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Abstract

Driven by the surge in code generation us-
ing large language models (LLMs), numerous
benchmarks have emerged to evaluate these
LLMs capabilities. We conducted a large-
scale human evaluation of HumanEval and
MBPP, two popular benchmarks for Python
code generation, analyzing their diversity and
difficulty. Our findings unveil a critical bias
towards a limited set of programming con-
cepts, neglecting most of the other concepts
entirely. Furthermore, we uncover a worry-
ing prevalence of easy tasks, potentially inflat-
ing model performance estimations. To ad-
dress these limitations, we propose a novel
benchmark, PythonSaga, featuring 185 hand-
crafted prompts on a balanced representation
of 38 programming concepts across diverse dif-
ficulty levels. The code and dataset are openly
available to the NLP community at https://
anonymous.4open.science/r/PythonSaga.

1 Introduction

The rapid advancement of large language models
(LLMs), such as Gemini (Anil et al., 2023a), GPT-
4 (OpenAI, 2023), LLaMA (Touvron et al., 2023)
and PaLM (Anil et al., 2023b), has achieved near-
human or even superhuman performance (Bowman,
2023) across a wide range of NLP tasks. This surge
has also prompted the development of tailor-made
code generation models, such as Codex (Chen
et al., 2021), STARCODER (Li et al., 2023), Code-
Gen (Nijkamp et al., 2022), and CodeGeeX (Zheng
et al., 2023). These specialized models, hereafter
collectively referred to as “Code-LLMs”, harness
the capabilities of LLMs for automated code gen-
eration from human descriptions. Figure 1 shows
a toy example with an input description from a hu-
man and an expected Python code generated by a
Code-LLM.

The prevalence of Python as the dominant
programming language has significantly influ-
enced a majority of Code-LLMs to showcase their

sdafdaf

Write a Python program to return the
current time?

Certainly! Here's a simple Python program that
returns the current time:

from datetime import datetime 

# Get and print the current time 

curr_time = datetime.now().strftime("%H:%M:%S")

 

print("Current Time:", curr_time)

Figure 1: Illustration of a conversation wherein a hu-
man provides an input description, and a Code-LLM
generates the expected Python code.

code-generation capabilities on Python-specific
benchmarks. Consequently, HumanEval (Chen
et al., 2021), MBPP (Austin et al., 2021),
APPS (Hendrycks et al., 2021), and DS-1000 (Lai
et al., 2023) have emerged as prominent bench-
marks, leveraging data curated from popular
coding platforms like GitHub (GitHub, 2024),
LeetCode (GeeksForGeeks, 2023), and Code-
forces (Codeforces, 2024) and crowdsourcing ef-
forts. These benchmarks offer a diverse range of
programming challenges, with sizes spanning from
a few hundred instances in HumanEval (Chen et al.,
2021)) to several thousand instances in datasets like
APPS (Hendrycks et al., 2021) and MBPP (Austin
et al., 2021).

Code generation benchmarks, like their NLP
counterparts (Kiela et al., 2021), are reaching satu-
ration, revealing limitations in their ability to eval-
uate models comprehensively. Figure 2 reports
pass@1 score1 of recent Code-LLMs on two pop-
ular benchmarks, HumanEval (Chen et al., 2021)

1pass@k measures if at least one of the k code samples
generated by the model passes every test case. Detailed formal
definition is present in Appendix A.1.

ar
X

iv
:2

40
1.

03
85

5v
3 

 [
cs

.C
L

] 
 2

6 
A

pr
 2

02
4

https://anonymous.4open.science/r/PythonSaga
https://anonymous.4open.science/r/PythonSaga


0
10
20
30
40
50
60
70
80

MBPP HumanEval

Pa
ss
@
1

Figure 2: Performance comparison arranged in ascending order of (pass@1) of popular Code-LLMs on two Python
benchmarks, HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021). pass@1 scores are taken verbatim
as reported in STARCODER (Li et al., 2023), Code Llama (Roziere et al., 2023), and Gemini (Anil et al., 2023a).
GPT-4, Gemini Pro, and Gemini Ultra do not report performance scores on MBPP dataset.

and MBPP (Austin et al., 2021). This progress
prompts two critical questions: (1) Have Code-
LLMs attained the generalization ability to solve
any programming problem? (2) What program-
ming concepts remain challenging for them, hin-
dering their ability to solve specific problems? Sur-
prisingly, despite their widespread use, existing
benchmarks lack a comprehensive evaluation of
their diversity in terms of programming concepts
and difficulty level.

In this paper, we introduce a comprehensive hi-
erarchical classification of programming concepts,
categorizing them into basic, intermediate, and ad-
vance levels (see Section 3). We then rigorously
evaluate two benchmarks, HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021), on two
dimensions: diversity of programming concepts
and user-perceived difficulty. Our findings reveal a
significant bias towards a small subset (<53%) of
programming concepts, leaving the vast majority
underrepresented. Additionally, over 80% of the
problems are perceived as easy, raising concerns
about the benchmarks’ generalizability and effec-
tiveness (see Section 4). To address these limita-
tions, in Section 5, we propose a novel code genera-
tion benchmark, PythonSaga, featuring a balanced
representation of 38 programming concepts across
three difficulty levels in the form of 185 manually
crafted problems. Surprisingly, our experiments
show poor pass@1 scores by the majority of the ex-
isting open (< 4%) and closed-source (< 13%)

Code-LLMs on PythonSaga. Furthermore, de-
tailed analysis unveils significant disparities in their
capacity to handle different programming concepts
and difficulty levels.

2 Related Work

NLP for Programming: Over the years, various
programming tasks, including clone detection (Roy
et al., 2009) (assessing semantic similarity between
code fragments), defect detection (Tabernik et al.,
2020) (identifying potential flaws within source
code), code completion (Hindle et al., 2016) (pre-
dicting subsequent tokens based on code context),
automated code repair (Arcuri and Yao, 2008) (im-
proving code by automatically addressing bugs),
code search (Sachdev et al., 2018) (gauging se-
mantic relevance between textual descriptions and
code snippets), and code summarization (Allama-
nis et al., 2016) (generating natural language com-
ments for code), have been extensively investi-
gated and discussed within the NLP community.
This exploration has led to the development of sev-
eral datasets such as GitHub Java Corpus (Alla-
manis and Sutton, 2013), BigCloneBench (Sva-
jlenko et al., 2014), POJ-104 (Mou et al., 2016),
PY150 (Raychev et al., 2016), Devign (Zhou et al.,
2019), Bugs2Fix (Tufano et al., 2019), CodeSearch-
Net (Husain et al., 2019), CT-max/min (Feng et al.,
2020), MBPP by Austin et al. (2021), CodeXGLUE
by Lu et al. (2021), CodeNet by Puri et al. (2021),
HumanEval by Chen et al. (2021), XLCoST by Zhu



et al. (2022), MultiPL-E by Cassano et al. (2022),
and HumanEval-X by Zheng et al. (2023). These
datasets and associated benchmarks span multiple
programming languages, including Java, C, C++,
PHP, Ruby, Go, and Python, among others.

Code Generation Models: The remarkable surge
in the popularity of large language models (LLMs)
has also been accompanied by significant advance-
ments in code-generation LLMs (Code-LLMs).
These models exhibit the capability to gener-
ate code in designated programming languages,
guided by instructions presented in the form of
prompts, functions, or docstrings. Prominent
examples of such Code-LLMs include but are
not limited to, Codex (Chen et al., 2021), Code-
Gen (Nijkamp et al., 2022), Code Llama (Roziere
et al., 2023), STARCODER (Li et al., 2023) and
CodeGeeX (Zheng et al., 2023). These Code-
LLMs are largely multilingual, capable of handling
multiple programming languages, and their param-
eter sizes range from 1 billion to 35 billion. Their
training datasets encompass popular programming
websites and code repositories such as GitHub,
LeetCode, and GeeksForGeeks. All popular Code-
LLMs primarily focus on Python programs due to
their widespread usage in ML and AI applications.

Python-based Evaluation Benchmarks: Recent
thrust in Python code generation models also led
to the development of several benchmark datasets.
The PY150 dataset (Raychev et al., 2016), consist-
ing of 150,000 Python source files from GitHub,
serves as a valuable tool for LLM evaluation. The
APPS dataset Hendrycks et al. (2021) features
10,000 problems from platforms like Codewars, At-
Coder, Kattis, and Codeforces. HumanEval (Chen
et al., 2021) comprises 164 handwritten prob-
lems. The MBPP dataset (Austin et al., 2021)
contains 974 entry-level problems. Additionally,
the MathQA-Python dataset (Austin et al., 2021),
with 23,914 problems, assesses code synthesis from
complex textual descriptions.

Limitations in Existing Benchmarks: Current
datasets for evaluating Large Language Models
(LLMs) often lack transparency and comprehen-
siveness in problem selection and categorization.
This opacity hinders assessments of the generaliz-
ability and representativeness of the benchmarks,
potentially leading to overestimation of LLM per-
formance on code generation tasks. To address this
issue, this paper proposes a comprehensive prob-
lem categorization by outlining recommended con-

cepts for problem inclusion, aiming to establish a
rigorous and transparent benchmarking framework.

3 Programming Concepts and Difficulty
Levels

3.1 Programming Concepts
The concepts encompass language-specific con-
structs like variables, data types, control flow, and
conditions to generic constructs like Algorithms,
OOPs, etc. We, therefore, propose a hierarchy of
programming concepts where a complex concept
might require knowledge of several basic concepts.
For example, sorting algorithms like Quicksort
or Mergesort require a thorough understanding of
data structures such as arrays and linked lists, as
well as proficiency in algorithmic analysis and time
complexity2. Each programming concept is an in-
trinsic feature of a problem. We next describe the
proposed hierarchy:

• Basic Concepts: At the basic level, concepts
involve the application of elementary syntax
principles, encompassing the utilization of
variables, manipulation of diverse data types,
basic input/output operations, comprehension
of control flow and conditional statements, ba-
sic handling of data structures, functions, and
knowledge of essential built-in libraries. Prob-
lems leveraging basic concepts primarily aim
to evaluate the core competencies within a
designated programming language.

• Intermediate Concepts: Intermediate-level
concepts involve a comprehensive understand-
ing of multiple foundational concepts and
their adept integration. For example, extend-
ing basic data structures to implement Stack,
Hash, Queue, etc. Problems comprising inter-
mediate concepts evaluate a higher level of
proficiency in programming.

• Advance Concepts: Concepts include im-
plementation knowledge of advanced data
structures such as Tree, Heap, etc., algorith-
mic paradigms such as Greedy, Divide and
Conquer, and Dynamic Programming, and
Concurrent and Parallel Programming.
Problems comprising advanced concepts fo-
cus on evaluating sophisticated problem-
solving and design capabilities.

We curate a list of 38 programming concepts
from three popular coding platforms (Geeks-
ForGeeks, 2023; LeetCode, 2023; hackerearth,

2https://shorturl.at/nrBTX

https://shorturl.at/nrBTX


Basic Intermediate Advance
Function OOPS Trie

Mathematics Stack Tree
File Handling Sorting Heap

Basic Libraries Hashing Graph
Error Handling Searching Matrix

Input and Output Recursion Max Flow
In-Built Functions Linked List Disjoint Set
Pattern Replication Bit Manipulation Backtracking

Basic Data Structures Queue & Dequeue Greedy Search
Variable & Data Types Regular Expression Advanced OOPs

Control Flow & Conditions Circular & Doubly Linked List Context Managers
Advanced String Manipulation Divide and Conquer

Dynamic Programming
Closures and Decorators

Concurrency and Parallelism

Table 1: A hierarchy of 38 programming concepts categorized into basic, intermediate, and advance categories.

2023). We further assign each concept to one of the
three hierarchy levels. Table 1 presents the curated
concepts and the proposed hierarchy.

3.2 Difficulty Levels
An annotator, with their expertise and experience
in programming, can perceive a programming prob-
lem as belonging to one of three difficulty levels:
Easy, Medium, or Hard (Hendrycks et al., 2021).
Thus, difficulty level is an extrinsic feature of a
problem. This subjective assessment is based on
a complex combination of factors, such as knowl-
edge of programming concepts, problem-solving
skills, experience with similar problems, and cod-
ing proficiency. It is important to note that this
perceived difficulty is subjective and can vary sig-
nificantly between annotators. A problem consid-
ered easy by one annotator due to their prior expe-
rience and knowledge might be deemed challeng-
ing by another who lacks those same advantages.
Furthermore, the perceived difficulty of a problem
can also evolve over time as an annotator develops
their skills and knowledge. A problem that initially
seemed challenging may become easier with prac-
tice and exposure to similar problems. Conversely,
an annotator may encounter a problem that initially
appears straightforward but then find themselves
struggling due to hidden complexities or unfore-
seen challenges.

In this paper, we focus on Python Programming
language and conduct human experiments with two
popular Python-based code generation benchmarks

to showcase extensive selection bias and poor diver-
sity in the curated problems. The following section
describes the human experiments in detail.

4 Limitations of Code- Generation
Existing Benchmarks

4.1 Python Code Generation Benchmarks

This study is grounded on the two most widely
recognized Python code generation benchmarks:
(i) HumanEval (Chen et al., 2021) and (ii)
MBPP (Austin et al., 2021). Recent Code-
LLMs including STARCODER (Li et al., 2023),
LLaMA (Touvron et al., 2023), METAGPT (Hong
et al., 2023), Code Llama (Roziere et al.,
2023), SANTACODER (Allal et al., 2023), and
CodeGeeX (Zheng et al., 2023) have employed
these two benchmarks to assess their performance.
We next briefly describe these benchmarks.

• HumanEval Dataset: HumanEval dataset
was introduced alongside Codex (Chen et al.,
2021)3. It comprises 164 hand-crafted Python
programming problems4. Each problem de-
scription contains a function signature, doc-
string, body, and multiple unit tests. Figure 5
illustrates a representative problem. On aver-
age, each problem is associated with 7.7 unit
tests.

3Codex is a GPT-based language model fine-tuned on pub-
licly available codes from GitHub.

4Dataset is available here: https://github.com/
openai/human-eval

https://github.com/openai/human-eval
https://github.com/openai/human-eval


• Mostly Basic Programming Problems
(MBPP) Dataset: The MBPP dataset (Austin
et al., 2021) evaluates models that can synthe-
size short Python programs from natural lan-
guage descriptions. The benchmark5 consists
of about 974 crowd-sourced Python program-
ming problems designed to be solvable by
entry-level programmers. Each problem con-
sists of a task description, code solution, and
three automated test cases. Figure 6 presents
a representative problem.

Both benchmarks evaluate model performances
against one of the most popular metrics pass@k.
We formally define pass@k in Section A.1.

4.2 Human Annotation Experiments

Next, we conducted two human annotation studies
to gain insights into the diversity in programming
concepts and difficulty levels of the two proposed
benchmarks. Each study involved the recruitment
of the same set of five annotators. Each annota-
tor is a postgraduate student in Computer Science
with at least three years of experience in Python
programming and competitive programming. It is
noteworthy that each participant willingly volun-
teered throughout the entire duration of the exper-
iment, and no remuneration was provided. Inter-
net access was prohibited during the entire annota-
tion period. Annotators were encouraged to utilize
any brute-force technique they considered appro-
priate without prioritizing optimized solutions. No
time constraints were imposed to prevent hasty or
fatigue-induced decisions. Each annotator was pre-
sented with 164 problems from HumanEval and a
randomly selected set of 164 problems from MBPP.
We next describe the two annotation studies:

• Programming Concepts Diversity: In this
study, we adopted a single-concept annota-
tion approach, where human annotators as-
signed one programming concept (detailed
in Section 3.1) to each problem. This selec-
tion represented the concept they considered
most crucial for successful problem-solving.
Our annotation guidelines explicitly prohib-
ited assigning multiple concepts to any single
problem, ensuring a focused and unambigu-
ous mapping between problems and relevant
concepts.

• Difficulty Level Diversity: In this study, each

5Dataset is available here: https://github.com/
google-research/google-research/tree/master/mbpp

annotator categorized the problems into three
distinct difficulty levels: Easy, Medium, and
Hard, based on their individual expertise and
experiences.

4.3 Observations

Diversity in the Programming Concepts: In this
section, we report the proportion of problems as-
signed to a specific concept averaged over five
annotators. We find five predominant concepts,
Mathematics, Control Flow and Conditions, Basic
Data Structures, Variables and Data Types, and In-
Built Functions, which comprise 72.1% and 77.3%
problems in HumanEval and MBPP, respectively.
Surprisingly, we found a complete absence of 14
(=37.8%) concepts. Notable exclusions include
OOPs, Linked-lists, Tree, Graph, and Backtrack-
ing. Figure 3 presents conceptwise proportions in
both the benchmarks. Further analysis suggests
that, on average, the Basic category comprises ap-
proximately 78% of problems in both HumanEval
and MBPP. The Intermediate category comprises
20.24% and 18.04% problems in HumanEval and
MBPP, respectively. Finally, the Advance category
contains 1.09% and 3.04% problems in HumanEval
and MBPP, respectively.
Diversity in the Difficulty level: Here, we re-
port the difficulty level assigned to a problem us-
ing majority voting among the annotators. In Hu-
manEval, 84.8% of the problems were classified as
Easy, 14.6% as Medium, and only 0.6% as Hard.
Whereas in MBPP, 89.6% and 10.4% of problems
were categorized as Easy, and Medium, respec-
tively. No problem in MBPP was labeled as Hard.
Here, we achieved significant consensus among the
annotators. For example, in HumanEval, we find
complete agreement among five annotators on 39%
of the problems. Whereas we miss complete agree-
ment by a single vote in 29.2% problems. In the
case of MBPP, the 40.2% problems resulted in a
complete agreement, with 42.1% problems missing
the complete agreement by one vote.

Overall, we observe significant selection bias
towards easy problems in both benchmarks.

5 PythonSaga: A New Benchmark for
Code Generation Models

We now introduce PythonSaga, a new Python code
generation benchmark that addresses the limita-
tions of existing benchmarks with respect to diver-
sity in concepts and difficulty level. PythonSaga

https://github.com/google-research/google-research/tree/master/mbpp
https://github.com/google-research/google-research/tree/master/mbpp
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Figure 3: Average number of problems/prompts in Fine-Grain category

contains 185 prompts, close to equal representation
from each of the 38 programming concepts with
varied levels of difficulty (described in Section 3.2).

5.1 Data Sources and Curation Methodology
Aligned with the problem curation strategies em-
ployed in established benchmarks Hendrycks et al.
(2021); Lai et al. (2023); Zhu et al. (2022), this
study leverages problems from two prominent cod-
ing platforms: GeekForGeeks (GeeksForGeeks,
2023) and LeetCode (LeetCode, 2023). To compre-
hensively represent each proposed programming
concept (detailed in Section 3.1), we curated five

problems per concept. This diverse set comprises
one Easy problem, two Medium problems, and two
Hard problems, ensuring a balanced distribution
across difficulty levels (20%, 40%, and 40%, re-
spectively) within the PythonSaga Dataset.

To enhance human-friendliness and ground the
problems in realistic contexts, each shortlisted prob-
lem statement undergoes a manual rephrasing pro-
cess without any aid from AI tools. Furthermore,
a comprehensive description of input and output
formats, accompanied by relevant examples, is sup-
plied with each problem statement to ensure a thor-



Model Size Pass@1 Pass@10
Code Llama Python (Roziere et al., 2023) 7B 0.0240 0.0979
Code Llama Instruct (Roziere et al., 2023) 7B 0.0178 0.0744
Mistral-Instruct-v0.1 (Jiang et al., 2023) 7B 0.0140 0.0552
Code Llama (Roziere et al., 2023) 7B 0.0067 0.0472
StarCoderBase (Li et al., 2023) 7B 0.0029 0.0149
Deepseek Coder Instruct (Guo et al., 2024) 6.7B 0.0137 0.0889
Deepseek Coder (Guo et al., 2024) 6.7B 0.0343 0.1415
GPT-3.5 (OpenAI, 2022) NA 0.0724 0.2384
GPT-4 (OpenAI, 2023) NA 0.1243 0.3311

Table 2: Comparison between open and closed-source models on PythonSaga. We use the number of samples (n)
as 20 for both open and closed-source models. OpenAI has not officially released the sizes of GPT-3.5 and GPT-4.

ough understanding of the task by Code-LLM. This
multi-step approach aims to retain the core knowl-
edge and essential solution steps while integrating
them into relatable real-world scenarios. This re-
construction involves reformulating the entire prob-
lem statement while preserving its fundamental
functionality. This deliberate transformation en-
hances the challenge for Code-LLMs, requiring
them to move beyond simple pattern matching and
grasp the nuanced context embedded within the
prompt to devise a solution effectively. For exam-
ple, the problem statement “Given a string str, find
the length of the longest substring without repeat-
ing characters.” is paraphrased as “Let’s say you
attend a car show where cars of different brands
are showcased in a row. Find the length of the
longest stretch where no two cars are of the same
brand. Take the input from the user for the brands
of the cars in the order they are placed in the row.
Print the length of the longest stretch where no two
cars are of the same brand”.

5.2 Size and Structure

Overall, PythonSaga comprises five problem in-
stances from each programming concept, result-
ing in a total size of 185 problems. Each prob-
lem is associated with a maximum of four test
cases, with an average of 3.7 test cases per problem.
PythonSaga’s structure resembles HumanEval and
MBPP, wherein each problem comprises a func-
tion signature, docstring, body, and multiple unit
tests. A representative example is present in Ap-
pendix A.2.

5.3 Benchmarking Existing LLMs

Next, we benchmark several open and closed-
source LLMs on PythonSaga. Open-source

models include three Llama variants, Code
Llama (Roziere et al., 2023), Code Llama
Python (Roziere et al., 2023) and Code Llama In-
struct (Roziere et al., 2023), Mistral-Instruct (Jiang
et al., 2023), StarCoderBase (Li et al., 2023) and
two Deepseek variants, Deepseek Coder (Guo et al.,
2024) and Deepseek Coder Instruct (Guo et al.,
2024). Except for Mistral-Instruct, the rest are
the Code-LLMs. In addition, we benchmark two
closed-source models, including GPT variants GPT-
3.5 (OpenAI, 2022) and GPT-4 (OpenAI, 2023).
While larger open-source options exist, our selec-
tion was restricted to models with 7B parameters
due to computational resource limitations, which
were limited to a single Tesla V100 in our case.

We evaluate model performances using pass@k
metric. Adhering to previous studies like Hu-
manEval (Chen et al., 2021), StarCoder (Li et al.,
2023), Deepseek Coder (Guo et al., 2024) etc, we
primarily utilized k = 1, signifying that a model
is considered successful if at least one of its gener-
ated solutions passes the defined evaluation crite-
ria. However, we additionally explored k = 10 to
analyze model consistency across larger sets of re-
sponses. Notably, unlike prior works that varied the
number of sampled responses (n), we consistently
generated n = 20 samples from both open-source
and Closed-source models for a consistent evalua-
tion.

Table 2 compares the above models against
pass@1 and pass@10 metrics. In consistent
with the latest trends, closed-source models per-
formed considerably better than open-source mod-
els. Among open-source models, Deepseek
Coder (Guo et al., 2024) performed best, whereas,
among closed-source models, GPT-4 (OpenAI,
2023) performed best. Notably, the performance



Figure 4: A heatmap showing the number of problems in PythonSaga solved by each LLM for a given programming
concept. A model succeeds if at least one of the n(=20) generated samples passes all test cases.

of closed-source models on PythonSaga is signif-
icantly lower than the respective performances in
HumanEval and MBPP benchmarks (see Figure 2
for more details).

Figure 4 illustrates the performance of each
LLM on problems within specific programming
concepts in the PythonSaga. We consider a model
has successfully solved a problem if any one of
the n(=20) generated samples passes all the test
cases. As anticipated, all models exhibited better
performance in solving problems associated with
basic concepts compared to intermediate or Ad-
vance concepts. For example, Deepseek Coder,
solved 21.1%, 25%, and 8.2% of problems in these
categories, respectively. Whereas, GPT-4 solved
42.3%, 46.6%, and 32.8% of problems, respec-
tively. In contrast to open-source models, closed-
source models have successfully solved at least one
problem from a majority of the concepts. Interest-
ingly, none of the models could successfully solve
any problem within five specific concepts, Basic
Data Structures, Hashing, Context Managers, Con-
currancy and Parallelism and Max Flow. Notably,
closed-source models exhibited a more consistent

performance across categorization compared to
open-source models, suggesting a potential advan-
tage in handling diverse problem complexities.

6 Conclusion and Future Work

This study emphasizes the crucial need for a more
balanced and comprehensive evaluation framework
to ensure a fair and accurate assessment of large lan-
guage models (LLMs) capable of generating code
from human inputs. We address this gap by propos-
ing an extensive categorization and hierarchy of
programming concepts. Subsequent analysis of
two prominent Python code generation benchmarks
reveals limited diversity in both programming con-
cepts and difficulty levels. Notably, we introduce a
novel benchmark characterized by a uniform repre-
sentation of concepts and difficulty, offering a more
robust assessment paradigm. Our findings suggest
that existing benchmarks potentially overestimate
LLM performance on code generation tasks. This
work lays the groundwork for the future develop-
ment of diverse and representative Python code
generation benchmarks, paving the way for similar
studies in other programming languages.



Limitations

This section acknowledges three key limitations
associated with the present research. Firstly, due
to constraints in human annotation resources, the
study employed a randomly selected subset of 164
problems from the MBPP benchmark. This selec-
tion aimed to match the size of the HumanEval
dataset for comparative analysis. While maintain-
ing parity in dataset size was crucial, it is impor-
tant to acknowledge that the study’s findings may
not generalize to the entire MBPP benchmark due
to the potential for selection bias introduced by
the random sampling process. Secondly, the cur-
rent study employed a team of postgraduate Com-
puter Science students with extensive experience
in Python programming and competitive coding.
While this selection ensured a high level of tech-
nical proficiency in the annotation task, it also ac-
knowledges the potential limitations in terms of
annotator diversity. Lastly, while the current study
demonstrates the efficacy of our proposed approach
within the context of the Python programming lan-
guage, the generalizability of these findings to other
languages requires further investigation, potentially
limiting the direct applicability of our findings to
benchmarks designed for languages such as Java
or C++.
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A Appendix

A.1 Performance Evaluation
Within the field of code-generating large language
models (Code-LLMs), the pass@k metric has
emerged as a prevalent benchmark for performance
evaluation (Kulal et al., 2019). This metric quanti-
fies the overall proportion of benchmark problems
successfully solved by a given model. A problem is
considered solved if at least one of the k code sam-
ples generated by the model passes every test case
associated with the problem. However, this defi-
nition leads to high variance. HumanEval (Chen
et al., 2021) proposed an unbiased variant, where
they generate n samples per problem such that n ≥
k, and count the number of correct samples c ≤ n
which pass unit tests. The unbiased estimator is
described as:

pass@k := E
Problems

[
1−

(
n−c
k

)(
n
k

) ]
(1)

Most of the Code-LLMs report pass@k values at
k = 1. However, the value of n varies significantly
across models. For instance, STARCODER (Li
et al., 2023) conducts experiments with n = 200
for open-source models and n = 20 for API mod-
els.

A.2 Representative Example from
PythonSaga

{
"task_id": "PythonSaga /15",

"prompt":

def toy_distribution(n: int) -> str:
"""
Let’s say I have a bag of toys ,
which are ’n’ in number. I know
that these toys can be
distributed either to n children
or 1 child.
I want to know what can be other
ways to distribute these toys to
children in such a way that each
child gets at least an equal
number of toys.
Take input from the user

‘ for the number of toys. Use the
divmod function to solve this
problem.

Example 1:
If 15 toys are there , then 15
children can get 1 toy each or 1
child can get 15 toys or 3
children can get 5 toys each or
5 children can get 3 toys each.
In this case ,
return ’Yes , it is possible ’.

Example 2:
If 11 toys are there , then 11
children can get 1 toy each or
1 child can get 11 toys.
In this case ,
return ’No, it is not possible ’.
""",

"entry_point": "toy_distribution",

"canonical_solution":
def is_prime(n):

"""
Check if a number is prime using
divmod.
"""
if n < 2:

return False

for i in range(2,int(n**0.5) +1):
quot ,remainder=divmod(n,i)
if remainder == 0:

return False

return True

def toy_distribution(n: int) -> str:
if n <= 0 or not is_prime(n):

return ’Yes , it is possible ’

return ’No, it is not possible ’,

"test":
METADATA = {

’author ’: ’AY’,
’dataset ’: ’test’



}
def check(candidate):

assert candidate (15) == ’Yes ,
it is possible ’

assert candidate (11) == ’No,
it is not possible ’

assert candidate (20) == ’Yes ,
it is possible ’

assert candidate (2) == ’No,
it is possible ’

}

A.3 Representative Example from
HumanEval

{
"task_id":"HumanEval /23",

"prompt":
"""
def strlen(string: str) -> int:

Return length of given
string
>>> strlen(’’)

0
>>> strlen(’abc ’)

3""",

"entry_point": "strlen",

"canonical_solution":
"return len(string)",

"test":
""" METADATA = {

’author ’: ’jt’,
’dataset ’: ’test’
}

def check(candidate):
assert candidate(’’) == 0
assert candidate(’x’) == 1
assert candidate(’asdasnakj ’)

== 9"""

}

Figure 5: Representative example from the HumanEval
dataset. Here, task_id is a unique identifier for the
data sample. The prompt contains problem text with
a function header and docstrings. Canonical_solution
presents one solution for the problem. The test contains
functions to validate the correctness of the generated
code. Entry_point represents the function name which
is yet to be completed.

A.4 Representative Example from MBPP

{
"text": "Write a function to find m
number of multiples of n.",

"code":
’’’
def multiples_of_num(m,n):

multiples_of_num=
list(range(n,(m+1)*n,n))

return list(multiples_of_num)
’’’,

"task_id": 21,

"test_setup_code": "",

"test_list":
’’’
[" assert multiples_of_num (4,3)==

[3,6,9,12]",
"assert multiples_of_num (2,5)==

[5,10]",
"assert multiples_of_num (9,2)==

[2,4,6,8,10,12,14,16,18]"]
’’’,

"challenge_test_list": []
}

Figure 6: Representative example from the MBPP
dataset. Text represents the natural language description
of the problem. Code contains one possible solution
for the problem. Task_id is the unique identifier of the
sample. Test_setup_code lists necessary code imports
to execute tests. Test_list contains a list of tests to verify
the solution. Challenge_test_list contains a list of more
challenging tests to probe the solution further.


