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Nonreciprocal devices, allowing to manipulate one-way signals, are crucial to quantum information
processing and quantum network. Here we propose a nonlinear cavity-magnon system, consisting of a
microwave cavity coupled to one or two yttrium-iron-garnet (YIG) spheres supporting magnons with
Kerr nonlinearity, to investigate nonreciprocal unconventional photon blockade. The nonreciprocity
originates from the direction-dependent Kerr effect, distinctly different from previous proposals with
spinning cavities and dissipative couplings. For a single sphere case, nonreciprocal unconventional
photon blockade can be realized by manipulating the nonreciprocal destructive interference between
two active paths, via vary the Kerr coefficient from positive to negative, or vice versa. By optimizing
the system parameters, the perfect and well tuned nonreciprocal unconventional photon blockade can
be predicted. For the case of two spheres with opposite Kerr effects, only reciprocal unconventional
photon blockade can be observed when two cavity-magnon coupling strengths Kerr strengths are
symmetric. However, when coupling strengths or Kerr strengths become asymmetric, nonreciprocal
unconventional photon blockade appears. This implies that two-sphere nonlinear cavity-magnon
systems can be used to switch the transition between reciprocal and nonreciprocal unconventional
photon blockades. Our study offers a potential platform for investigating nonreciprocal photon
blockade effect in nonlinear cavity magnonics.

I. INTRODUCTION

Recently, magnons, also known as spin waves, i.e.,
the collective spin excitations in ferro- and ferrimagnetic
materials like yttrium-iron-garnet (YIG), have attracted
considerable attention in condensed matter physics and
quantum information science [1–10]. Thanks to the
high spin density and low damping of the YIG spheres,
photons in microwave cavities can strongly couple to
the magnons, giving rise to the field of cavity magnon-
ics [11–13]. Experimentally, sub-millimeter-scale YIG
spheres and three-dimensional microwave cavities are fre-
quently employed in cavity magnonics [2–5] for inves-
tigating numerous exotic phenomena [11, 14], such as
magnon memory [15], spin current [7, 16, 17], entangle-
ment [18–21], dissipative coupling [22–24], blockade [25–
27], non-Hermitian physics [28–32], dynamics of polari-
tons [33], spin interface [34, 35], state manipulation [36–
40], microwave-optical transduction [41, 42]. In addi-
tion, magnons can strongly interact with superconduct-
ing qubits, solid spins, and phonons, building diverse
magnon-based hybrid quantum systems including qubit-
magnon systems [43–53], cavity magnomechanics [54–57],
optomechanical cavity magnonics [58, 60, 61], and cavity
optomagnonics [63–65].

With advanced experimental techniques, the magnon
Kerr effect (the Kerr nonlinearity of magnons) steming
from the magnetocrystalline anisotropy in the YIG [66]
has been demonstrated [5, 67], leading to the birth of non-
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linear cavity magnonics [68]. Utilizing the magnon Kerr
effect, multi-stability [5, 69], magnon entanglement [20],
strong spin-spin coupling [50, 51, 70], superradiant phase
transition [71], and sensitive detection [72, 73] can be
studied. Besides, the magnon Kerr effect can also be
used to investigate nonreciprocical devices such as non-
reciprocal entanglement [58, 59], nonreciprocal transimis-
sion [74], nonreciprocal excitation [75] and nonreciprocal
higher-order sideband generation [76]. However, nonre-
ciprocal single-photon blockade has not yet been revealed
to date with the magnon Kerr effect, although various
nonreciprocal devices have been widely investigated with
spinning cavities [77–81] and dissipative coupling [14, 82].
Note that photon blockade is a purely quantum effect,
which can be employed to achieve single-photon source
devices and generate sub-Poissonian light [83–85]. At
present, two classes of photon blockade are proposed:
conventional [86–88] and unconventional [89–94] photon
blockade. The former is caused by strong anharmonicity
of the eigenenergy spectrum, and the latter is formed by
the destructive quantum interference in different transi-
tion paths under weak nonlinearity.

Here, we propose a scheme to realize a nonrecipro-
cal unconventional single-photon blockade in a Kerr-
modified cavity-magnon system, which consists of a mi-
crowave cavity coupled to one or two YIG spheres sup-
porting Kerr magnons. The nonreciprocity is induced by
the direction-dependent Kerr nonlinearity. Specifically,
when the biased magnetic field is alinged along the crys-
tal axis [100] ([110]), the Kerr coefficient is positive (neg-
ative), which has been demonstrated experimentally [67].
In the case of a single sphere in the cavity, only two in-
terference passages are activated. By changing the Kerr
coefficient from positive to negative (or vice versa), non-
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reciprocal destructive interference occurs, leading to the
manifestation of nonreciprocal photon blockade. This
phenomenon can be rigorously demonstrated through
both analytical and numerical analyses, focusing on the
equal-time second-order correlation function. When the
system parameters are optimized, achieving the (ideal)
perfect nonreciprocal photon blockade becomes feasible.
Additionally, we illustrate that the degree of nonreciproc-
ity can be finely tuned by manipulating system param-
eters, as evidenced by the study of the defined con-
trast ratio. When two spheres with opposite Kerr coef-
ficients are considered, three active interference passages
emerge. In the case of symmetrical coupling strengths
and Kerr coefficients, two passages induced by magnon-
photon couplings assume identical roles in destructively
interfering with the passage created by the pumping field,
thereby leading to reciprocal photon blockade. When
two cavity-magnon coupling strengths or Kerr coefficients
become asymmetric, two passages activated by the cou-
pling strengths assume distinct roles in interfering with
the pumping passage, resulting in nonreciprocal photon
blockade, as evidenced by the corresponding contrast
ratio. This indicates that two-sphere nonlinear cavity-
magnon systems can be used to switch the transition
between reciprocal and nonreciprocal photon blockades.
Our investigation opens up a promising avenue for engi-
neering nonreciprocal devices in both single and multiple
YIG spheres with magnon Kerr effect.

The rest paper is organized as follows: In Sec. II,
the model is described, and the effective non-Hermitian
Hamiltonian is given. Then we study the nonrecipro-
cal photon blockade in a cavity including a single sphere
in Sec. III. In Sec. IV, we further study the nonrecipro-
cal photon blockade in a cavity including two symmetric
and asymmetric spheres. Finally, a conclusion is given in
Sec. V.

II. MODEL AND HAMILTONIAN

We consider a nonlinear cavity magnonics consisting
of one or two YIG spheres coupled to a microwave cavity
[see Fig. 1(a)], where the Kittel mode of the YIG sphere
is used to support the Kerr magnons (i.e., magnons with
the Kerr effect). Such the nonlinearity, arising from
the magnetocrystallographic anisotropy, can be tuned by
the direction of the magnetic field [32, 67]. Specifically,
the Kerr coefficient is positive (negative) when the mag-
netic field is aligned along with the crystallographic axis
[100] ([110]) of the YIG sphere. For studying photon
blockade effect, an additional pumping field with the fre-
quency ωp and the Rabi frequency Ω is imposed to the
microwave cavity. The Hamiltonian of the proposed sys-
tem can be written as (setting ℏ = 1),
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FIG. 1: (a) Schematic diagram of the proposed cavity-magnon
system. It consists of one or two YIG spheres supporting Kerr
magnons coupled to a pumped cavity. The YIG sphere(s) is
(are) placed in a static magnetic field B0, along the crystallo-
graphic axis [100] or [110]. Correspondingly, K > 0 or K < 0.
(b) Energy level diagram of a single sphere coupled to a cav-
ity and the corresponding excitation paths. (c) Energy level
diagram of two spheres simultaneously coupled to a common
cavity and the corresponding excitation paths.

Hsys =
∑
j=1,2

[ωmm
†
jmj + gj(m

†
jc+ c†mj) +Kj(m

†
jmj)

2]

+ ωcc
†c+Ω(ceiωpt + c†e−iωpt), (1)

where ωc(m) is the resonance frequency of the photons
(magnons) in the cavity (Kittel) mode, gj is the photon-
magnon coupling strength and K is the Kerr coefficient.

The operators c (mj) and c† (m†
j) are the annihilation

and creation operators of the photons (jth magnon). In
the rotating frame with respect to ωp, Eq. (1) reduces to

Hrf =
∑
j=1,2

[∆mm
†
jmj + gj(m

†
jc+ c†mj) +Kj(m

†
jmj)

2]

+ ∆cc
†c+Ω(c+ c†), (2)

where ∆c(m) = ωc(m) − ωp is the frequency detuning of
the photons (magnons) from the pumping field.

By further taking the dissipations of the system into
account and neglecting the quantum jump terms, the ef-
fective non-Hermitian Hamiltonian of the system is

Heff = Hrf − i
κc
2
c†c− i

∑
j=1,2

κm
2
m†

jmj , (3)

where κc and κm are the decay rates of the photons and
magnons, respectively.
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FIG. 2: g2(0) versus the normalized (a) detuning ∆ and (b)
magnon-photon coupling strength g. The red (blue) curve
corresponds to the case of K > 0 (K < 0). In (a), g = gopt =
9.88Γ, and in (b), ∆ = ∆opt = 0.287Γ. Other parameters are
Γ/2π = 1 MHz, |K|/Γ = 4× 10−3, and Ω/Γ = 0.1.

III. NONRECIPROCAL PHOTON BLOCKADE
WITH A SINGLE SPHERE

In this section, we investigate the photon blockade in
the proposed system consisting of a single YIG sphere
coupled to the cavity, i.e., j = 1 in Eq. (1). The magnon-
photon coupling strength and the magnon Kerr coeffi-
cient are respectively denoted by g1 = g and K1 = K.
Our analysis focuses on the equal-time second-order cor-
relation function of the photons in the cavity. The Fock-
state basis of the system is denote by |nm⟩ = |n⟩ ⊗ |m⟩,
with n being the number of photons in the microwave
cavity and m the number of magnon. In the weak pump-
ing regime, Ω/κc(m) ≪ 1, the photon number is small, so
we can work within the few-photon subspace spanned by
the basis states |0⟩c, |1⟩c, and |2⟩c. Therefore, the state
of the system at arbitrary time can be expressed as

|ψt⟩ =C00|0⟩c|0⟩m + C10|1⟩c|0⟩m + C01|0⟩c|1⟩m
+ C20|2⟩c|0⟩m + C11|1⟩c|1⟩m + C02|0⟩c|2⟩m, (4)

where Cij with i, j = 0, 1, 2 are the probability ampli-
tudes. By substituting the state |ψt⟩ into the Schrödinger
equation, the following equations of motion for the prob-
ability amplitudes can be obtained,

iĊ00 =ΩC10,

iĊ10 =∆′
cC10 + gC01 +

√
2ΩC20 +ΩC00,

iĊ01 =gC10 + (∆′
m +K)C01 +ΩC11,

iĊ20 =2∆′
cC20 +

√
2ΩC10 +

√
2gC11, (5)

iĊ11 =ΩC01 +
√
2g(C20 + C02) + (∆′

c +∆′
m +K)C11,

iĊ02 =
√
2gC11 + 2(∆′

m + 2K)C02,

where ∆′
c(m) = ∆c(m) − iκc(m)/2. In the long-time limit,

the probalitity amplitudes can be attained by directly
solving Ċij = 0.

When the system is in the state (4), the equal-time
second-order correlation function of the photons can be

calculated as

g2(0) ≡ ⟨c†c†cc⟩
⟨c†c⟩2

=
2|C20|2

(|C10|2 + |C11|2 + 2|C20|2)2
. (6)

In the weak pumping regime (Ω ≪ Γ), we have |C10|2 ≫
|C11|2, |C20|2. This means that the probability of finding
one photon in the cavity is much larger than that of si-
multanesouly finding one photon and one magnon, which
is also much larger than that of finding two photons in
the cavity. As a result, g2(0) ≈ 2|C20|2/|C10|4 < 1, i.e.,
the photon blockade is achieved. Since the probabilities
in Eq. (6) are affected by the magnon Kerr effect (K)
[see Eq. (5)], the so-called nonreciprocal photon block-
ade can be achieved via changing the direction of the
magnetic field (i.e., K > 0 or K < 0). To show this, we
analytically plot the equal-time second-order correlation
g2(0) versus the normalized detuning ∆/Γ and coupling
strength g/Γ in Fig. 2, where ωc = ωm = ω (equiva-
lently, ∆c = ∆m = ∆) and κc = κm = Γ are assumed
for simplicity hereafter. The red (blue) curve denotes
K > 0 (K < 0), corresponding to the case that the mag-
netic field is aligned along the crystal axis [100] ([110]).
From Fig. 2(a), we show that the perfect photon blockade
can be realized by tuning ∆ when the magnon-photon
coupling strength g is fixed at its optimal value. For
K > 0 and K < 0, the nonreciprocal photon block-
ade is predicted. When the positive optimal value of
the detuning ∆opt/Γ = 0.287 is chosen [see Fig. 2(b)],
g2(0) decreases first from g2(0) = 1 to g2(0) = 0 and
then increases with increasing g when K > 0. But when
K < 0, g2(0) monotonically increases, resulting in pho-
ton bunching [g2(0) > 1]. To demonstrate the validity of
our approximate analysis, we also perform the numerical
simulation by using the Lindblad master equation

ρ̇ = i[ρ,Hrf ] +
κc
2
L[c]ρ+ κm

2
L[m]ρ, (7)

where ρ is the density matrix of the considered sys-
tem, L[o]ρ = 2oρo† − o†oρ − ρo†o is the Lindblad op-
erator. Obviously, the analytical result well matches
the simulation (see the circles and squares in Fig. 2).
The mechanism of the photon blockade can be explained
by the destructive interference between two transition
paths [see Fig. 1(b)]. One path is formed by directly
pumping the vaccum cavity to the cavity having two
photons, i.e., |0⟩c|0⟩m → |1⟩c|0⟩m → |2⟩c|0⟩m. The
other path is formed by the strong coupling between
the magnons and photons. Specifically, when one pho-
ton is excited in the cavity, the magnon-photon cou-
pling leads to the transition between the states |1⟩c|0⟩m
and |0⟩c|1⟩m. Then the pumpling field excites the state
|0⟩c|1⟩m to the state |1⟩c|1⟩m. Due to the photon-magnon
coupling, the state |1⟩c|1⟩m further transits to the states
|2⟩c|0⟩m and |0⟩c|2⟩m. During these transitions, the fre-
quency shift induced by the magnon Kerr effect is pos-
itive (negative) for K > 0 (K < 0). This indicates
when the photon blockade is achieved at K > 0 (K < 0)
for fixed parameters, the reversed photon bunching, i.e.,
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g2(0) > 1, is predicted at K < 0 (K > 0), as demon-
strated in Fig. 2(a).

From Fig. 2, one can find that the optimal coupling
strength gopt and frequency detuning ∆opt for a given K
must exist for prediction of the perfect photon blockade
[g2(0) = 0]. This indicates that the probability of si-
multaneously finding two photons in the cavity is nearly
zero [see Eq. (6)], i.e., |C20|2 ≈ 0, which can be directly
convinced by the simulation results in Fig. 3. To analyt-
ically obtain the optimal parameters, the perfect photon
blockade condition can be specifically rewritten as

g2K

∆′
m + 2K

+ (∆′
c +∆′

m +K)(∆′
m +K) = Ω2, (8)

or equivalently,

2Ω2 + Γ2 =12∆2 + 28∆K + 14K2,

g2K

4∆ + 3K
=(∆+ 2K)2 + Γ2/4. (9)

From the second equality in Eq. (9), the inequality

(4∆ + 3K)K > 0 (10)

can be directly obtained for a given g. This means that
the perfect photon blockade can only be predicted in the
region of ∆ > −3K/4 (< −3K/4) for K > 0 (< 0). In
addition, the optimal coupling strength

gopt =

√
4∆opt + 3K

K
[(∆opt + 2K)2 + Γ2/4] (11)

is required to realize perfect photon blockade for a given
K, where the optimal paramter ∆opt is given by the first
equality in Eq. (9), i.e.,

∆opt =
−7K ±

√
7K2 + 6Ω2 + 3Γ2

6
≈ ±

√
3

6
Γ. (12)

The second approximate equality is established because
K,Ω ≪ Γ is taken. The sign ’+ (−)’ corresponds to
K > 0 (< 0).

To quantitatively charaterize the nonreciprocal photon
blockade, a bidirectional contrast ratio is introduced, i.e.,

C =

∣∣∣∣g2K>0(0)− g2K<0(0)

g2K>0(0) + g2K<0(0)

∣∣∣∣ ∈ [0, 1], (13)

where C = 1 (0) denotes the ideal nonreciprocal (recip-
rocal) photon blockade. The larger the contrast ratio
C, the stronger the nonreciprocity of the photon block-
ade. In Fig. 4(a), we show the behavior of the contrast
ratio with the normalized detuning ∆/Γ with different
magnon-photon couplings. Clearly, the nonreciprocity
and reciprocity for the photon blockade can be switched
by tuning the detuning ∆. When the coupling strenth
is optimal (i.e., gopt = 9.88Γ), the ideal nonreciprocal
photon blockade can be attained. But when the cou-
pling strength deviates from the optimal value such as

2 (0) 1g =

2 (0) 1g =

2 (0) 1g <2 (0) 1g <

Eq. (11) Eq. (11)

( )a ( )b

/
g

Γ

/∆ Γ /K Γ

2 (0)g

FIG. 3: (a) Density plot of g2(0) vs the normalized coupling
strength g/Γ and the normalized detuning ∆/Γ. (b) Density
plot of g2(0) vs the normalized coupling strength g/Γ and
the normalized Kerr coefficient K/Γ. In panels (a) and (b),
the red dashed curve denotes g2(0) = 1, the black dashed
curve satisfies the optimal conditon in Eq. (11), and the light
green zone means photon blockade, i.e., g2(0) < 1. Other
parameters are the same as those in Fig. 2.
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FIG. 4: (a) The contrast ratio C versus the normalized de-
tuning ∆ with different magnon-photon coupling strengths
g = gopt = 9.88Γ (red), 0.6gopt (black), and 1.2gopt (blue). (b)
The contrast ratio C versus the normalized coupling strength
g with different detunings ∆ = ∆opt = 0.287Γ (red), 0.5∆opt

(black), and 1.2∆opt (blue). Other parameters are the same
as those in Fig. 2.

g = 0.6gopt and g = 1.2gopt, the maximum nonreciproc-
ity of the photon blockade has a different degree of re-
duction (see curves marked by squares and triangles). In
Fig. 4(b), we also investigate the contrast ratio with the
normalized coupling strength g/Γ with different detun-
ings. By increasing g, one can see that the contrast ratio
increases first to its maximum and then decreases. At
the optimal detuning ∆opt = 0.287Γ, the ideal nonrecip-
rocal photon blockade (C = 1) is predicted. Deviating
from this optimal value such as ∆ = 0.5∆opt (the black
curve with squares) and ∆ = 1.2∆opt (the blue curve
with triangles), the maximum nonreciprocity of the pho-
ton blockade reduces.

IV. NONRECIPROCAL PHOTON BLOCKADE
WITH TWO SPHERES

We next study the photon blockade in the considered
system consisting of two YIG spheres simultanesouly cou-
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FIG. 5: G2(0) versus the normalized detuning ∆ with (a)
g1 = g2 and (b) g1 ̸= g2 in the case of ζK < 0. In (a), the red
(blue) curve corresponds to g1 = g2 = 15Γ (= gopt = 63Γ).
Other parameters are the same as those in Fig. 2.

pled to a cavity [see Eq. (3) with j = 2]. For conveniance,
we define two parameters ζg = g1/g2 and ζK = K1/K2

as the relative coupling strength and Kerr coefficient, re-
spectively. In the weak pumping regime, the state of
the considered system governed by Eq. (3) with j = 2
becomes

|ψ′
t⟩ =C000|000⟩+ C001|001⟩+ C100|100⟩+ C010|010⟩

+C200|200⟩+ C110|110⟩+ C011|011⟩+ C101|101⟩
+C020|020⟩+ C002|002⟩ (14)

when the system is initially prepared in the state
|0⟩c|0⟩1|0⟩2, where the subscripts c, 1 and 2 denote the
cavity mode, the spheres 1 and 2. Following the proce-
dure of calculating the equal-time second-order correla-
tion fuction in the case of a single sphere, we have

G2(0) =
2|C200|2

(|C100|2 + |C110|2 + |C101|2 + 2|C200|2)2
, (15)

which charaterizes the equal-time second-order corre-
lation fuction in the presence of two YIG spheres.
Here we have used the approximation |C200|2 ≪
|C110|2, |C101|2 ≪ |C100|2. This directly leads to pho-
ton blockade, i.e., G2(0) < 1. To address this, we further
consider the following two scenarios: (i) The directions of
two magnetic fields are identical (ζK > 0); (ii) the direc-
tions of two magnetic fields are opposite (ζK < 0). When
ζK > 0, the predicted nonreciprocal photon blockade is
similar to that of a single sphere (see Fig. 2), which has
been numerically checked. Therefore, we do not provide
discussions here anymore.

Interestingly, the situation of ζK < 0 is completely dif-
ferent from that of ζK > 0. For simplicity, we assume
that the magnons in two spheres have the same abso-
lute values, i.e., |ζK | = 1, equivalently |K1| = |K2|. In
the following discussion, we label the scenario of K1 > 0
and K2 < 0 (K1 < 0 and K2 > 0) as K+− (K−+).
When the magnons in two YIG spheres are identically
coupled to the cavity (ζg = 1), only the reciprocal pho-
ton blockade is predicted for K+− and K−+ [see red or
blue curve in Fig. 5(a)]. This is due to the fact that
the transitions |000⟩ → |100⟩ → |001⟩ → |101⟩ → |200⟩
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FIG. 6: (a) G2(0) versus the relative coupling strength ζg with
∆ = −0.287Γ in the case of ζK < 0, where the red (blue)
curve corresponds to K+− (K−+). (b) The contourplot of
G2(0) = 1 versus ζg and |ζK |. Other parameters are the same
as those in Fig. 2.

and |000⟩ → |100⟩ → |010⟩ → |110⟩ → |200⟩ play the
same role in destructively interfering with the transition
|000⟩ → |100⟩ → |200⟩ when ζg = 1 and |ζK | = 1
[see Fig. 1(c)]. To obtain a visible photon blockade
[G2(0) ≪ 1], the large magnon-coupling strengths are
needed. At the optimal coupling strength gopt = 63Γ,
we find that the perfect photon blockade is achieved
at ∆opt = 0, as shown by the blue curve in Fig. 5(a).
This optimal coupling strength can be experimentally
realized owing to the achieved strong and ultra-strong
photon-magnon interactions [3, 95, 96]. However, when
ζg ̸= 1 (i.e., g1 ̸= g2), the nonreciprocal photon blockade
is clearly observed [see Fig. 5(b)], where the red (blue)
curve corresponds to K+− (K−+). To realize this nonre-
ciprocal photon blockade, the required magnon coupling
strength is relatively smaller than that of ζg = 1. This
means that the nonreciprocal photom blockade can be
engineered by using the asymmetric and relatively small
magnon-photon coupling strength, making the proposal
more feasible in experiments. At ∆/Γ = +2.87 (−2.87),
the optimal photon blockade occurs for K+− (K−+).
The mechanism of the nonreciprocal photon blockade at
ζg ̸= 1 can be interpreted as follows: For K+− [see the
red levels in Fig. 1(c)], the transition |000⟩ → |100⟩ →
|010⟩ → |110⟩ → |200⟩ is allowed at ∆ > 0, while the
transtion |000⟩ → |100⟩ → |001⟩ → |101⟩ → |200⟩ is for-
bidden due to the Kerr effect induced large detuning. As
a result, the photon blockade is caused by the destructive
interference between the former and the direct pumping
path |000⟩ → |100⟩ → |200⟩. On the contrary, the transi-
tion |000⟩ → |100⟩ → |010⟩ → |110⟩ → |200⟩ is forbidden
at ∆ < 0, while the transtion |000⟩ → |100⟩ → |001⟩ →
|101⟩ → |200⟩ is allowed, giving rise to photon blockade
for K−+ [see the blue levels in Fig. 1(c)].

Figure 6(a) further examines the behavior of the pho-
ton blockade with the relative coupling strength ζg, where
g2/Γ = 9.88 is fixed. In the absence of one sphere such
as the sphere 1 (ζg = 0), the photons in the cavity is
bunching (antibunching) for the case of K+− (K−+).
By coupling the sphere 1 to the cavity and continuously
increasing g1, we find that the property of the statis-
tic photons are changed from bunching to antibunching
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FIG. 7: The contrast ratio C versus (a) the relative coupling
strength ζg and (b) the normalized detuning ∆. In (a), ζK = 1
with |K1| = |K2| = 4× 10−3Γ (blue) and ζg ̸= 1 with |K2| =
2|K1| = 4×10−3Γ (red). In (b), the black curve denotes g1 =
g2 = 9.88Γ and |K1| = |K2| = 4×10−3, the red curve denotes
g1/Γ = 12, g2/Γ = 9.88, and |K1| = |K2| = 4×10−3, the blue
curve denotes g1 = g2 = 9.88Γ and |K2| = 4|K1| = 4× 10−3.
Other parameters are the same as those in Fig. 2.

one sphere

two spheres
one sphere

two spheres

( )a ( )b

/Ω Γ  (mK)T

FIG. 8: The second-order correlation function g2(0) vs (a)
the normalized Rabi frequency of the pumping field and (b)
the bath temperature, where the red (blue) curve denotes the
case of the single sphere (two spheres). Other parameters are
the same as those in Fig. 2.

(blockade) for K+−, and conversely, from antibunching
to bunching forK−+. This indicates that the nonrecipro-
cal photon blockade can be achieved in a broad range of
the parameter ζg. Note that at ζg = 1 (g1 = g2 = 9.88Γ),
G2(0) = 1 for both K+− and K−+ (see the crosspoint),
meaning that the nonreciprocity disappears and photons
satisfies Poissionian distribution. Figure 6(b) reveals the
relationship between ζg and |ζK | when G2(0) = 1. With
increasing ζg, the relative Kerr coefficient decreases. This
suggests that the crosspoint in Fig. 6(a) has a right (left)
shift with increasing (decreasing) ζg when |ζK | < 1 (> 1).

To describe the nonreciprocity of the photon blockade
induced by the opposite Kerr effects of the magnons in
two spheres, a contrast ratio C is defined as

C =

∣∣∣∣∣G2
K+−

(0)−G2
K−+

(0)

G2
K+−

(0) +G2
K−+

(0)

∣∣∣∣∣ . (16)

In Fig. 7, we respectively plot it versus the relative cou-
pling strength ζg and the normalized detuning ∆/Γ. One
can see that the nonreciprocity can be well tuned be-
tween 0 (reciprocity) and 1 (nonreciprocity) by the rel-
ative coupling strength ζg in Fig. 7(a) when |ζK | = 1.

In particular, the nonreciprocity disappears at ζg = 1,
consistent with above discussions. To recover the non-
reciprocity, aysmmetric coupling strengths (ζg ̸= 1) or
Kerr coefficents (|ζK | ≠ 1) can be employed, as demon-
strated by the the blue and red curves, respectively. Ob-
viously, the nonreciprocity of the photon blockade can
also be controlled by ζg for the asymmetric Kerr coef-
ficents (|ζK | ≠ 1). When the magnon-photon coupling
strenghts are fixed, the contrast ratio can be tuned by
the normalized detuning ∆/Γ in Fig. 7(b). Specifically,
only reciprocal photon blockade is predicted (C = 0) at
ζg = 1, |ζK | = 1 (see the black curve). However, one of
the conditions is broken, i.e., ζg ̸= 1 and |ζK | = 1, or
ζg = 1 and |ζK | ̸= 1, the nonreciprocity of the photon
blockade can be observed.

V. DISCUSSION AND CONCLUSION

Before concluding, we give a brief study of the Rabi
frequency of the weak pumping field and the effect of
the bath temperature on the photon blockade. From
Fig. 8(a), one can see that the photon blockade can be
realized at Ω < 0.31Γ (Ω < 0.84Γ) in the presence of sin-
gle YIG sphere (two YIG spheres). This indicates that
the range of Ω for achieving the photon blockade can be
widened via increasing the number of YIG spheres. Fig-
ure 8(b) shows the impact of the bath temperature on the
photon blockade. Obviously, g2(0) is nearly unchanged
when T < 4 mK for both the cases of single sphere and
two spheres. But when the temperature crosses the point
T = 4 mK, g2(0) has a sudden increase. For the case of
single sphere (two spheres), photon blockade disappears
when T > 4.45 mK (T > 4.5 mK). It is also evident that
the proposed system including one sphere can have bet-
ter photon blockade effect than the case of two spheres
at a certain temperature.

In summary, we have proposed a nonlinear cavity-
magnon system to study the nonreciprocal photon block-
ade. The nonreciprocity stems from the direction-
dependent Kerr effect of magnons in the YIG sphere.
For a single sphere case, the nonreciprocal destructive
interference between two paths leads to nonreciprocal
photon blockade by varying the Kerr coefficient from
positive to negative (or vice versa). By optimizing the
system parameters, perfect nonreciprocal photon block-
ade can be predicted and finely tuned. For the case of
two spheres with opposite Kerr coefficients, only recipro-
cal photon blockade can be predicted when two cavity-
magnon coupling strengths and Kerr coefficients are sym-
metric. However, when two coupling strengths or Kerr
coefficients becomes asymmetric, nonreciprocal photon
blockade appears. This indicates that the transition be-
tween reciprocity and nonreciprocity of photon block-
ade can be arbitrarily switched in a two-sphere cavity-
magnon system. Our study paves a potential way to en-
gineer nonreciprocal devices in nonlinear cavity magnon-
ics.
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