max-Cut solution of KN is
the set of all possible tensor product permutations of
⌊N/2⌋ number of |α⟩ states and ⌈N/2⌉ number of |β⟩
states: thus the total number of Max-Cut solutions
for odd N is 2N !/{⌊N/2⌋!⌈N/2⌉!}, and for even N
N !/{2(N/2)!} solutions.

Table I summarises the number of minima M
and the highest correct Max-Cut probability (HCMP)
from the collections of minima obtained via basin-
hopping global optimisation for L = 1 to L = 3. The
complete graphs with odd N generally possess higher
HCMPs than their even counterparts, mainly due to
their greater number of accepted Max-Cut solutions
that contribute to their corresponding probabilities.
We also find that although for K6 to K8 the expected
exponential increase in M is observed as L increases,
for K5 there was a decrease in the number of min-
ima from L = 2 to L = 3, leading to a simplification
in the energy landscape from Lmin = 2 to Lad = 3.
Looking at the disconnectivity graphs of K6 to K8 for
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FIG. 3. Disconnectivity graphs of K6, K7 and K8 for L = 2.
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FIG. 4. Disconnectivity graphs of K6, K7 and K8 for L = 3.

L = 2 (Fig. 3) and L = 3 (Fig. 4), we observe
that the majority of the local minima generally pos-
sess very high correct Max-Cut probabilities, partic-
ularly those closer to the global minimum, especially
as L and M increase. The well-funnelled organisation
of the landscape also becomes more apparent as L
increases, and this structure is expected to outweigh
the challenges associated with solving the Max-Cut
problem for higher N , particularly for K8, where lo-
cal minima with low probabilities are increasingly in-
terspersed with other local minima corresponding to
higher probabilities.

To further evaluate the performance of QAOA
ansätze for various L based on the databases of min-

ima and their respective Max-Cut probabilities and
⟨ĤC⟩ values, we introduce the weighted average met-
ric F :

F =
1

M |⟨ĤC⟩min|

M∑
m=1

|⟨ĤC⟩min−⟨ĤC⟩m|[1−pm(|s⟩)],

(9)

where ⟨ĤC⟩min is the ⟨ĤC⟩ value of the global mini-
mum. This formulation of F is advantageous for two
reasons. First, it distinguishes circuit ansätze with
Lad and Lmin layers, since for Lad, F = 0 because
only the global minimum is present, compared to Lmin

where other local minima with lower Max-Cut prob-
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FIG. 5. Scatter plots of probabilities of the correct Max-Cut solutions against ⟨ĤC⟩ for individual minima of graphs K6,
K7 and K8 for L = 1 (black circle), L = 2 (red square) and L = 3 (green diamond).

TABLE I. Number of minima M (top value) and the high-
est correct Max-Cut probability (HCMP) (bottom value)
for graphs K3 to K8 with varying L obtained from basin-
hopping global optimisation. For the case ofK8 and L = 3,
the HCMP is not equal to the maximum value of 1, and
the number of decimal places used for all HCMPs is chosen
to be the same as this case for ease of comparison.

Graph L = 1 L = 2 L = 3

K3
1 1 1

1.000000 1.000000 1.000000

K4
1 1 1

0.739106 1.000000 1.000000

K5
1 4 1

0.975990 1.000000 1.000000

K6
1 23 324

0.671340 0.994239 1.000000

K7
1 37 598

0.951350 0.999619 1.000000

K8
1 46 3418

0.629727 0.991483 0.999997

abilities are present. Second, F reflects the contribu-
tion of minima for circuit ansätze with L < Lmin more
accurately, since it is possible for minima with lower
⟨ĤC⟩ values, including the global minimum, to possess
lower Max-Cut probabilities than their counterparts
with higher ⟨ĤC⟩ values. As L increases, a decrease
in the value of F can generally be interpreted as an
improvement in QAOA performance, since it corre-
sponds to an increase in the proportion of local min-
ima with better probabilities. However, the converse
situation, where F increases as L increases, may not
necessarily signify a drop in QAOA performance, as
the well-funnelled organisation of the cost landscape,
as well as the guarantee of obtaining a better Max-Cut
probability, may outweigh the trade-off in obtaining a
lower proportion of local minima with relatively good
probabilities. Nevertheless, we propose choosing cir-
cuit ansätze with L layers that feature sufficiently low
values of F when simulating QAOA on noisy quan-
tum devices, as choosing circuits with higher L may
also increase the impact of quantum gate and qubit
decoherence noise.

TABLE II. The weighted average metric F for graphs K5

to K8 of varying L.

Graph L = 1 L = 2 L = 3

K5 0.002276 0.067219 0.000000

K6 0.083438 0.060651 0.007907

K7 0.005269 0.119087 0.026351

K8 0.081604 0.190701 0.038062

Analysing the F values for K5 to K8 (Table II),
we observe that for K5, F = 0 for Lad = 3, differen-
tiating it from Lmin = 2, as expected. Interestingly,
with the exception of K6, F appears to increase for
L = 2 before decreasing for L = 3. The increase in
F can mainly be attributed to the general increase in
the number of local minima for L = 2 with compara-
bly lower probabilities than that of the single global
minimum for L = 1. This trend is evident in the scat-
ter plots of the probabilities of the correct Max-Cut
solution against ⟨ĤC⟩ for the databases of minima for
varying L (Fig. 5). The somewhat triangular convex
hull of the solution space, Cs, seems to become better
defined with the transition from L = 2 to L = 3. We
also see a proliferation of local minima towards the
apex of the global minimum, which would explain the
observed subsequent decrease in F . Thus, a choice
of L = 3 would be adequate for solving the Max-Cut
problem for graphs K5 to K8 based on their F values.

B. 3-regular unweighted graphs

Next, we analysed all connected 3-regular un-
weighted graphs with six and eight vertices [66] from
L = 1 to L = 4, labelled 6a–8e, respectively (Fig.
6). In terms of the number of minima obtained from
basin-hopping runs, the 3-regular graphs generally
possess lower M values than the complete graphs of
K6 and K8, particularly for graphs with eight vertices
(Table III). For graph 6b, starting from L = 1 its
QAOA ansatz gives rise to more than one minimum,
which subsequently produces a more rapid increase in
M compared to its counterpart 6a. This phenomenon
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6a 6b 8a 8b

8c 8d 8e

FIG. 6. 3-regular unweighted graphs 6a–8e investigated
in this study.

TABLE III. Number of minima M (top value), HCMPs
(middle value) and F (bottom value) for graphs 6a–8e of
varying L obtained from basin-hopping global optimisa-
tion. HCMPs with asterisks indicate that they correspond
to the next highest local minimum rather than the global
minimum.

Graph L = 1 L = 2 L = 3 L = 4

6a

1 5 23 145

0.400816 0.720917 0.933445* 0.996304

0.254240 0.224891 0.167129 0.093993

6b

3 20 191 1451

0.274835 0.659823 0.915348 0.978625

0.772861 0.615867 0.510817 0.340108

8a

1 4 16 83

0.142701 0.349371 0.616672 0.748746

0.427166 0.363476 0.497637 0.428079

8b

1 4 15 97

0.232056 0.420045* 0.638057 0.767138

0.355057 0.325065 0.426828 0.380643

8c

1 4 18 82

0.077352 0.182753 0.536762 0.701246

0.516636 0.560946 0.519856 0.429701

8d

1 6 31 151

0.186302 0.520680 0.871573 0.972013

0.500506 0.360078 0.258910 0.141219

8e

1 4 15 110

0.321737 0.574918* 0.769975 0.918878*

0.286668 0.241691 0.302882 0.300042

can largely be attributed to the relatively more com-
plex analytic expression of ⟨ĤC⟩ with the L = 1 cir-
cuit ansatz [67] for 6b. Another interesting pair of
graphs is 8d and 8e, where, although their L = 1 an-
alytic expressions of ⟨ĤC⟩ are identical and thus give

rise to the same ⟨ĤC⟩min value [67], we find that the
trends of M and HCMPs for higher L are markedly
different. Although the 3-regular series of graphs give
rise to lower M for similar L, and hence somewhat
simpler energy landscapes compared to their complete
graph counterparts, their HCMPs are also compara-
tively lower, hence requiring a greater L to achieve a
sufficiently high HCMP. In some cases, the HCMPs
were derived not from the global minimum, but from
the next highest local minimum. (See Appendix B

detailing the differences in Max-Cut probabilities and
⟨ĤC⟩ values between the two minima for these cases.)
This phenomenon appears sporadically without much
predictability, most notably for graph 8e, where the
HCMP corresponds to the next highest local mini-
mum for L = 2 and L = 4. Overall, these obser-
vations further underline the importance of evaluat-
ing QAOA performance based on the correct Max-
Cut probabilities of individual minima independently
alongside their ⟨ĤC⟩ values.

The distributions of minima for the 3-regular graphs
with varying L differ significantly from their complete
graph counterparts (Fig. 7). We observe that the
convex hulls of the 3-regular graphs tend to take on a
more compact shape, with greater correlation between
the p(|s⟩) and ⟨ĤC⟩ values for the individual minima.
However, for graphs 8a, 8b and 8e there is a notable
absence of minima with intermediate p(|s⟩) and ⟨ĤC⟩
values, particularly for higher L. This structure is also
reflected in their disconnectivity graphs (refer to Ap-
pendix C for the disconnectivity graphs of 6a-8e).
Another major difference of the 3-regular graphs is the
much reduced energy differences between minima with
low proximity to the global minimum and their con-
nected transition states, producing more streamlined
and single-funnelled disconnectivity graphs than for
K6 and K8. However, even though the energy land-
scapes of the 3-regular graphs appear less complex and
easier to navigate than their complete graph coun-
terparts, the local minima in their energy landscapes
give rise to a larger range of p(|s⟩). Hence a greater
proportion of local minima with high energies possess
low Max-Cut probabilities. This trend is captured by
comparing F values between the 3-regular graphs and
the complete graphs K6 and K8, where the former
graphs typically have much higher F values than the
latter.

Comparing F values among the 3-regular graphs,
we observe that graphs 6a and 6b follow a smooth
downward trend with increasing L, while the 8-vertex
graphs tend to peak at L = 2 and L = 3 before de-
creasing, with the exception of 8d, which follows a
similar trend of the 6-vertex graphs. The performance
of the 8-vertex graphs at L = 2 and L = 3 can be
attributed to an increase in the number of local min-
ima with low Max-Cut probabilities that outweigh the
general improvement in HCMPs and low-lying min-
ima, while for graph 8d this effect is reversed, with
an increase in HCMPs and minima with good prob-
abilities. At L = 4, a greater proportion of minima
with high p(|s⟩) appear for all 3-regular graphs, and
we therefore recommend a minimum of L = 4 when
employing QAOA for these cases.

Another factor that supports the choice of L = 4
comes from the construction of heuristic expectation
thresholds that aim to identify minima with suffi-
ciently high p(|s⟩) values. This analysis can be carried
out by finding the intercepts of the corresponding con-
vex hulls with a suitable probability cutoff pop. For
the 3-regular graphs we choose pop = 0.5 and define

the difference in ⟨ĤC⟩ values from the global minimum
to the two intercepts as the worst-case and best-case
expectation cutoffs, d1 and d2, respectively, where
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FIG. 7. Scatter plots of probabilities of the correct Max-Cut solutions against ⟨ĤC⟩ for connected minima of graphs
6a–8e for L = 1 (black circle), L = 2 (red square), L = 3 (green diamond) and L = 4 (blue triangle).

TABLE IV. Expectation thresholds d1 (top value) and d2
(bottom value) for graphs 6a–8e of varying L.

Graph L = 2 L = 3 L = 4

6a
0.313189 0.546894 0.578616

0.643070 1.254700 1.342016

6b
0.640787 1.453239 1.660319

0.951659 2.160089 2.470976

8a
- 0.215689 0.338515

- 0.673507 1.251349

8b
- 0.250008 0.408135

- 0.886500 1.652028

8c
- 0.046924 0.315151

- 0.183791 1.203264

8d
0.052613 1.580115 1.857498

0.202901 2.457872 2.962362

8e
0.096120 0.779749 0.645478

0.731083 1.578323 1.977320

d1 < d2. We observe that the expectation thresholds
generally expand as L increases (Table IV), with d1
and d2 attaining their highest values at L = 4. For
L ≤ Lmin the widening and stabilising of expecta-
tion thresholds is significant, along with the increase
in M as L increases. We see that a greater number
of minima that possess a wider range of ⟨ĤC⟩ values
with a sufficiently high p(|s⟩) exist within the solution
landscape for the QAOA ansatz.

C. Competing QAOA Max-Cut solutions

Finally, we explore competing Max-Cut solutions
|αβαβ⟩ and |ααββ⟩ for a series of four-vertex weighted
graphs with a common variable weight x, where x =
(0, 3, 4, 5) correspond to the graphs (G2, G3, G4, G5),
respectively (Fig. 8). These graphs open up two
modes of analysis: they allow comparison between G2
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FIG. 8. Four-vertex weighted graph with a variable central
weight x. The graphs (G2, G3, G4, G5) correspond to x =
(0, 3, 4, 5) respectively.

TABLE V. Number of minima M (top value), HCMPs
(middle value) and F (bottom value) for graphs G2 −G5

with varying L obtained from basin-hopping global opti-
misation. HCMPs with asterisks indicate that they were
obtained from the next highest local minimum instead of
the global minimum.

Graph L = 1 L = 2 L = 3

G2

3 16 87

0.477824 0.866404 0.981615

0.594432 0.338167 0.163886

G3

7 109 1835

0.370522* 0.784475 0.948704*

0.526539 0.300520 0.171897

G4

4 36 308

0.540426* 0.894074 1.000000

0.461355 0.245864 0.111340

G5

9 183 3426

0.468114* 0.881732* 0.972620*

0.498733 0.328245 0.174754

with the more complex graphs G3 − G5, particularly
with G3, since both sets of graphs have |s⟩ = |αβαβ⟩.
Comparisons between G3−G5 can also be carried out,
since G5 possesses a different correct Max-Cut solu-
tion of |ααββ⟩, while for G4 both |αβαβ⟩ and |ααββ⟩
are correct Max-Cut solutions. We will denote the al-
ternative Max-Cut solution for a given graph as |t⟩,
thus for G3, |t⟩ = |ααββ⟩; for G5, |t⟩ = |αβαβ⟩, and
G4 has no alternative solution.

We find that implementing QAOA for the weighted
graphs G2 − G5 is more difficult than for the com-
plete unweighted graphK4, as their energy landscapes
are much more complex due to an increase in M and
a decrease in their respective HCMPs (Table V).
The disconnectivity graphs of G2 − G5 exhibit sim-
ilar topological features to the 3-regular unweighted
graphs, possessing a well-funnelled organisation and
minima featuring a wide range of ⟨ĤC⟩ and Max-Cut
probabilities (see Appendix D for the disconnectiv-
ity graphs of G2 − G5 coloured based on p(|s⟩), and
Appendix E for the disconnectivity graphs of G3 and
G5 coloured based on p(|t⟩)). Unsurprisingly, G2 has a
lower M and thus a simpler landscape than the more
strained graphs G3 − G5, although its collection of
minima with modest Max-Cut probabilities produces
a comparatively high F value up to L = 3. In the

TABLE VI. Expectation thresholds d1 (top value) and d2
(bottom value) for graphs G3 −G5 of varying L.

Graph L = 2 L = 3

G3
0.099242 0.433945

1.124694 2.008400

G4
0.489057 0.536238

1.447505 1.722258

G5
0.217591 0.459177

1.566966 1.896063

range G3 − G5, it is interesting that even though G5

with a different Max-Cut solution has a more complex
energy landscape than G3, it yields a comparatively
higher HCMP, while G4 exhibits the best QAOA per-
formance as it has two distinct Max-Cut solutions.
The phenomenon where the HCMP arises for the next
highest local minimum rather than the global mini-
mum was also observed for G3 − G5, especially for
G5 (refer to Appendix B for differences in Max-Cut

probabilities and ⟨ĤC⟩ values between the two minima
for these cases). All four graphs feature a monotonic
decrease in F as L increases. Hence, as for K5 −K8,
we recommend choosing L = 3 in solving the Max-Cut
problem for G2 − G5. Finally, it is noteworthy that
for G4 and the L = 4 ansatz, the number of minima
greatly exceeds that of the Lmin = 3 ansatz, in con-
trast to the behaviour observed for K5, highlighting
the general unpredictability of the energy landscape
complexity after Lmin. For graphs G3 − G5, the
scatter plots of the ⟨ĤC⟩ values for connected min-
ima and Max-Cut probabilities were used to construct
both the convex hulls of the correct Max-Cut solution
Cs and the alternative solution Ct (Fig. 9). We
find that, similar to the unweighted graphs, both Cs

and Ct take on more definite shapes as they become
populated with more minima for increasing L. This
trend allowed us to investigate d1 and d2 by finding
the intercepts of Cs with the horizontal line pop, set-
ting pop = 0.5 for G3 and G5, and pop = 0.25 for G4

(Table VI). Additionally, one may also use the inter-
cepts between Cs and the left edge of Ct as expecta-
tion and threshold cut-offs to identify higher-quality
minima with a high probability of finding |s⟩ and a
low probability of obtaining |t⟩. (See Appendix F
for more details.) As for the 3-regular graphs, the di-
vergence of d1 and d2 with increasing L makes L = 3
a good choice for graphs G3 −G5.
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FIG. 9. Scatter plots of probabilities of competing Max-Cut solutions |αβαβ⟩ (red square) and |ααββ⟩ (blue circle)

against ⟨ĤC⟩ for connected minima of graphs G3, G4 and G5 of varying L.

IV. CONCLUSION

In this work we explore the solution landscapes of
QAOA ansätze applied to a variety of weighted and
unweighted graphs by means of the energy landscapes
framework, using disconnectivity graphs to visualise
their topological features. We find that the corre-
sponding landscapes are largely funnelled, suggesting
that location of low-lying minima should not be par-
ticularly difficult. Under practical conditions when
simulating QAOA on a quantum device, the optimi-
sation regime is thus more likely to find a minimum
close to the global minimum with a good correct Max-
Cut solution probability. Even under the worst-case
scenario where each experiment finds a different local
minimum, so long as the local minimum is sufficiently
close to the global minimum, a significant proportion
of the number of shots per experiment will correspond
to the Max-Cut solution. This result further demon-
strates the robustness of QAOA in solving the Max-
Cut problem.

We have also developed a weighted average met-
ric F to evaluate the performance of QAOA ansätze
from their corresponding databases of minima. This
parameter allows one to choose a suitable number of
circuit layers that balances the likelihood of obtain-
ing good solution probabilities from local minima with
an adequate circuit depth that minimises the impact
from quantum noise.

Finally, we have established two ways in which ex-

pectation thresholds can be established to determine
the cut-off for minima with high p(|s⟩). The solu-
tion landscapes we have characterised suggest that
QAOA is a good VQA candidate to demonstrate prac-
tical quantum advantage. In future work we plan
to extend these results to quantum machine learning
(QML) algorithms, such as variational quantum clas-
sifiers (VQCs), which minimise a given cost function
to classify data [68].

SOFTWARE AVAILABILITY

The GMIN, OPTIM and PATHSAMPLE programs
are available for use under the Gnu General Public Li-
cense. They can be downloaded from the Cambridge
Landscape Database at www-wales.ch.cam.ac.uk.
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APPENDIX A: BASIN-HOPPING GLOBAL
OPTIMISATION WITH GMIN

For each basin-hopping optimisation run, we per-
formed 10,000 basin-hopping steps for the unweighted
graphs K3 −K8, 6a−8e, and for the weighted graphs
G2−G5, using the GMIN program for varying L. Each
local minimisation had a minimum root-mean squared
(RMS) gradient convergence criterion of 1.0 × 10−10

a.u., where the analytic gradients of the parameterised
rotation gates of the cost and mixer layers of the
QAOA ansatz were evaluated with the parameter-shift
rule using Eq. 7. To accept/reject basin-hopping
steps we employed a Metropolis criterion with a basin-
hopping temperature of 1.0 a.u. If the minimum at
step j has an expectation value ⟨ĤC⟩j that is lower

than the preceding iteration, i.e. ⟨ĤC⟩j < ⟨ĤC⟩j−1,

⟨ĤC⟩j then the corresponding angular coordinates θj
are accepted and used for the next step. If ⟨ĤC⟩j ≥
⟨ĤC⟩j−1, then ⟨ĤC⟩j and θj is accepted with a prob-

ability of exp(−(⟨ĤC⟩j − ⟨ĤC⟩j−1)/kT ). Otherwise,
the new minimum is rejected.
Basin-hopping moves were proposed by random

perturbations of up to 1.0 rad for each angular coor-
dinate in θj . At the end of each run, the collection of
minima that differ by at least 1.0 × 10−9 a.u in their
⟨ĤC⟩ values were saved to provide a starting database
for construction of the energy landscape using the OP-
TIM and PATHSAMPLE programs.

APPENDIX B: DIFFERENCES IN MAX-CUT
PROBABILITY AND EXPECTATION VALUES

FOR NON-GLOBAL HCMP CASES

TABLE VII. Expectation differences ∆⟨ĤC⟩ and Max-
Cut probability differences ∆p(|s⟩) between the global and
next highest local minima for non-global HCMP cases.

Graph L ∆⟨ĤC⟩ ∆p(|s⟩)
6a 3 0.037856 0.010121

8b 2 0.075696 0.040029

8e 2 0.046450 0.052876

8e 4 0.006337 0.009846

G3 1 0.127864 0.096306

G3 3 0.015904 0.003739

G4 1 1.142149 0.076922

G5 1 0.342188 0.231787

G5 2 0.036357 0.135824

G5 3 0.001111 0.001329

Table VII shows the expectation differences
∆⟨ĤC⟩ = ⟨ĤC⟩min−⟨ĤC⟩HCMP and correct Max-Cut
probability differences ∆p(|s⟩) = HCMP − pGM(|s⟩)
for cases where the next highest local minimum has
a Max-Cut probability greater than the global min-
imum. In general, cases with a large circuit depth
L tend to have lower ∆⟨ĤC⟩ and ∆p(|s⟩) as their
HCMPs approach the optimal value of 1. As men-
tioned in the main text this phenomenon appears to

occur sporadically, as exemplified by 8e andG3, where
it does not occur for the intermediate circuit depth of
L = 3. A notable case is G5, which features a higher
Max-Cut probability in the next highest local mini-
mum for all sampled L. We propose to investigate
this phenomenon in future work to see if it arises sys-
tematically for particular classes of connected graphs.
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APPENDIX C: DISCONNECTIVITY GRAPHS OF THE 3-REGULAR GRAPHS
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FIG. 10. Disconnectivity graphs for 6a with varying circuit depth L.
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FIG. 11. Disconnectivity graphs for 6b with varying circuit depth L.
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FIG. 12. Disconnectivity graphs for 8a with varying circuit depth L.
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FIG. 13. Disconnectivity graphs for 8b with varying circuit depth L.
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FIG. 14. Disconnectivity graphs for 8c with varying circuit depth L.
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FIG. 15. Disconnectivity graphs for 8d with varying circuit depth L.
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FIG. 16. Disconnectivity graphs for 8e with varying circuit depth L.
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APPENDIX D: DISCONNECTIVITY GRAPHS OF THE CORRECT MAX-CUT SOLUTIONS FOR
G2 −G5
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FIG. 17. Disconnectivity graphs for G2 with varying circuit depth L. Minima are coloured based on the probability of
obtaining the optimal Max-Cut state of |αβαβ⟩.
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FIG. 18. Disconnectivity graphs for G3 with varying circuit depth L. Minima are coloured based on the probability of
obtaining the optimal Max-Cut state of |αβαβ⟩.
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FIG. 19. Disconnectivity graphs for G4 with varying circuit depth L. Minima are coloured based on the probability of
obtaining the optimal Max-Cut states of |αβαβ⟩ and |ααββ⟩.
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FIG. 20. Disconnectivity graphs for G5 with varying circuit depth L. Minima are coloured based on the probability of
obtaining the optimal Max-Cut state of |ααββ⟩.
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APPENDIX E: DISCONNECTIVITY GRAPHS OF THE ALTERNATIVE MAX-CUT SOLUTIONS
FOR G3 AND G5
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FIG. 21. Disconnectivity graphs for G3 with varying circuit depth L. Minima are coloured based on the probability of
obtaining the opposing Max-Cut state of |ααββ⟩.
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FIG. 22. Disconnectivity graphs for G5 with varying circuit depth L. Minima are coloured based on the probability of
obtaining the opposing Max-Cut state of |αβαβ⟩.
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APPENDIX F: EXPECTATION AND
PROBABILITY THRESHOLDS FROM THE
CONVEX HULL INTERCEPTS FOR G3 AND

G5

TABLE VIII. Expectation thresholds d3 (top value) and
d4 (bottom value) for graphs G3 and G5 of varying L,
where d3 < d4.

Graph L = 2 L = 3

G3
0.111125 0.439036

0.546385 0.794808

G5
0.329259 0.476747

0.856478 0.819369

TABLE IX. Max-Cut probability thresholds p1 (top
value) and p2 (bottom value) for graphs G3 and G5 of
varying L, corresponding to the expectation thresholds d3
and d4 respectively.

Graph L = 2 L = 3

G3
0.465937 0.495366

0.665681 0.799744

G5
0.373801 0.482335

0.680284 0.790380

Tables VIII and IX summarise the two intercepts
(⟨ĤC⟩min + d3, p1) and (⟨ĤC⟩min + d4, p2) of Cs with
the left edge of the triangular convex hull Ct for graphs
G3 and G5, as shown in Fig. 9. This summary pro-
vides an alternative method to establish expectation
cut-offs if additional information for alternative Max-
Cut states is available. As for the expectation thresh-
olds d1 and d2 in Table VI, d3 and d4 also increase
with increasing L, which further justifies the choice
of L = 3 in refining minima within Cs that possess
both good correct Max-Cut probabilities and low op-
posing Max-Cut probabilities. The probability cut-off
of pop = 0.5 used in Table VI also appears to be sit-
uated between the probability thresholds p1 and p2,
suggesting that this choice of pop is optimal.
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