
GazeCLIP: Towards Enhancing Gaze Estimation via Text
Guidance

Hao Ruana, Jun Wanga, Mingjie Wangb,*, Chuanhui Zhangc, HuaChun Lid and Jun Zhoue

aSchool of Management Science and Engineering, Southwestern University of Finance and Economics
bSchool of Science, Zhejiang Sci-Tech University

cSchool of Finance, Southwestern University of Finance and Economics
dThe Department of Chengdu Research and Development, Agricultural Bank of China Sichuan Branch

eThe School of Information Science and Technology, Dalian Maritime University

Abstract. Over the past decade, visual gaze estimation has gar-
nered increasing attention within the research community, owing to
its wide-ranging application scenarios. While existing estimation ap-
proaches have achieved remarkable success in enhancing prediction
accuracy, they primarily infer gaze from single-image signals, ne-
glecting the potential benefits of the currently dominant text guid-
ance. Notably, visual-language collaboration has been extensively
explored across various visual tasks, such as image synthesis and ma-
nipulation, leveraging the remarkable transferability of large-scale
Contrastive Language-Image Pre-training (CLIP) model. Neverthe-
less, existing gaze estimation approaches overlook the rich seman-
tic cues conveyed by linguistic signals and the priors embedded in
CLIP feature space, thereby yielding performance setbacks. To ad-
dress this gap, we delve deeply into the text-eye collaboration proto-
col and introduce a novel gaze estimation framework, named Gaze-
CLIP. Specifically, we intricately design a linguistic description gen-
erator to produce text signals with coarse directional cues. Addition-
ally, a CLIP-based backbone that excels in characterizing text-eye
pairs for gaze estimation is presented. This is followed by the im-
plementation of a fine-grained multi-modal fusion module aimed at
modeling the interrelationships between heterogeneous inputs. Ex-
tensive experiments on three challenging datasets demonstrate the
superiority of the proposed GazeCLIP which achieves the state-of-
the-art accuracy.

1 Introduction

During the past decade, visual gaze estimation has garnered ever-
increasing attention thanks to its widespread application scenar-
ios, such as saliency detection [47], virtual reality[51], human-
robot interaction[19, 44], medical diagnosis[4], driver fatigue
estimation[53] and other areas[37, 13]. Gaze estimation aims to ac-
curately infer the direction of a person’s gaze from an input image,
typically focusing on the human face or eyes. Despite its promis-
ing practical potential applications, this visual task faces significant
challenges. For instance, the utilization of diverse camera angles in-
evitably leads to unpredictable variations in lighting, color, and fa-
cial features, which can severely degrade performance. To struggle
with this issue, several existing studies[59, 7, 5, 46, 3, 6, 1, 48] have
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Figure 1. (a) Existing single-modal approaches directly learn gaze-oriented
representations from 2D face/eye images via CNNs-based structures, whereas
(b) our proposed novel GazeCLIP delves deep into the synergistic effects of
text-image features.
made lots of efforts to marry the stability and robustness to regres-
sion algorithms. An additional catalyst for the thriving of investiga-
tions on gaze estimation is the increasing availability of large-scale
datasets [15, 21, 16, 61, 58] which consist of varied subjects includ-
ing lighting conditions, head poses and so on. Inspired by the huge
success of deep learning in computer vision[24, 18, 40], an increas-
ing number of researchers are shifting their focus towards modeling
intricate mappings between input signals and gaze labels[58, 59, 57].
Nonetheless, these methods typically operate on single-modal facial
images as input, making them susceptible to the challenge of isolat-
ing gaze-specific features amidst unrelated regions (e.g., the nose and
mouth) scattered throughout the input image as different regions are
prone to confuse the model on what to prioritize in learning. A gen-
eral model for remote POG estimation based on video[17] evades this
problem by mining geometric characteristics of the eye. Albeit the
impressive progress, conventional geometry-modelling approaches
exhibit several limitations such as reliance on controlled laboratory
environments and poor generalization performance to new subject.
This has led to a surge in the booming of appearance-based gaze
estimation algorithms, harnessing the capabilities of cutting-edge
deep learning models. To enhance the estimation performance, recent
learning-based protocols [9, 31, 8] excel at extracting useful features
from raw facial or eye images through the design of diverse high-
capacity CNN models, see Figure 1(a). Furthermore, the inevitable
drastic variations introduced by diverse camera views and individual
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characteristics (e.g. gender, skin color, and glasses) [15, 57] can eas-
ily lead the model to fail in learning highly non-nonlinear relation-
ships, resulting in overfitting and sub-par performance. Therefore,
there is a large room for further exploration of gaze regression model
with enhanced learning capabilities.

Recently, a cohort of large-scale pre-traiend linguistic-vision mod-
els [34, 12, 36, 14] have emerged as dominant forces in artifi-
cial intelligence, sparking a surge in multi-modal learning. Partic-
ularly, Contrastive Language-Image Pre-Training (CLIP) [35] elicits
the foremost attention within the research community and has been
widely adopted for various downstream vision tasks, such as image
generation and visual question answering [38, 39, 41]. Specifically,
CLIP’s backbone is comprised of a set of transformer blocks and
is trained using an extensive collection of image-text pairs (400 mil-
lion). The key advantage of incorporating CLIP lies in its implicit en-
richment of features with the nuanced semantics embedded in natural
language. For example, object detection [42], semantic segmentation
[50], and image classification [62] have achieved notable success by
harnessing the guiding capabilities of the prominent CLIP model.

Despite the remarkable progress made in previous approaches, the
field of gaze estimation has yet to fully exploit the substantial ben-
efits of leveraging language guidance. Indeed, the task of regress-
ing raw face/eye images into continuous gaze vectors presents an
intractable challenge. Therefore, a "divide-and-conquer" approach
naturally emerges, aiming to initially identify coarse-grained gaze
directions and then utilize the coarse-granularity pseudo labels to
guide fine-grained gaze estimation. Moreover, considering the po-
tential decrease in estimation accuracy when the target gaze direc-
tion deviates from the camera’s central axis compared to direct gaze
towards the camera, we posit that the estimation accuracy can be
notably enhanced through the guidance of coarse-grained pseudo-
directions. These coarse directions, represented as natural language
prompts, can be encoded through pre-trained CLIP encoders, thereby
enhancing the discriminative embeddings with robust guidance abil-
ity.

While linguistic prompts effectively convey high-level and coarse-
grained directions, devising appropriate prompts from facial/eye im-
ages poses a significant challenge, as articulating the nuances be-
tween input images in words is difficult. Unlike image classification
tasks, the generation of meaningful language descriptions (such as
gaze direction prompt) using the full-fledged BLIP [26] is inherently
impractical as the training of BLIP fully ignores gaze face samples,
thereby impeding the applicability of CLIP in gaze estimation. Due
to the particularity of the gaze estimation dataset, natural languages
generated using BLIP will always be "A man’s/woman’s face", but
what we need for our approach is a rough direction guide, and it will
not appear in common language descriptions.

To address the aforementioned challenges, this paper delves into
the intricate process of formulating suitable prompts and proceeds to
carefully design a language-vision protocol (GazeCLIP). This pro-
tocol aims at enhancing the semantic space of the gaze estimation
model. Specifically, we pre-define the text prompt as “A photo of
a face gazing [class]”, where [class] represents a set of base direc-
tion(front, up, down, left, right). To make the constructed prompt
conform to the language prior knowledge of the CLIP model, we di-
rectly use the zero-shot CLIP model to determine a direction for each
image. We calculate the similarity between each input image and the
sentence composed of the five directions mentioned above, and take
the direction with the highest similarity as the text input. The main
reason for this is that we hope to build a natural language that con-
forms to prior knowledge of the CLIP model. On top of the gener-

ated prompt-image pairs, we present a cross-attention-based module
to align the representations from two heterogeneous modalities. Fol-
lowing the fine-grained fusion of multi-modal features through trans-
former blocks and cross-attention condensers, the resulting refined
image embedding are combined with the original image embedding
together to act as the input of final regression head. As depicted in
Fig. 1, Unprecedentedly, our emphasis lies on harnessing the guid-
ance provided by textual signals, rather than solely struggling to de-
sign image encoders.

We evaluated our proposed model on three challenging pub-
lic dataset benchmarks for gaze estimation. Extensive experiments
demonstrate that GazeCLIP achieves state-of-the-art performance in
all three datasets. Particularly, compared with existing approaches,
the GazeCLIP gains significant improvement with an angular error
decrease of 0.4° on average(4.1° → 3.6°, 7.4° → 7.3°, 5.3° → 4.7°).
In a nutshell, the contributions of our GazeCLIP are threefold:

• In Use. A novel text-guided gaze estimation method is proposed in
this paper, namely GazeCLIP, to enhance the performance of gaze
estimation, which is inspired by strong generalization capability
of CLIP model in various downstream vision tasks. To the best
of our knowledge, this is the first attempt to distil rich knowledge
from full-fledged pre-trained language-vision model for guiding
the learning of gaze estimation network.

• Fine-grained Learning. In this study, we introduce a cross-
attention condenser designed to finely recalibrate visual and text
representations. This mechanism facilitates the nuanced alignment
of image features with the semantic guidance embedded in textual
signals, enhancing the learning quality of gaze features.

• SOTA Performance. Extensive experiments conducted on three
prominent datasets unequivocally demonstrate the superior perfor-
mance of our framework. Our innovative approach yields a note-
worthy enhancement, manifesting as an average reduction of 0.4°
(equivalent to a substantial 8% improvement) in angular error.

2 Related Work
2.1 Gaze Estimation Evolution

Early approaches attempt to achieve gaze estimation by predict-
ing a mass of points on a 2D screen[23]. Due to significant varia-
tions in the positions of cameras across different devices, the gen-
eralization capability of the 2D gaze estimation model is notably
constrained. To mitigate this issue, a series of 3D gaze estimation
approaches[8, 15, 21, 59, 7, 5, 46] are proposed to infer person gaze
in the real world by enriching geometric information, such as vary-
ing shooting conditions. In contrast to geometric-based approaches,
appearance-based models have garnered escalating attention within
the research community. This is attributed to the capability of gaze
regressors of this type to utilize images captured by conventional
cameras as input. Taking advantage of the great success of deep
learning[18, 43], the performance of gaze estimation algorithms has
improved substantially.

Specifically, the approach [57] unprecedentedly leverages high-
capacity CNN to regress gazes from the facial image inputs. Zhang et
al. [59] introduce a spatial attention mechanism to emphasize facial
areas within input scenes, effectively suppressing noise from redun-
dant image regions. Meanwhile, Cheng et al. [7] realize the asymme-
try between two eyes and further propose an asymmetric regression
backbone consisting of four CNN stems. Stimulated by atrous con-
volution in image classification[54], Chen et al. [5] strives to enlarge
receptive fields through dilated convolutions without incurring extra



computational overhead. Wang et al. [46] present a unified frame-
work including both adversarial learning and a Bayesian approach,
thereby enhancing the transferability and accuracy of gaze estima-
tion models. The CA-Net [8] delves into the coarse-to-fine estima-
tion procedure. In particular, the coarse stage hammers at deducing
a fundamental gaze direction from a facial image, whereas the sub-
sequent step further refines the predicted direction based on the pro-
vided eye images. [2] began to introduce an attention mechanism to
extract key features of eye images. More recently, [3] introduced an
unsupervised domain adaptation approach to estimate gaze that is not
restricted by source limitations, which is superior in cross-domain
gaze estimation methods. In [6], cameras with various viewpoints
are used to capture the subject’s image. Following that, they set out
a dual viewpoint gaze estimation network. [52, 32, 11, 29, 30] are
also concerned about the performance under cross-dataset settings
and aim to build more generalized models for gaze estimation task.
[49] has demonstrated that higher resolution images will have a pos-
itive impact on the results, even with a simple backbone network.
Albeit achieving impressive results, all these gaze estimators ignore
the promising semantics merits provided by large-scale modern lan-
guage models (e.g., BERT [12] and CLIP [35]). Therefore, there is a
large room for performance improvement in gaze estimation.

2.2 Language-steering Visual Models

Recently, Large Language Models (LLMs)[33, 34, 12] trigger a new
trend of researches on text-oriented feature learning for a cohort of
visual tasks, such as crowd counting[28], point clouds analysis [56]
and image generatio [39]. Thereinto, Contrastive Language-Image
Pre-training (CLIP) [35] model stands out as particularly captivating
for enhancing visual algorithms. In specific, CLIP seeks to explore
the interrelationships between image and language signals by assimi-
lating insights from a vast dataset comprising 400 million image-text
pairs collected from the internet.

CLIP is trained through contrastive learning to maximize the co-
sine similarity between text embedding and image embedding of pos-
itive sample pairs. Such a training method breaks the long-standing
heavy reliance on image labels in the visual field. The pre-trained
CLIP models can chieve superior performance compared to those
fully supervised methods in many classic visual tasks even in few-
shot or zero-shot settings. Given the powerful transferable ability
of CLIP, many studies have explored how to apply CLIP to various
specific downstream tasks. Several methods [50, 20, 27, 28, 55]have
achieved promising performance with the help of the CLIP model on
3d avatar generation, age estimation, image aesthetics assessment,
semantic segmentation, and so on. These methods usually apply pre-
trained CLIP model as backbone, and design a language-image in-
teraction mechanism based on specific tasks after defining different
prompts which usually are general language expression of the target
images in advance.

3 Methodology

In this section, we outline our approach for performing gaze estima-
tion with text knowledge. We begin by illustrating the CLIP model,
which contains rich semantic knowledge of images and texts through
unsupervised pre-training. Next, we delve into the details in Gaze-
CLIP.

3.1 Revise for CLIP

Influenced by the success of large models in the field of natural lan-
guage processing[33, 34, 12, 36], research has begun to study how to
apply the ideas of pre-training and large models to the field of com-
puter vision. This shift aims to reduce dependence on large amounts
of labeled data during visual task training, as unsupervised learning
models typically exhibit stronger transfer capabilities. CLIP[35], ex-
emplifies this approach, leveraging 400 million pairs of image-text
data collected from the internet for pre-training. These texts serve as
natural language descriptions of images. During pre-training, a batch
of image-text pairs is fed into separate image and text encoders, and
the contrastive learning framework maximizes the cosine similarity
of positive sample pairs. By mapping features of two modalities to a
joint embedding space, the pre-trained CLIP model possesses strong
transferability, making it applicable to various downstream visual
tasks, even in zero-shot settings. For instance, in image classifica-
tion, a series of class labels (e.g., ‘car’, ‘plane’) can be constructed
to a prompt template, such as “a photo of [CLASS]”, as utilized in
CLIP pre-training. This prompt is then fed into the text encoder to
create class embeddings, which are used to compute similarity with
image embeddings for classification. When applying the CLIP model
to other downstream tasks, two considerations arise: constructing
appropriate prompts matching the image and effectively integrating
image embeddings and text embeddings. While the original CLIP
model focuses on image-text similarity, often for classification tasks,
adjustments are necessary for different tasks. In this work, we are
the first to explore transferring the rich image and text knowledge
learned by CLIP to the task of gaze estimation.

3.2 The GazeCLIP framework

In order to apply the CLIP model to the gaze estimation, we propose
GazeCLIP, as shown in Fig. 2. Initially, we use the CLIP pre-trained
image encoder and text encoder to obtain their respective embed-
dings. Subsequently, instead of simply computing similarity as in the
CLIP model, we employ a cross-attention mechanism to effectively
fuse the features of the two modalities. This mechanism extracts re-
fined image embeddings that respond to text and combines them with
the original image embeddings to enhance the image representation.
Finally, enhanced image representation is used for regression predic-
tion to estimate gaze directions.

Image Encoder. We choose the pre-trained ViT-B/32[14] of CLIP
for image encoder. Given a face image I ′ ∈ RH×W×C , the channel
C is 3 as usual, I ′ is divided into patches with a size of 32×32.All
patches will be flatten and passing through a linear layer. After
adding positional embedding, the features are fed into transformer
encoder layers and we can obtain a image embedding I with a di-
mension of 512, which can be expressed as:

I = ImageEncoder(I ′). (1)

Text Encoder. Due to the fact that the label in the gaze estimation
is a 2-dimensional array corresponding to the pitch and yaw angles in
the 3D gaze estimation, it is not appropriate to construct the prompt.
We pre-define the text prompt as ’A photo of a face gazing [class]’ to
produce a universal phrase for images in the gaze estimation dataset,
and [class] denotes a group of primary directions (front, up, down,
left, right). To guarantee that the prompt aligns with the language
prior knowledge of the CLIP model, we employ the zero-shot CLIP
model to allocate a direction to each image and the prompt com-
posed of this direction has the highest cosine similarity to the current
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Figure 2. Architecture of the GazeCLIP. We only use facial images as input and take the image encoder and text encoder in CLIP as the backbone to extract
feature. During training, we fine-tune the image encoder while the parameters of the text encoder are frozen.
image. Meanwhile, we freeze the text encoder provided by CLIP to
obtain well-learned language prior knowledge. By tokenization and
text encoder, here we can obtain a text embedding T which is the
same dimension as the image embedding. This step can be defined
as:

T = TextEncoder(tokenize(prompt)). (2)

Cross Attention. To achieve more refined image representation by
aligning image features with text features, a cross-attention mecha-
nism is proposed to model the association between text embedding
(Q) and image embedding (K, V). Before calculating the attention
score, they all pass through a layer of linear projection. And the at-
tention scoring function here we used is scaled dot-product attention.
The above can be expressed as:

score(Q,K) =
QTK√
Dk

. (3)

Ĩ = Matmul(softmax(score(Q,K)), V ). (4)

Based on the new image embedding corresponding to text, the
original image embedding I is added with Ĩ to produce the enhanced
embedding Ī used for downstream regression head:

Ī = I + Ĩ . (5)

gaze = MLP (Ī ). (6)

Here the MLP contains three linear layers and two ReLu layers.
Optimization. Most appearance-based gaze estimation models

predict 3D gaze as the gaze direction angles (yaw, pitch) in spherical
coordinates. They are all consecutive values. Therefore, L1-loss and
L2-loss can be used here to optimize the model for different datasets:

ℓ1 =
1

n

n∑
i=1

|yi − Pi| , (7)

ℓ2 =
1

n

n∑
i=1

(yi − Pi)
2 , (8)

Where yi is the ground truth, pi is the predict value. They are all
2D vectors.

4 Experiments
4.1 Datasets

To validate the performance of our proposed model, we conducted
experiments on three well-known and challenging gaze estima-
tion datasets, which are MPIIFaceGaze[58], EyeDiap [16], and RT-
Gene[15]. All datasets are normalized as in [60] for a fair compari-
son. As in previous studies, we take one decimal place for the results
here.

MPIIFaceGaze. MPIIGaze [57] is the most commonly consid-
ered benchmark dataset for unconstrained 3D gaze estimation. And
the MPIIFaceGaze is an extension of the MPIIGaze dataset, which
provides 45K face images instead of eyes from 15 subjects captured
by laptop camera during their daily life over several months. As a re-
sult, it contains images with diverse backgrounds, captured at varying
times and under different lighting conditions. Leave-one-subject-out
cross-validation is followed as the previous works do [8, 59, 7, 46]
which means leaving one subject’s data as the test set at a time.

EyeDiap. The original EyeDiap dataset is a series of video clips
of 16 subjects. Here we pre-processed the data according to [10], ex-
tracting images every 15 frames from the video clips. And we only
use the videos collected in screen target setting while we can obtain
a face image facing the screen in this case. Due to videos of this type
are not included in No.12 subject and No.13 subject, the processed
EyeDiap dataset includes 16K images of 14 subjects. Since the Eye-
Diap dataset does not provide a standard evaluation subset, we also



perform a Leave-one-out strategy on it to get robust results.
RT-Gene. The RT-Gene dataset contains 122531 images of 15

subjects. With the help of a series of wearable devices, the RT-
gene dataset including a farther distance between the camera and
the person, a greater variation in head poses and gazes compared
to previous in-the-wild datasets. Therefore, this is a more challeng-
ing dataset. We follow the 3-fold evaluation protocol provided by
RT-Gene dataset and divide the 15 subjects into three groups.

4.2 Evaluation Metric

For 3D gaze estimation, the most widely used evaluation metric is an-
gular gaze error where a lower error indicates a better model. Given
the ground truth g∗ , the evaluation metric is defined as:

Angular error = arccos(
g · g∗

∥g∥ · ∥g∗∥ ). (9)

4.3 Implementation Details

We implement the experiments with PyTorch. All experiments are
conducted on Nvidia A5000 GPU. The input images are 224×224×3
face images after normalizing. The backbone in our model is ViT-
B/32 for image while Transformer[45] for text, they all generate fea-
tures of the same dimension size in CLIP pre-trained model. And
the parameter of text encoder is frozen during training. We train
GazeCLIP on three datasets with 128 batch sizes and 50 epochs. To
optimize the model, we apply Adam optimizer [22] with an initial
learning rate of 1e-5. And L1-Loss is applied for MPIIFaceGaze and
EyeDiap, while L2-loss for RT-Gene. In order to adjust the learning
rate during training process, we adopt the scheduler of MultiStepLR
strategy. The learning rate will decay after the fifth epoch and 45th
epoch, with a decay rate of 0.1.

5 Result and Analysis

5.1 Comparison with the State-of-the-Arts

We first conduct an experiment to compare GazeCLIP with other
state-of-the-art gaze estimation methods. Since RT-Gene report
model ensemble is effective, here we present two results about RT-
Gene (single model and 4 ensemble). Currently, the best perfor-
mance in three datasets is achieved by CA-Net and AGE-Net. Tab. 1
shows that GazeCLIP can achieve state-of-the-art results in all three
datasets. Our method has improved by 0.5°(12%), 0.1°(1%), and
0.6°(11%) compared to the previous best results on three datasets, re-
spectively. The excellent performance on three datasets demonstrates
that our proposed GazeCLIP is an advantageous network architecture
for gaze estimation.

5.2 Ablation Study

In order to further validate the effectiveness of the modules in
our framework, we conduct three sets of ablation experiments. The
following experiments are carried out on the MPIIFaceGaze[58]
dataset, the most widely used dataset in gaze estimation.

5.2.1 Ablation Study for language knowledge

We first analyze the effectiveness of language knowledge through
two strategies. Firstly, we maintain the existing network structure
and change the pre-defined prompt to empty strings as text input;
Secondly, we remove the branch of language knowledge from the
network and only use the image encoder for regression, eliminating
any text features from the network. This allows us to verify whether
relying solely on pre-trained image encoders can achieve satisfactory
performance. The results are summarized in Tab. 2. However, if we
only keep the original CLIP image encoder as in previous research
architectures that contain only visual features, reports unsatisfactory
performance. Since a more complex backbone often leads to more
severe over-fitting problem in gaze estimation when the dataset size
is relatively small to the pre-trained dataset in CLIP. Interestingly,
when we keep the original network structure unchanged and replace
the defined prompt with empty strings, the performance is signif-
icantly improved by 0.6 ° (4.4 ° 3.8 °). And taking a pre-defined
prompt, “A photo of a face gazing [class]”, for a general language
expression of the gaze estimation images with rough directions as
the input text achieves the best result. These results demonstrate the
significance for text features and the effectiveness of an appropriate
design of prompts in our framework.

5.2.2 Ablation Study for fixing different encoders

We further explore the effect of freezing image encoder and text en-
coder. As listed in Tab. 3, if we directly use the original CLIP model
with a cross-attention mechanism and a regression head(i.e., the pa-
rameters of the image encoder and text encoder will not be opti-
mized), we get the angular error of 8.9°. While we unfreeze the text
encoder, it does not bring significant change and is even worse(8.9°
→ 9.0°). However, when we choose to fine-tune the image encoder,
here is a significant improvement with a drop from 8.9° to 3.8°. And
if we try to fine-tune the text encoder as well, the angular error in-
creases from 3.6 ° to 3.8 °. Whether or not the image encoder is fixed,
the fixed text encoder setting always performs better. We consider
that the pre-trained CLIP model contains rich language priors that
can encode natural languages well, and fine-tuning will break this.
Furthermore, since the data for CLIP pre-training is drawn from a di-
verse range of internet images, certain characteristics present in gaze
estimation datasets may be underrepresented. As reported in [35],
the zero-shot CLIP model can get a relative high accuracy in most
image classification datasets but a simple dataset, MNIST[25], since
the dataset for CLIP pre-training hardly contains handwritten digital
images like the images in MNIST. Therefore, we need fine-tune the
image encoder to cope with some particular tasks.

5.2.3 Ablation Study for feature fusion method

Next, we study the influence of using different feature fusion meth-
ods during the training phase. In addition to using the cross-attention
mechanism mentioned earlier, we also explore two common meth-
ods: concat and add. Specifically, after obtaining image embedding
and text embedding from CLIP encoders separately, we directly con-
catenate or add these two features. Since they have the same dimen-
sion, feature concat will double the feature dimension. Then we need
to modify the input dimension of the first linear layer in regression
head, and feature add will not change the feature dimension, nor will
cross-attention mechanism. The results are shown in Tab. 4. Whether
the feature fusion method is changed to concat or add, the angular er-
ror is 4.4°. Compared to the cross-attention mechanism we use, it has



Table 1. Comparison with State-of-the-art methods. GazeCLIP achieves state-of-the-art results in all datasets with significant improvement.Methods Input MPIIFaceGaze[58] RT-Gene [15] EyeDiap[16]
FullFace[59] Face 4.8° 10.0° 6.6°
RT-Gene[15] Eyes and head pose 4.8° 8.6° 6.4°

RT-Gene(4 ensemble)[15] Eyes and head pose 4.3° 7.7° 5.9°
Dilated-Net[5] Face and eyes 4.8° 8.3° 6.2°
Gaze360[21] Face and eyes 4.1° - 5.3°
CA-Net [8] Face and eyes 4.1° 8.2° 5.3°

AGE-Net [2] Face and eyes 4.1° 7.4° -
GazeCLIP(Ours) Face 3.6° 7.3° 4.7°

Improvement - 12% 1% 11%
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Figure 3. Angular error of different subjects on MPIIFaceGaze dataset.
Table 2. Ablation study for language knowledge. The pre-defined prompt
is “A photo of a face gazing [class]”.Prompt Angular error ∆

Pre-defined prompt 3.6° -
empty strings 3.8° -0.2°
No text input 4.4° -0.8°

Table 3. Ablation Study of freezing different encoders.Fixed image encoder Fixed text encoder Angular error√ √
8.9°√

- 9.0°
-

√
3.6°

- - 3.8°

increased by 0.8°. The findings demonstrate that the cross-attention
mechanism serves as an effective method to establish an interaction
between language knowledge and image knowledge acquired from
the CLIP model.

Table 4. Ablation Study for feature fusion method.Feature fusion method Angular error ∆
Cross attention 3.6° -

Concat 4.2° -0.6°
Add 4.4° -0.8°

5.3 Visual results

We display some visual images of our method in Fig. 4. These im-
ages indicate that our method can perform well in various situa-
tions, including subject gender, facial appearance, lighting condi-
tions, whether glasses are worn , etc. We also presented some cases
with poor results. As shown in Fig. 5, these images all have some spe-
cial characteristics, such as partially closed eyes, dim facial lighting,
blurred eye areas, etc. We attribute the unsatisfactory performance in
these instances to our method’s lack of additional utilization of eye
images or focused attention on the eye area. Addressing this limita-
tion remains an area for future investigation.

Moreover, as shown in the sixth subfigure in Fig. 5 and Fig. 3,
when taking the 14th subject in the MPIIFaceGaze dataset as the test
set, its experimental results show the highest angular error in 15-fold
cross-validation even if the appearance and lighting of the images
are not very different from others. We posit that a potential explana-
tion lies in the consistent depiction of the 14th subject holding her
face with one hand, an occurrence largely absent in images of other
subjects.
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Figure 4. Visualization results of our method for 3D gaze estimation. The
red lines are the ground truth annotations and the blue lines are predicted
results.
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Figure 5. Some failure cases.6 Conclusion

In this paper, we propose a novel network, GazeCLIP, based on the
vision-language pre-trained model (CLIP) to get accurate gaze es-
timation. We leverage language knowledge by establishing uniform
language expressions for all images, aiming to enhance the effec-
tiveness of gaze estimation. A crucial aspect of our approach is es-
tablishing the connection between visual and textual features. To
achieve this, we design a cross-attention mechanism to enhance im-
age representation. Experimental results demonstrate that GazeCLIP
achieves state-of-the-art performance across three well-known gaze
estimation datasets, with improvements of (12%, 1%, 11% respec-
tively).Furthermore, we conduct experiments to assess the advan-
tages of different modules in our method. We believe this paper pro-
vides valuable insights for future research in gaze estimation lever-
aging visual-language knowledge.
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