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ABSTRACT

Inspired by human driving focus, this research pioneers net-
works augmented with Focusing Sampling, Partial Field of
View Evaluation, Enhanced FPN architecture and Directional
IoU Loss - targeted innovations addressing obstacles to pre-
cise lane detection for autonomous driving. Experiments
demonstrate our Focusing Sampling strategy, emphasizing
vital distant details unlike uniform approaches, significantly
boosts both benchmark and practical curved/distant lane
recognition accuracy essential for safety. While FENetV1
achieves state-of-the-art conventional metric performance via
enhancements isolating perspective-aware contexts mimick-
ing driver vision, FENetV2 proves most reliable on the pro-
posed Partial Field analysis. Hence we specifically rec-
ommend V2 for practical lane navigation despite fractional
degradation on standard entire-image measures. Future direc-
tions include collecting on-road data and integrating comple-
mentary dual frameworks to further breakthroughs guided by
human perception principles. The Code is available at here.

1. INTRODUCTION

This study highlights the difference between human visual fo-
cus during driving and the perspectives captured by 2D cam-
eras. Fig. 1 shows that experienced drivers focus on distant
road regions to anticipate path changes and steering needs,
particularly around curves, looking ahead 1-2 seconds into
crucial preview zones [1, 2, 3, 2, 4]. Inspired by these pat-
terns, we introduce the *Focusing Sampling’ method to better
detect and regress distant lane boundaries, crucial for high-
speed autonomous driving. We also propose the ’Partial Field
of View Evaluation’ to enhance accuracy assessments in real-
world scenarios by focusing on forward road sections that
align with driver focus.

In lane detection, widely-used models like CLRNet [5]
and GANet [0] utilize standard multi-scale FPN architectures
but fail to fully capture the necessary global spatial context for
accurate road mapping crucial for safe navigation. Although
transformers excel in global semantic processing, their effec-
tiveness reduces in identifying thin, extended lane markings
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Fig. 1. Skilled drivers focus their gaze far ahead on the road.
The upper left image shows the full camera view, while the
lower left image visualizes where experienced drivers look
- far ahead along the road and lane lines.

due to sparse cues [7]. Lane boundaries vary greatly in scale
and are influenced by different lighting and surface conditions
[8]. To address these issues, our study enhances the FPN by
integrating either positional or standard non-local blocks, pro-
viding richer global context. Moreover, our experiments show
that ’Directional IoU Loss’ equals or surpasses the advantages
of positional non-local blocks.

This research introduces four key innovations: (1) ’Fo-
cusing Sampling,” a training approach that emphasizes small
and distant lane details; (2) ’Partial Field of View Evalua-
tion,” new metrics for accuracy in critical forward road sec-
tions; (3) an improved FPN architecture that includes ei-
ther positional or standard non-local blocks; (4) ’Directional
IoU Loss,” a unique regression loss for correcting directional
errors in distant lanes. FENetV1 uses positional non-local
blocks for perspective-sensitive semantics, achieving top re-
sults with conventional metrics. Meanwhile, FENetV2, in-
corporating coordinate modeling with *Directional IoU Loss,’
excels in precisely locating distant lane boundaries. Although
it may slightly lag behind FENetV1 in traditional metrics,
FENetV2’s focus on distant lane regression better suits real-
world navigation. Overall, this work pushes for advances in
regression-centric models and evaluations, focusing on tech-
niques that enhance the depiction and assessment of critical
road details for effective and safe autonomous lane detection.


https://github.com/HanyangZhong/FENet
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Fig. 2. Architecture of the FENet lane detection framework, which uses a DLLA34 backbone and Enhanced FPN. The input
layers feed into internal layers integrated with positional non-local blocks (for FENetV1 or standard non-local blocks (for
FENetV2) to capture spatial context. The internal layers connect to output layers that pass through Focusing Sampling and
either standard IOU loss (for FENetV1) or Directional IOU loss (for FENetV2). FENetV1 (yellow pathway) and FENetV2
(blue pathway) share the common green pathway, with distinct supplementary modules.

2. RELATED WORKS

Deep learning-based lane prediction methods fall into
three categories: semantic segmentation, anchor-based, and
parameter-based. Semantic segmentation approaches like
SCNN, SAD, and Curvelanes-NAS offer pixel-level accu-
racy but are computationally demanding [9, 10, 11]. Anchor-
based methods, including CLRNet, GANet, and others, are
quicker but struggle with accuracy in complex scenarios
[5, 6, 12, 13, 14, 15]. Parameter-based approaches, such as
those using curve modeling, prioritize efficiency but compro-
mise accuracy [ 1 6]. Our work aims to improve on these meth-
ods by addressing their accuracy and complexity limitations.

3. METHODOLOGY

3.1. Focusing Sampling

Motivation. Uniform point sampling strategies in lane de-
tection do not prioritize visual perspective, treating all im-
age regions equally despite the importance of distant van-
ishing points, especially in curves [17]. To overcome these
shortcomings, we introduce Focusing Sampling, inspired by
how skilled drivers focus on distant road sections to anticipate
curves [ 1]. This method emphasizes distant details while also
considering nearby points, effectively capturing the full lane
geometry and addressing complex turns and curves, as shown
in Fig. 3. Focusing Sampling aims to improve upon uniform

sampling by preserving critical data and semantics essential
for accurate lane prediction.

Fig. 3. Visual depiction comparing Focusing Sampling (red
dots) versus uniform sampling (blue dots). Focusing Sam-
pling strategically emphasizes critical distant vanishing points
along the lane while retaining informative nearby points. This
accounts for perspective geometry, unlike standard uniform
sampling that weights all regions equally.

Formulation. Building on the foundation of uniform
sampling, we propose using a logarithmic-based Focusing
Sampling, for which an intuitive comparison is made in Fig. 8
in Appendix A.l. The formula for this Focusing Sampling is:



y = m * logfeatmE an €))
The term a,, = Nowmoo=1 * 1 represents an arithmetic
sequence scaling from O to 1 across ¢ data points, where
Nsampie s the number of sample points and H is the image
height. To generate focusing sample points, the feature point
distribution undergoes a logarithmic transformation, convert-
ing feature points into integer sample values. This method
emphasizes the extraction of key semantic information. Due
to the possibility of repeated values from logarithmic dis-
cretization, deduplication is applied in post-processing. The
feature discretization process and its output are detailed visu-
ally in the code and further illustrated in Appendix Fig. 8.

3.2. Positional Non-local Block and Position Enhanced
FPN structure

Motivation. CLRNet uses the Feature Pyramid Network
(FPN) architecture for lane detection [5], excelling in multi-
scale feature extraction but facing challenges in detecting
small targets due to its layer structure—deeper layers focus
on semantics and shallower layers on fine details. To im-
prove FPN, we incorporate non-local blocks [18], drawing
on advancements from PANet and Mask R-CNN [19, 20],
to enhance context awareness, depth, and multi-scale ca-
pabilities. Additionally, we introduce a Position Enhanced
FPN (PEFPN) module tailored for lane detection, integrating
global semantics with lane coordinate modeling. This inte-
gration is detailed in Appendix A.l Fig. 2, showing direct
infusion of position information into the FPN’s multi-scale
feature maps.

Formulation. The coordinate map equations utilize spa-
tial indices ¢ and j to index each pixel location in the fea-
ture map, where 1 iterates vertically over the height dimension
H, and j iterates horizontally over the width dimension W.
Specifically, ¢ ranges from 1 to H, indexing each row, while
j ranges from 1 to W. The x-coordinate map is calculated as
follows:

2 —1)
W -1

Teoord(, ) = —1, fori=1...H,j=1...W (2)

Similarly, the y-coordinate map is:

Mfl, fori=1...H,j=1...W (@3)

ycoord(iyj) = H_1

The positional non-local block in our architecture en-
hances feature extraction by encoding global context and pre-
cise spatial locations. We also integrate a Focusing Sampling
technique that targets specific lane segments to better track
lane coordinates and directions. FENetV 1 combines this with
PEFPN, which incorporates direct coordinate injection and

Focusing Sampling aligned with lane positions, enhancing
coordinate modeling. The ablation study in Appendix A.l
demonstrates that PEFPN is a uniquely designed architecture
optimized for the focused detection of lanes in FENetV1.

3.3. Focusing Enhanced Network

Motivation. In FENetV1, the PEFPN framework combines
positional non-local blocks with an Enhanced FPN architec-
ture, utilizing coordinate maps for effective feature extraction
in lane detection. Ablation studies (shown in Appendix A.1)
indicate that without Focusing Sampling, standard non-local
blocks perform similarly to positional ones, suggesting lane
coordinates need not necessarily be injected at non-local lo-
cations. Thus, FENetV2 aims to boost network efficiency by
incorporating standard non-local blocks and exploring Focus-
ing Enhanced FPN (FEFPN) and Directional IoU. This ver-
sion seeks to maintain effectiveness while improving compu-
tational efficiency.

FEFPN Structure. As shown in Fig. 2, most architecture
configurations exhibit substantial similarities with PEFPN,
with the distinction that standard non-local blocks are used
during the construction of internal layers (Inter0O, Interl, In-
ter2).

3.4. Lane Directional Intersection over Union (D-IoU)
Module

Motivation. LineloU only considers distance without direc-
tional relation [5]. Our D-IoU module, Fig. 4, ascertains di-
rectional discrepancies to improve accuracy.

Formulation. As depicted, D-IoU comprises Position-
IoU (Pj,r7), Direction Left IoU (D Lj,7) and Direction Right
IoU (DRjov). Prou is the LineIOU module in the CLRNet.
DL,y and DR,y represent the Distance-IoU to the Left
and Right of the ground truth points, respectively. DLIoU;
is:

dke 2! — maz (2" — m, 2t — m)
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m designates the pixel expansion amount for each point.
After expanding by m pixels, 2" —m and 2" + m give the
predicted point’s left and right coordinates, respectively. The
DRIoU; is a mirror mapping of the DLIoU;, with similar
definitions and will not be repeated.

D-IoU combines these using coefficients «, [, v:

D —IoU = a(l — PIoU) + ﬁ(l — DL[ou) + ’Y(l — DR[OU)
(5)

This provides distance and directional accuracy for pre-
cise lane alignment.
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Fig. 4. D-IoU Loss. D-IoU loss assesses lane prediction ac-
curacy by comparing predicted lanes to ground truth, using
the IoU of extended lane segments from sampled points along
the lane. This directional, localized loss metric accurately re-
flects predict precision across the entire lane geometry.

3.5. Training and Inference Details

Training Loss. The total training loss in FENetV1 is a
weighted combination of several loss components:

Ltotalvl - wPiauLPiou + wclchls + wzytleytl + wseLse (6)

Lpjoy is the PIoU Loss, weighted by wp;,,, which aligns
predictions with ground truth position. L, is the focal loss
for classification. L, represents regression loss for predict-
ing start point, angle, and lane length. L. is the semantic
segmentation loss. The weights w balance the contributions
of each component. The training loss in FENetV?2 is:

Ltotava = wDiouLDiou + Wclchls + wzytlL:L‘ytl + wseLse (7)

Where L., is the D-IoU Loss, weighted by wp;q, Which
aligns predictions with ground truth position and direction.

3.6. Augmenting Evaluation via Partial Field of View

Current metrics for evaluating lane detection models, like
pixel-wise accuracy and standard mAP, fail to reflect the real-
world driving needs, treating all lane marking pixels equally
despite varying safety impacts. Notably, experienced drivers
focus on distant road sections, vital for predicting path geom-
etry and steering adjustments. To better align evaluations with
actual driving requirements, we suggest using a Partial Field
of View metric. This method divides the lower half of an im-
age into segments after cropping out the top irrelevant area.
As shown in Fig. 5, this metric evaluates accuracy in criti-
cal distant areas (top half and top third of the field), closely

Fig. 5. The proposed Partial Field of View metric enhances
evaluation by subdividing the lower image half into distal
fraction views after preprocessing cropping. Assessing model
precision on the (a) top 1/2 field and (b) top 1/3 field aligns
with driving gaze ahead needs. This practical metric gauges
lane detection aptitude beyond existing methods.

matching where drivers typically look, thus providing a more
accurate reflection of lane detection performance through the
perspective of human driving behavior.

4. EXPERIMENT

4.1. Datasets

In this experiment, we employ the most commonly used
datasets in lane detection: CULane [9] and LLAMAS [21].
CULane is currently one of the most challenging large-scale
datasets for lane detection. LLAMAS is a comprehensive
lane detection dataset comprising over 100,000 images. Lane
markings within LLAMAS are auto-annotated employing
high-precision maps.

4.2. Implementation Details

Primarily, DLA34 is used as the backbone network for pre-
training in this study [22]. Under the DLA34 backbone net-
work, the CULane dataset is set to iterate for 15 epochs while
LLAMAS is set to 20. The initial learning rate is set to le-
3, the optimizer is AdamW, and the power is set at 0.9. The
number of lane priors (N) is 72, and the number of sampling
points is 36. In the expansion pixels (m) for Pr,i7, DLz
and DR,y are all set to 15. The coefficient of assigning cost
is set as Wpjoy = 1.

4.3. Evaluation Metrics

F1 and mF1. In the F1 test, the IoU is calculated between the
prediction and the ground truth, and when the IoU threshold



Method Backbone mF1 F1@50 F1@75 GFlops
UFLDV2 ResNetl8 - 75 - -
UFLDV2 ResNet34 - 76 - -
FOLOLane ERFNet - 78.8 - -
LaneAF ERFNet 48.6 75.63 54.53 222
LaneAF DLA34 5042 7741 56.79 23.6
LaneATT ResNet18 47.35 75.13 51.29 9.3
LaneATT ResNet34 49.57 76.68 54.34 18
LaneATT ResNet122 51.48 77.02 57.5  70.5
GANet-S ResNetl8 - 78.79 - -
GANet-M ResNet34 - 79.39 - -
GANet-L ResNet101 - 79.63 - -
CLRNet ResNetl8 55.23 79.58 62.21 11.9
CLRNet ResNet34 55.14 79.73 62.11 21.5
CLRNet ResNet101 55.55 80.13 62.96 42.9
CLRNet DLA34 55.64 80.47 62.78 18.5
FENetV1(Ours) DLA34 56.27 80.15 63.66 19.05
FENetV2(Ours) DLA34 56.17 80.19 63.50 18.85

Table 1. FENet frameworks deliver top CULane performance
with efficient GFlops usage. FENetV1 achieves the highest
mF1 and F1@75 scores, outperforming all methods, includ-
ing CLRNet, in lane recognition. FENetV2 performs com-
parably to V1, but is recommended for practical use, with its
advantages detailed in subsequent sections.

is greater than 0.5, it is considered a True Positive. The F1 is
defined as:

2 x Precision x Recall
=

Precision x Recall ®

About the COCO detection metric, we primarily continue

to use the mF1 metric as the following metric in CLRNet,

but to measure not only the overall performance but also the

scenes’ performance, providing a more precise analysis of

prediction accuracy and lane feature capture. The mF1 is de-
fined as:

mF), = (F1@50 + F1@55 + ... + F1@95)/10 ©)

where F1@50, F1@55, ..., F1@95 correspond to the F1
test values when the IoU threshold is 0.5, 0.55, ..., and 0.95,
respectively. This is a more precise measurement in different
scenes and has a significant effect on optimization iteration.

4.4. Comparison with State-of-the-Art Results

Performance on CULane. Our proposed FENet achieves
state-of-the-art results on the CULane benchmark, surpass-
ing prior methods. As shown in Table 1, FENetV1 obtains an
F1@75 score of 63.63 and an mF1 of 56.27, exceeding CLR-
Net’s F1@75 by 0.7 and mF1 by 0.63. FENetV2 obtains an
F1@75 score of 63.50 and an mF1 of 56.17, this demonstrates

FENetV1’s and FENetV2’s precision for lane detection, par-
ticularly at stricter evaluation thresholds.

Performance by Field of View. As shown in Table 2,
FENetV2 outperforms the CLRNet model in detecting curved
and distant lanes across all, the top half, and the top third
fields of view. This improvement is crucial in driving sce-
narios where bends are primarily visible from afar, enhancing
safe manoeuvring by better detecting distant curves. Specif-
ically, FENetV2 achieves significantly higher mF1 scores of
2.67, 5.66, and 6.01 in these * data, underscoring its ability
to accurately identify challenging distant and curved lanes.
This performance is attributed to its D-IoU loss function and
FEFPN module, with detailed examples provided in Fig. 6 in
Appendix A.1.

Although FENetV1 scores slightly higher in overall mF1
metrics, FENetV2 is more effective and reliable for real-
world autonomous driving due to its focus on distant lane
boundary regression. This capability is crucial for accu-
rate lane localization needed for quick vehicle control at
high speeds. While FENetV1 excels in general lane detec-
tion, it lacks precision in boundary localization. In essence,
FENetV2 stands out in practical lane detection performance
by specializing in distant lane regression, making it prefer-
able for autonomous navigation where immediate responses
are critical. We recommend FENetV?2 over other models, in-
cluding FENetV 1, for its superior real-world applicability.

Performance on LLAMAS. As Table 3 shows, the in-
novative FENetV2 structure proposed in this study achieves
a new technical level on LLAMAS, with an F1@75 score of
85.63 and an mF1 score of 71.85. These major scoring param-
eter results are higher than those of CLRNet, with the F1@75
score being 0.3 higher than of CLRNet and the mF1 score be-
ing 0.64 higher than that of CLRNet. This also indicates that
our method makes improvements in lane detection accuracy.

5. CONCLUSION

Inspired by human driving focus, this research pioneers Fo-
cusing on Enhanced networks, sampling strategies, optimized
loss calculations, and refined evaluation metrics targeting
lane detection challenges for autonomous navigation. Ex-
periments demonstrate emphasizing critical distant geomet-
ric details, unlike existing uniform approaches, significantly
improves not only benchmark accuracy but also practical
curved/distant lane recognition essential for safety. Advance-
ments derive from isolating perspective-aware contexts mim-
icking adept driver vision patterns. Limitations provide op-
portunities including refining attention regions, exploring en-
riched coordinate representations, collecting actual driving
data for analysis, and reconciling dual frameworks exploit-
ing complementary strengths - furthering real-world break-
throughs. With human-mimicking visual perception and com-
prehension as a guide, the lane detection frontier can rapidly
advance toward enabling reliable autonomous vehicle control.



Field of View Backbone mF1 Normal Crowded Dazzle Shadow Noline Arrow Curve Cross Night
Whole View of Lane

CLRNet DLA34 55.64 68.72 53.81 474 53.24 35.28 6556  40.62 1154 49.59
FENetV1 (Ours) DLA34 56.27 68.7 55.12 48.16  52.77 35.32 65.57  42.11 1147 50.51
FENetV2 (Ours) DLA34 56.17  69.19 54.38 47.67  53.39 35.15 66.03  43.29* 1206  50.55
Top 1/2 View of Lane

CLRNet DLA34 60.17 73.83 57.55 5324  57.69 38.8 69.81 3888 1155 553
FENetV1 (Ours) DLA34 61.08 74.11 59.09 5392  58.46 38.48 69.98 4192 1147 56.69
FENetV2 (Ours) DLA34 60.97 74.59 58.21 53775  58.5 38.59 7033  44.54* 1206  56.73
Top 1/3 View of Lane

CLRNet DLA34 58.53  72.46 55.84 52.84  53.89 38.48 67.76  31.1 1155  53.13
FENetV1 (Ours) DLA34 59.71 73.06 57.45 53.86  55.29 38.28 67.99 34.61 1147 55.04
FENetV2 (Ours) DLA34 59.53 735 56.43 54.03  54.53 38.49 68.07 37.11* 1206  55.05

Table 2. Performance by Field of View. Compared to optimal CLRNet, FENet demonstrates mF1 gains over entire, the top
1/2, and top 1/3 views. Particularly significant curved and distant lane improvements manifest, with FENetV2 curve detection
higher by 2.67, 5.66, and 6.01 on those views respectively. This highlights FENetV2’s advantages on challenging curves versus
prior works. Overall, FENetV2 surpasses V1 on regression precision due to its D-IOU loss and FEFPN enabling optimized
boundary localization. However, FENetV 1 exhibits greater competency on lane recognition itself rather than regression due to

its PEFPN inferring spatial layouts effectively.

Valid

Method Backbone mFi Fi@50 F1@75
PolyLaneNet  EfficientnetBO 48.82  90.2 454
LaneATT ResNet-18  69.22 94.64  82.36
LaneATT ResNet-34  69.63 9496 82.79
LaneATT ResNet-122  70.8 95.17 84.01
LaneAF DLA-34 69.31 96.9 84.71
CLRNet DLA-34 71.21 97.16 85.33
FENetV2(Ours) DLA-34 71.85 9697 85.63

Table 3. FENetV2 establishes new state-of-the-art LLA-
MAS results, proving advanced lane detection aptitude. Our
approach sets the top mF1 using the DLA-34 backbone while
exceeding all methods on the vital long-range F1@75.
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A. APPENDIX

A.1. Ablation Studies

To validate the contributions and roles of each component of
the entire FENetV1 and FENetV2 model in the overall ex-
periment, we separately test each innovative scheme on the
CULane dataset to display their corresponding performance.

A.2. Overall Ablation Study

Through ablation studies, we analyse our proposed FENetV 1
architecture in Appendix A.1 Table 4 to analyse the contri-
butions of the PEFPN, Focusing Sampling, and D-IoU mod-
ules. The baseline FENetV1 achieved an mF1 of 55.64. With
the addition of the PEFPN and Focusing Sampling modules,
the mF1 increased to 56.27, demonstrating their benefits in
providing positional-aware features and emphasising hard ex-
amples. However, surprisingly, incorporating D-IoU on top
of PEFPN and Focusing Sampling resulted in a slight de-
crease in mF1 to 56.04. We hypothesise that this counter-
intuitive result is due to some functional overlap between the
position-aware capabilities of PEFPN and the directional en-
coding of D-IoU. Specifically, the positional non-local block
within PEFPN already integrates coordinate information into
the multi-scale features. Thus, the directional modelling of
D-IoU becomes somewhat redundant and interferes with the
positional encodings of PEFPN. This integration of position
and direction within PEFPN may explain why the subsequent
addition of D-IoU leads to detrimental effects due to duplicate
functionality.

Further ablation experiments are conducted on the contri-
bution of each component of our proposed FENetV2 model in
Appendix Table 5. The baseline architecture achieves an mF1
of 55.64. Adding the FEFPN module improves mF1 to 56.11
by providing richer multi-scale features. Incorporating Fo-
cusing Sampling further boosts mF1 to 56.15 by emphasising
hard far-end examples. Finally, replacing the IoU loss with
the D-IoU loss increases mF1 to 56.17 by encoding orienta-
tion cues. The steady improvements validate the benefits of
FEFPN for contextual features, Focusing Sampling for han-
dling distant lanes, and D-IoU for differentiating directional-
ity.

In summary, the ablation study of FENetV1 reveals that
Enhanced FPN with position-aware representations through
PEFPN and emphasising the complementary strengths of
hard samples via Focusing Sampling improved mf1 to 56.27.
However, the D-IoU conceived with the ideology of positional
non-local blocks may exhibit redundancy with the positional
modelling already encoded within PEFPN, culminating in a
slight degradation in mF1 performance. In contrast, the sta-
ble mF1 enhancement conferred by each constituent in the
FENetV2 ablation experiments verifies their efficacy in as-
similating rich multi-scale features, accentuating challenging
regions, and embedding directional clues within our FENetV2

framework. Despite a minor decline in mF1 compared to
FENetV 1, superior scene-fitting accuracy is demonstrated in
the manuscript. This analysis proffers constructive percep-
tions into the architectural trade-offs between positional non-
local blocks and D-IoU formulations.

A.3. Ablation Study of Focusing Sampling

To further analyse the efficacy of our proposed Focusing Sam-
pling technique, we conduct ablation studies comparing mod-
els with and without Focusing Sampling in Appendix Ta-
ble 6. Using uniform sampling as the baseline, the model
achieved an mF1 of 55.64. Replacing this with Focusing
Sampling provided a slight boost to 55.78, indicating its ben-
efits for emphasising challenging examples. The advantages
of Focusing Sampling become more pronounced when cou-
pled with our feature-enhanced FPN modules. With uniform
sampling, the FEFPN and PEFPN models obtain similar mF1
scores of 56.11. However, the addition of Focusing Sampling
improves their mF1 to 56.15 and 56.27 respectively. This
demonstrates that Focusing Sampling better utilises the rich
lane features provided by FEFPN and PEFPN, by concentrat-
ing training on the most difficult far-end regions. Notably,
FEFPN and PEFPN achieve the same mF1 without Focusing
Sampling. This suggests that with uniform focus, neither FPN
variant could fully leverage their learned features. However,
by centralizing attention, PEFPN integrated positional infor-
mation to boost performance above FEFPN. Overall, these
ablation studies validate that Focusing Sampling effectively
complements advanced FPN modules by enabling concen-
trated learning on hard examples. The gains are amplified
when combined with FPN designs that encode multi-scale se-
mantics and spatial coordinates.



PEFPN Focusing Sampling D-IoU mF1 F1@50 F1@60 F1@70 F1@80 F1@90
55.64  80.47 76.15 68.87 53.95 20.42

Vv 56.11 80.04 76.32 69.32 54.71 21.46
V V 56.27  80.16 76.54 69.54 55.02 21.53
vV vV Vv 56.04  80.04 76.24 69.26 54.66 21.6

Table 4. The effects of each module in the FENetV1 method. Results based on CULane.

FEFPN Focusing Sampling D-IoU mF1 F1@50 F1@60 F1@70 F1@80 F1@90
55.64  80.47 76.15 68.87 53.95 20.42

Vv 56.11 80.24 76.35 69.39 54.82 21.55
vV vV 56.15  80.04 76.35 69.49 55.14 21.44
Vv Vv v 56.17  80.19 76.36 69.2 54.93 21.79

Table 5. The effects of each module in the FENetV2 method. Results based on CULane.

Sampling Settings mFl F1@50 F1@60 F1@70 F1@80 F1@90

Uniform sampling 55.64  80.47 76.15 68.87 53.95 20.42
Uniform sampling + FEFPN  56.11  80.24 76.35 69.39 54.82 21.55
Uniform sampling + PEFPN  56.11  80.04 76.32 69.32 54.71 21.46

Focusing Sampling 55.78  79.93 76.03 68.72 54.24 21.56
Focusing Sampling + FEFPN  56.15  80.04 76.35 69.49 55.14 21.44
Focusing Sampling + PEFPN  56.27  80.16 76.54 69.54 55.02 21.53

Table 6. The ablation research for Focusing Sampling in PEFPN(FENetV 1) and FEFPN(FENetV2) methods. Results based on
CULane.
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Fig. 6. Comparison of the detection effect of curve, distant, hidden and worn lane lines on some difficult samples with ground
truth. The upper right corner of each image results from a 4x pixel magnification of the human eye focus position for the front

ahead.
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Fig. 7. Illustration of positional non-local blocks. The extra coordinate maps are fused at the rear of the original non-local
block.
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Fig. 8. Focusing Sampling and uniform sampling intuitive comparison. The black dots in the figure denote 72 feature points.
The blue dots signify feature points selected via uniform sampling, while the red dots mark feature points chosen through
Focusing Sampling. The feature point Focusing Sampling in this work proceeds from densely populated feature point regions
in distant areas of the visual scene, progressing toward more sparsely distributed features in proximity to the observer.
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