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Abstract

We present a survey of the two-dimensional and tensorial structure of the lifting
doctrine in constructive domain theory, i.e. in the theory of directed-complete
partial orders (dcpos) over an arbitrary elementary topos. We establish the universal
property of lifting of dcpos as the Sierpiński cone, from which we deduce (1)
that lifting forms a Kock–Zöberlein doctrine, (2) that lifting algebras, pointed
dcpos, and inductive partial orders form canonically equivalent locally posetal
2-categories, and (3) that the category of lifting algebras is cocomplete, with
connected colimits created by the forgetful functor to dcpos. Finally we deduce
the symmetric monoidal closure of the Eilenberg–Moore resolution of the lifting
2-monad by means of smash products; these are shown to classify both bilinear
maps and strict maps, which we prove to coincide in the constructive setting. We
provide several concrete computations of the smash product as dcpo coequalisers
and lifting algebra coequalisers, and compare these with the more abstract results of
Seal. Although all these results are well-known classically, the existing proofs do not
apply in a constructive setting; indeed, the classical analysis of the Eilenberg–Moore
category of the lifting monad relies on the fact that all lifting algebras are free, a
condition that is not known to hold constructively.

1 Introduction
Axiomatic approaches to domain theory take place in a monoidal adjunction between
a category of “predomains” and a category of “domains”. The simplest notion of
predomain is given by directed complete partial orders (dcpos) and Scott–continuous
functions between them; a corresponding notion of domain arises by considering algebras
for an appropriate commutative monad on the preorder-enriched category of predomains.
Most commonly, domains are considered to be algebras for lifting monad L on the
category of predomains that introduces partiality.

From this abstract definition, we may not conclude that lifting is defined on points
by taking the coproduct with 1, as Kock [1995] has pointed out, unless the ambient
topos is boolean; in general, we must use the partial map classifier of the ambient topos.
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This difference from classical domain theory is the source of many subtleties in the
constructive setting.

For the Eilenberg–Moore resolution 𝐿 ⊣ 𝑈 : dcpoL → dcpo of the lifting monad
to be monoidal, we of course presuppose that dcpoL has a monoidal product ⊗; then
the left adjoint being strong monoidal means that we have coherent isomorphisms
𝐿 (𝐴 × 𝐵) � 𝐿𝐴 ⊗ 𝐿𝐵, etc. This property can be seen as a definition of the tensor on
free domains (take the free domain on the cartesian product of the generators), but it
does not immediately follow from this that we may extend the tensor to operate on
non-free domains. In classical mathematics, this difficulty is side-stepped by virtue of
the fact that there are no non-free domains!

Indeed, classically, every L-algebra is a free L-algebra — if 𝑋 has a bottom element
⊥, it can be seen that 𝑋 is the lift of the dcpo 𝑋 \ {⊥} using the law of the excluded
middle. Unfortunately, this simple description of L-algebras does not carry over to the
constructive mathematics of an elementary topos, as Kock [1995] has discussed at length.
We can illustrate the problem by means of the following Brouwerian counterexample
(Theorem 2) which follows by way of Proposition 1 below — anticipating a precise
definition of lifting monad.

Proposition 1. The lifting functor 𝐿 : dcpo→ dcpoL is conservative.

Proof. For any morphism of dcpos 𝑓 : 𝐴→ 𝐵, the following is a pullback square:

𝐴

𝐿𝐴

𝜂𝐴

𝐵

𝐿𝐵

𝑓

𝜂𝐵

𝐿 𝑓

(1)

Any pullback of an isomorphism is an isomorphism; therefore, if 𝐿 𝑓 is an isomor-
phism, so is 𝑓 . □

Theorem 2. The law of excluded middle holds if and only if every free L-algebra is free
on its non-bottom elements.

Proof. If the law of excluded middle holds, then obviously every L-algebra is free on its
non-bottom elements. In the converse direction, we consider whether the L-algebra Ω

given by the collection of all propositions with their implication order, where suprema
are computed by existential quantification, is free on its non-bottom elements; it is
easy to see that Ω is the free L-algebra on the terminal dcpo. Therefore the map
𝐿!Ω\{⊥} : 𝐿 (Ω \ {⊥}) → 𝐿1 is an isomorphism; by assumption, we may conclude from
Proposition 1 that Ω \ {⊥} is a singleton — or, equivalently, that a proposition 𝜙 is true
if and only if 𝜙 ≠ ⊥. Now let 𝜓 be any proposition; to show that 𝜓 ∨ ¬𝜓, by the above
we may assume ¬(𝜓 ∨ ¬𝜓) to prove a contradiction; our assumption is equivalent to
¬𝜓 ∧ ¬¬𝜓, which is clearly contradictory. □

Although Theorem 2 shows that it need not be the case that all L-algebras are free
on their non-bottom elements, one might conjecture that every L-algebra is nonetheless
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free on a different subdcpo. The most natural candidate for a subdcpo 𝑋+ ⊆ 𝑈𝑋 such
that 𝐿𝑋+ � 𝑋 would be the one spanned by positive elements in the sense of de Jong
and Escardó [2021] as adapted from Johnstone [1984]: an element 𝑥 of an L-algebra
𝑋 is called positive when any semidirected subset of 𝑋 whose suprema lies above 𝑥 is
directed. Noting that the subposet of an L-algebra 𝑋 spanned by positive elements is
always a dcpo, we are naturally led to the following open question:

Open Question 1. Does there exist an elementary topos containing an L-algebra that
is not free on its subdcpo of positive elements?

Indeed, Kock [1995] has shown that an L-algebra is free if and only if it is free on
its positive elements; combining this with Proposition 1, we see that the only possible
generators for a free L-algebra dcpo are its positive elements (which coincide with the
non-bottom elements in the classical setting). Therefore, an answer to Open Question 1
would determine altogether whether and how all L-algebras can be free in constructive
mathematics; I conjecture that the answer to Open Question 1 is “Yes”, and so there may
exist examples of non-free domains. Until and unless this expectation is contravened by
mathematical evidence, the constructive version of the smash product must be defined
on (potentially) non-free domains.

Lifting closed structure à la Kock and Seal It is a well-known result of category
theory due to Kock [1971] that the category of algebras 𝒱T for a commutative monad
T ≡ (𝑇, 𝜂, 𝜇) on a symmetric monoidal closed category 𝒱 with equalizers inherits
closed structure from 𝒱, and (moreover) that the Eilenberg–Moore resolution of T
consists of closed functors, i.e. the left and right adjoints laxly preserve the internal
hom. What is missing is the monoidal structure on L-algebras that should extend the
Eilenberg–Moore resolution 𝐿 ⊣ 𝑈 : dcpoL → dcpo to a (symmetric) monoidal closed
adjunction. Luckily, a further result of Seal [2013] provides sufficient conditions for a
category of algebras to admit a tensor product by means of a construction dual to that of
the internal hom and, moreover, for this tensor product to represent bilinear maps. That
these conditions in fact hold constructively for dcpos and their lifting monad has not
been verified until now, although they are not especially difficult.

Summary of results The contribution of the present paper is to provide a constructive
analysis of the lifting doctrine for dcpos, embodied in the following results:

1. Universal properties of Ω: the top truth value ⊤ : 1 ↩→ Ω is the universal
Scott–open immersion (Theorem 19), and the inequality ⊥ ⊑ ⊤ : 1 ↩→ Ω satisfies
the 2-categorical universal property of the Sierpiński space (Theorem 20).1

2. Universal properties for lifting: lifting enjoys both left- and right-handed
universal properties in the 2-category of dcpos as a Sierpiński cone (Theorem 32)
and as a partial product (Theorem 30) respectively. The former implies our most
important technical lemma, that ⊥ : 1 ↩→ 𝐿𝐴 and 𝜂𝐴 : 𝐴 ↩→ 𝐿𝐴 are jointly (lax)
epimorphic (Corollary 34), enabling a restricted form of classical reasoning when
establishing inequalities of the form 𝑓 ⊑ 𝑔 : 𝐿𝐴→ 𝐵.

1Although these results are known, they play a important role in what follows.
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3. Lifting is a Kock–Zöberlein doctrine: for any lifting algebra 𝑋 , the structure
map 𝛼𝑋 : 𝐿𝑋 → 𝑋 is left adjoint to the unit 𝜂𝑋 : 𝑋 ↩→ 𝐿𝑋 , and so lifting algebra
structures are unique (Lemma 38).

4. Monadicity of pointed dcpos and ipos: lifting algebras, pointed dcpos, and in-
ductive partial orders are all canonically equivalent as locally posetal 2-categories
(Corollary 49), and so pointed dcpos and ipos are monadic over dcpos (Corol-
lary 50).

5. Cocompleteness of lifting algebras: the category of lifting algebras is closed
under all colimits, with connected colimits created by the forgetful functor
𝑈 : dcpoL → dcpo (Corollaries 52 and 54).

6. Tensorial structure of lifting: bilinear and bistrict maps coincide (Lemma 69)
and are representable by the smash product (Theorem 65) for which we provide
several computations as coequalisers in both dcpo and dcpoL (Corollary 66).
Smash products extend to a full symmetric monoidal structure on dcpoL, so that
the adjunction 𝐿 ⊣ 𝑈 : dcpoL → dcpo is symmetric monoidal (Corollary 76).
Moreover, smash products are left adjoint to strict function spaces (Lemma 80)
which make 𝐿 ⊣ 𝑈 into a closed adjunction.

Why does constructive domain theory matter? The generality of our results is
important, as modern approaches to programming semantics routinely involve computing
recursive functions in non-boolean toposes. Our interest in constructive domains is
not rooted in the philosophy of intuitionism, but instead in the practical necessity to
study computation in variable and continuous sets [Lawvere, 1975] as well as effective
sets [Hyland, 1982, Bauer, 2006], whose dynamics generalize those of constant sets.

In fact, it happens that the constructive theory of dcpos has not received much
attention in the literature outside the groundbreaking work of Kock [1995], Townsend
[1996], de Jong and Escardó [2021], de Jong [2021, 2023]. Therefore many results that
appear to be “obvious” have not in fact been established, and the constructive domains
behave differently enough from the classical ones that it would not be safe to take these
results for granted. This paper is one further step in the direction of a thorough and
base-independent account of dcpos that is applicable in an arbitrary topos.

Topos-theoretic forerunners Many of the results of the present paper have not
previously been stated for dcpos, but their proofs nonetheless follow a well-trod template
from locale theory and topos theory. For example, the two-dimensional analysis of
lifting in terms of Sierpiński cones and partial products was carried out for bounded
toposes over a fixed elementary topos by Johnstone [1992] and Johnstone [2002, §B4.4]
and applied to the topical domain theory of algebraic dpcos over a given topos by
Vickers [1999]. On the other hand, not all dcpos come from a locale [Johnstone, 1981]:
therefore, although our proofs are the ones that one naturally expects from experience
with locales and toposes, the results must still be stated and proved for dcpos. With this
said, we acknowledge that the two-dimensional analysis of dcpo lifting exposed here is
well-known in the domain theoretic community and it is included in the present paper
only for the sake of systematising existing knowledge.
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We are unsure if our main results concerning the cocompleteness of lifting algebras
and their symmetric monoidal structure carry over to locales and toposes, but answering
such a question would be a natural next step.

2 Preliminaries in constructive category theory

2.1 Creation of colimits
In order to prove the cocompleteness of lifting algebras (Section 4.6), we will need some
completely standard results about creation of colimits. Unfortunately, the categorical
literature is saturated with subtly different and mutually incompatible definitions of what
it means to create (co)limits. For example, Mac Lane [1998, Ch. V] defines creation
of (co)limits in a strict way that involves equality of objects: as a result, it is not even
the case that every equivalence of categories creates colimits. The non-invariance of
Mac Lane’s original notion is an actual impediment to practical use, as one naturally
wishes to replace given categories by equivalent ones freely. For this reason, we adopt
the following definition from Riehl [2017, §3.3].

Definition 3. Let 𝑈 : 𝒟→ 𝒞 be a functor and let D be a class of diagrams in 𝒟. The
functor 𝑈 is said to create colimits of diagrams in D when for any diagram 𝐷 : ℐ → 𝒟

in D, if𝑈𝐷 : ℐ → 𝒞 has a colimit then 𝐷 : ℐ → 𝒟 has a colimit and𝑈 both preserves
and reflects colimits of 𝐷, i.e. a cocone under 𝐷 is colimiting if and only if its image
under 𝑈 is.

The following are standard results of category theory, but we state and prove
them carefully to avoid any doubt as to their constructivity or their compatibility with
Definition 3. Readers confident in the theory of created colimits would not miss much
by skipping the remainder of this section.

Lemma 4. Let 𝒞 be a category and let T ≡ (𝑇, 𝜂, 𝜇) be a monad on 𝒞, and let D be a
class of diagrams in 𝒞. Suppose that the endofunctor 𝑇 preserves colimits of diagrams
in D. Let 𝑋 : ℐ → 𝒞

T be a diagram of T-algebras such that 𝑈𝑋 : ℐ → 𝒞 lies in D
and has a universal cocone 𝑐 : 𝑈𝑋 → {𝐶}. We may extend 𝐶 to an essentially unique
T-algebra structure �̄� over 𝐶 in a canonical way such that 𝑐 : 𝑈𝑋 → {𝐶} lifts to a
cocone of algebras 𝑐 : 𝑋 → {�̄�} over 𝑐.

We will argue using the string diagrammatic language of the 2-category of categories,
the advantage being that it clarifies reasoning that involves naturality. We refer to Hinze
and Marsden [2023] for a thorough introduction to string diagrams in a 2-category; note,
however, that we differ from op. cit. by having diagrams flow from the downward and to
the right in keeping with the usual diagrammatic order of composition. In what follows,
we let 𝐹 ⊣ 𝑈 be the Eilenberg–Moore resolution of T.
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Proof. By assumption, the following diagram is a universal cocone.

𝑋

!

𝑈

𝐶

𝐹

𝐹

𝑈

𝑈

𝑐
(2)

We define a further cocone on the left below, which by the universal property of
Diagram 2 factors through a unique map 𝛽 : 𝑈𝐹𝐶 → 𝐶 as depicted on the right:

𝑋

!

𝑈

𝐶

𝑈 𝐹

𝑐

𝜖

=

𝑋

!

𝑈

𝐶

𝑈 𝐹

𝛽

𝑐 (3)

We will show that the map 𝛽 : 𝑈𝐹𝐶 → 𝐶 satisfies the axioms of a T-algebra.

1. The unit law asserts that Diagram 4 depicts the identity cell on 𝐶:

𝐶

𝐶

𝛽

𝜂

(4)

By the universal property of Diagram 2, it suffices to check that composition of
Diagram 2 with Diagram 4 is equal to Diagram 2. Forming the composite, we
first recall the defining property of 𝛽 : 𝑈𝐹𝐶 → 𝐶 and rewrite accordingly:

𝑋

! 𝐶

𝑈

𝛽

𝜂

𝑐 =

𝑋

! 𝐶

𝑈

𝜖 𝜂

𝑐

(5)
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Finally, we rewrite using the snake identity of 𝐹 ⊣ 𝑈:

𝑋

! 𝐶

𝑈

𝜖 𝜂

𝑐

=

𝑋

!

𝑈

𝐶

𝑐
(6)

2. The multiplication law asserts that the following two diagrams are equal:

𝐶 𝐹 𝑈 𝐹 𝑈

𝐶

𝛽

𝛽

=

𝐶

𝐶

𝐹 𝑈 𝐹 𝑈

𝛽

𝜖

(7)

It suffices to consider their restriction along the cocone 𝑇𝑇𝑐 : 𝑇𝑇𝑈𝑋 → {𝑇𝑇𝐶},
which is universal as 𝑇 is assumed to preserve this colimit. We first use the
defining property of 𝛽:

𝑋 𝑈

𝐶

𝐹 𝑈 𝐹 𝑈

!

𝑐

𝛽

𝛽

=

𝑋 𝑈

𝐶

𝐹 𝑈 𝐹 𝑈

!

𝑐

𝛽

𝜖

(8)

We use the defining property of 𝛽 once more:

𝑋 𝑈

𝐶

𝐹 𝑈 𝐹 𝑈

!

𝑐

𝛽

𝜖

=

𝑋 𝑈

𝐶

𝐹 𝑈 𝐹 𝑈

!

𝑐

𝜖
𝜖

(9)
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Naturality allows us to swap the order in which the counits are composed,
corresponding to the depth of the depicted “sag”.

𝑋 𝑈

𝐶

𝐹 𝑈 𝐹 𝑈

!

𝑐

𝜖
𝜖

=

𝑋 𝑈

𝐶

𝐹 𝑈 𝐹 𝑈

!

𝑐

𝜖
𝜖

(10)

Then the defining equation of 𝛽 implies the result.

𝑋 𝑈

𝐶

𝐹 𝑈 𝐹 𝑈

!

𝑐

𝜖
𝜖

=

𝑋 𝑈

𝐶

𝐹 𝑈 𝐹 𝑈

!

𝛽

𝜖

𝑐
(11)

Hence we may define a T-algebra structure �̄� with 𝑈�̄� = 𝐶, setting 𝛼�̄� : 𝑇𝐶 → 𝐶

to be 𝛽. That 𝑐 lifts to a cocone of algebras is exactly the defining condition of 𝛼�̄� = 𝛽

via the universal property of 𝑇𝑐 : 𝑇𝑈𝑋 → {𝑇𝐶}; uniqueness of the algebra structure
follows from the same universal property. □

Lemma 5. Let T ≡ (𝑇, 𝜂, 𝜇) be a monad on a category 𝒞, and let D be a class of
diagrams in 𝒞. If 𝑇 preserves colimits of diagrams in D, then 𝑈 : 𝒞T → 𝒞 reflects
colimits of diagrams in D.

Proof. Let 𝑋 : ℐ → 𝒞
T be a diagram equipped with a cocone 𝑦 : 𝑋 → {𝑌 } whose

image 𝑈𝑦 : 𝑈𝑋 → {𝑈𝑌 } in 𝒞 is universal.

𝑋

! 𝑌

𝑈

𝑈

𝑦 (12)
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If therefore follows, by assumption, that 𝑇𝑈𝑦 : 𝑇𝑈𝑋 → {𝑇𝑈𝑌 } is universal:

𝑋

! 𝑌

𝑈

𝑈

𝐹

𝐹

𝑈

𝑈

𝑦 (13)

We aim to show that 𝑦 : 𝑋 → {𝑌 } is universal in𝒞T. To check this universal property,
we fix a further cocone 𝑧 : 𝑋 → {𝑍} in 𝒞

T; of course, we may factor 𝑈𝑧 : 𝑈𝑋 → {𝑈𝑍}
through the universal cocone 𝑈𝑦 : 𝑈𝑋 → {𝑈𝑌 } through some unique ℎ : 𝑈𝑌 → 𝑈𝑍 as
depicted below:

𝑋

! 𝑍

𝑈

𝑈

ℎ

𝑦 =

𝑋

! 𝑍

𝑈

𝑈

𝑧 (14)

We will show that ℎ : 𝑈𝑌 → 𝑈𝑍 lies in the image of some ℎ̄ : 𝑌 → 𝑍 in 𝒞
T; as the

forgetful functor𝑈 : 𝒞T → 𝒞 is necessarily faithful, this will establish that 𝑦 : 𝑋 → {𝑌 }
is a universal cocone. To exhibit ℎ̄ : 𝑌 → 𝑍 over ℎ is, by definition, the same as to check
that the latter is a homomorphism of algebras in the sense depicted below:

𝑌 𝑈

𝑍 𝑈

𝑈 𝐹

𝜖

ℎ

=

𝑌 𝑈

𝑍 𝑈

𝑈 𝐹

𝜖ℎ

(15)

Because Diagram 13 is a universal cocone, we can check Eq. (15) by restricting both
sides along Diagram 13. After doing so, we first use rewrite along Eq. (14):

𝑋 𝑈

𝑍 𝑈

𝑈 𝐹

!

𝜖

𝑦

ℎ

=

𝑍

𝑋 𝑈

𝑈

𝑈 𝐹

!

𝜖

𝑧 (16)
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We can then swap the order in which 𝑧 is composed with the counit, by naturality:

𝑍

𝑋 𝑈

𝑈

𝑈 𝐹

!

𝜖

𝑧
=

𝑍

𝑋 𝑈

𝑈

𝑈 𝐹

!

𝜖
𝑧 (17)

We finally use Eq. (14) one last time.

𝑍

𝑋 𝑈

𝑈

𝑈 𝐹

!

𝜖
𝑧

=

𝑋 𝑈

𝑍 𝑈

𝑈 𝐹

!

𝜖ℎ

𝑦
(18)

We have shown that ℎ : 𝑈𝑌 → 𝑈𝑍 satisfies the homomorphism property, and
therefore lies in the image of some (unique) ℎ̄ : 𝑌 → 𝑍 , so we are done. □

Lemma 6. Let T ≡ (𝑇, 𝜂, 𝜇) be a monad on a category 𝒞 and let D be a class of
diagrams in 𝒞. If 𝑇 preserves colimits of diagrams in D, then 𝑈 : 𝒞T → 𝒞 creates
colimits of diagrams in D.

Proof. Let 𝑋 : ℐ → 𝒞
T be a diagram such that 𝑈𝑋 : ℐ → 𝒞 has a universal cocone

𝑐 : 𝑈𝑋 → {𝐶} in 𝒞. We let �̄� ∈ 𝒞T with 𝑈�̄� = 𝐶 be the algebra structure on 𝐶 given
by Lemma 4, so that 𝑐 : 𝑈𝑋 → {𝑈𝐶} lifts to a cocone of algebras 𝑐 : 𝑋 → {𝐶}. As
𝑈 : 𝒞T → 𝒞 reflects colimits of diagrams in D (Lemma 5), we conclude that the cocone
𝑐 : 𝑋 → {𝐶} is indeed universal in 𝒞

T. □

2.2 Geometry in a 2-category
In this section, we elucidate the 2-categorical universal properties that will play a role in
the constructive study of the lifting doctrine on dcpos. Although we of course have need
only for poset-enriched versions of what follows, we first work in as much generality as
possible in order to lay the foundations for future investigations of higher-dimensional
domain theory outside the locally posetal setting.
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Definition 7. Let K be any 2-category with a terminal object; a Sierpiński space is
then defined to be a cocomma object of the following form:

1

1

1

Σ

⊤

⊥

t (19)

Equivalently, the Sierpiński space is the tensor Δ1 ·1 where Δ1 is the directed interval
category {0→ 1}.

Reading Definition 7 in the 2-category of dcpos, the Sierpiński space Σ is, if it
exists, the smallest dcpo that contains two points ⊥,⊤ : Σ and an inequality ⊥ ⊑ ⊤.2
The Sierpiński space is a special case of a more general gluing construction called the
Sierpiński cone:

Definition 8. The Sierpiński cone of an object 𝐴 : K in a 2-categoryK with a terminal
object is defined to be the following cocomma object:

𝐴

1

!𝐴

𝐴

Σ𝐴

⊤

⊥

t (20)

The geometry of Definition 8 is that Σ𝐴 adjoins an additional point “to the left”
of 𝐴, which forms the apex of a cone in 𝐴 whose endpoints lie in 𝐴. Of course, we
have Σ = Σ1 and further generic “finite chain” figures can be obtained by iteration; for
instance, Σ𝑛 :≡ Σ𝑛1 would be the generic chain with 𝑛 segments.

Observation 9. Product 2-functors 𝐴 × − in a cartesian closed 2-category preserve
cocomma squares.

Lemma 10. Let K be a 2-category with a terminal object and an exponentiable
Sierpiński space Σ; then for any 𝑌 ∈ K, the following lax square induced by evaluation
at the generic 2-cell ⊥ ⊑ ⊤ is a comma square in K:

𝑌Σ

𝑌

−⊥

𝑌

𝑌

−⊤

t
(21)

2As we will see, this description does not imply that the Sierpiński dcpo has exactly two points!
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Proof. Equivalently, we must check that𝑌Σ is the powerΔ1 ⋔ 𝑌 . The proof is (2-)adjoint
calisthenics, using the characterisation of Σ as the power Δ1 · 1.

K(𝑋,𝑌Σ) � K(𝑋 × Σ, 𝑌 )
� K(𝑋 × (Δ1 · 1), 𝑌 )
� K(Δ1 · 𝑋,𝑌 )
� Cat(Δ1,K(𝑋,𝑌 ))
� K(𝑋,Δ1 ⋔ 𝑌 ) □

2.3 Partial products in a 2-category
Finally, we recall the notion of (op)fibration and partial product in a 2-category [John-
stone, 2002, §B4.4]. In this section, let K be a finitely complete 2-category. We will
prefer the “Chevalley criterion” for opfibrations described below.

Definition 11 (Loregian and Riehl [2020]). A 1-cell 𝑝 : 𝐸 → 𝐵 in K is called an
opfibration when the canonical arrow Δ1 ⋔ 𝐸 → 𝑝 ↓ 𝐵 corresponding to the lax square
below has a left adjoint right inverse:

Δ1 ⋔ 𝐸

𝐸

𝜕0

𝐵

𝐵

𝑝 ◦ 𝜕1

𝑝

t (22)

Construction 12 (Lifting 2-cells to generalised fibers). As Hazratpour and Vickers
[2020] point out, an opfibration in the sense of Definition 11 can be equipped with
operations corresponding to the more nuts-and-bolt description of internal opfibrations
given by Johnstone [2002]. In particular, for a given 2-cell 𝛼 : 𝑓 → 𝑔 inK(𝐶, 𝐵) we may
define a 1-cell 𝛼∗𝐸 : 𝑓 ∗𝐸 → 𝑔∗𝐸 between pullbacks. In particular, the 2-cell determines
a 1-cell 𝑓 ∗𝐸 → 𝑝 ↓ 𝐵, where 𝑝 ◦ 𝑝∗ 𝑓 � 𝑓 ◦ 𝑓 ∗𝑝 is the canonical isomorphism of the
pullback square:

𝑝∗ 𝑓

𝑓 ∗𝑝

𝑝

𝑔

�

𝛼
(23)

Postcomposing with the left adjoint right inverse to Δ1 ⋔ 𝐸 → 𝑝 ↓ 𝐵, we obtain the
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following cells and equations:

�̄� 𝑝

𝑓 ∗𝑝 𝑔

�

𝑝∗ 𝑓

�̄�

�̄� (24)

𝑝∗ 𝑓

𝑓 ∗𝑝

𝑝

𝑔

�

�̄�
=

𝑝∗ 𝑓

𝑓 ∗𝑝

𝑝

𝑔

�

𝛼
(25)

The isomorphism 𝑝 ◦ �̄� � 𝑔 ◦ 𝑓 ∗𝑝 depicted in Diagram 24 is precisely the data of a
suitable map 𝛼∗𝐸 : 𝑓 ∗𝐸 → 𝑔∗𝐸 , considering the universal property of 𝑔∗𝐸 .

The following notion is described by Johnstone [2002] as a partial product cone.

Definition 13 (Johnstone [2002]). Let 𝑝 : 𝐸 → 𝐵 in be an opfibration in K, and let 𝐴
be a 0-cell in K. A nondeterministic map from 𝐶 to 𝐴 with coefficients in 𝑝 : 𝐸 → 𝐵

is defined to consist of a 1-cell 𝑢 : 𝐶 → 𝐵 equipped with a further 1-cell 𝑒 : 𝑢∗𝐸 → 𝐴

as depicted below:

𝑢∗𝐸

𝐶

𝐸

𝐵

𝑝

𝑢

𝐴
𝑒

(26)

A morphism of such nondeterministic maps from (𝑢, 𝑒) to (𝑢′, 𝑒′) is given by a 2-cell
𝛼 : 𝑢 → 𝑢′ together with a further 2-cell 𝛽 : 𝑒 → 𝛼∗𝐸 ∗ 𝑒′ where 𝛼∗𝐸 : 𝑢∗𝐸 → 𝑢′∗𝐸 is
as described in Construction 12.

We shall writeK 𝑝 (−, 𝐴) : Kop → Cat for the pseudofunctor sending 0-cells 𝐶 ∈ K
to the category of nondeterministic maps from 𝐶 to 𝐴 with coefficients in 𝑝.

Definition 14. The partial product of an opfibration 𝑝 : 𝐸 → 𝐵 in K with a 0-cell 𝐴 is
a 0-cell P• (𝑝, 𝐴) representing the pseudofunctor K 𝑝 (−, 𝐴) in the sense that we have a
pseudonatural equivalence K(−,P• (𝑝, 𝐴)) ≃ K 𝑝 (−, 𝐴).
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When P• (𝑝, 𝐴) is the partial product of 𝑝 : 𝐸 → 𝐵 with 𝐴 ∈ K, we have in the
generic case a nondeterministic map from P• (𝑝, 𝐴) to itself, as depicted below:

𝑢∗𝐸

P• (𝑝, 𝐴)

𝐸

𝐵

𝑝

𝑢

𝐴
𝑒

(27)

In this case, we shall refer to the above as the universal nondeterministic map out
of 𝐴 with coefficients in 𝑝 : 𝐸 → 𝐵.

3 Basic notions in constructive domain theory
We recall the basics of the (constructive) theory of dcpos and their lifting monad,
following the exposition of de Jong [2021], de Jong and Escardó [2021]. The main
difference in relation to op. cit. is that we assume propositional resizing, as we are not
concerned here with predicativity.

Definition 15. A partial order 𝐴 is called a directed-complete when any directed subset
𝑈 ⊆ 𝐴 has a supremum in 𝐴. A morphism of directed-complete partial orders is a
Scott–continuous function, i.e. a function that preserves directed suprema.

We shall refer to directed-complete partial orders a dcpos, writing writing dcpo for
the category of dcpos and Scott continuous maps. Note that Scott–continuous functions
are automatically monotone.

3.1 Open subspaces and their classifier
We recall the notion of Scott–open subset of a dcpo in the constructive setting, e.g. from
de Jong [2021].

Definition 16. A subset 𝑈 ⊆ 𝐴 of a dcpo 𝐴 is called Scott–open when it is upward
closed and, moreover, inaccessible by directed suprema in the sense that for any directed
subset 𝑆 ⊆ 𝐴 with

⊔
𝑆 ∈ 𝑈, there exists an element 𝑠 ∈ 𝑆 such that 𝑠 ∈ 𝑈.

Remark 17. Note that the appropriate notion of Scott–closed subset is not obtained
by taking complements of Scott–open subsets, except in the case of continuous dc-
pos [de Jong, 2021]. We will not deal with closed subsets in this paper.

We shall refer to the subdcpo spanned by a given Scott–open subset as a Scott–open
subspace. A morphism of dcpos 𝑖 : 𝐴→ 𝐵 factoring through an isomorphism onto an
open subspace of 𝐵 is called a Scott–open immersion. We will observe that universal
monomorphism ⊤ : 1↣ Ω in the category of sets3 extends to a universal Scott–open
immersion in the world of dcpos.

3To be more precise, we mean the ambient topos when we speak of “sets”.
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Lemma 18. The universe Ω of all propositions is a dcpo with its implication order.

Proof. Implication clearly gives rise to a partial order on Ω; the existential quantifier
ensures that Ω is in fact a sup-lattice, and thus a dcpo. □

Theorem 19. The morphism ⊤ : 1 ↩→ Ω is the universal Scott–open immersion in
dcpo, in the sense that ⊤ : 1 ↩→ Ω is a Scott–open immersion and that for any other
Scott–open immersion 𝑖 : 𝑈 ↩→ 𝐴, there exists a unique cartesian square from 𝑖 to ⊤ in
dcpo as depicted below:

𝑈

𝐴

𝑖

1

Ω

!𝑈

⊤

∃![𝑖]

(28)

Proof. Without loss of generality, we may consider the open immersion induced by a
Scott–open subset 𝑈 of 𝐴. As the forgetful functor from dcpos to their underlying sets
is faithful, we can deduce our result from the universal property of ⊤ : 1↣ Ω as the
universal monomorphism in the category of sets; in particular, it is enough to observe
that the characteristic function of a subset of a dcpo is Scott–continuous if and only if the
subset is Scott–open, recalling that joins in Ω are given by existential quantification. □

3.2 Geometry of the Scott–open subspace classifier
dcpo is easily seen to be enriched in posets; given 𝑓 , 𝑔 : 𝐴 → 𝐵 we define 𝑓 ⊑ 𝑔 if
and only if 𝑓 𝑥 ⊑ 𝑔𝑥 for all 𝑥 : 𝐴. This enrichment turns dcpo into a (locally posetal)
2-categories, and so we may consider 2-categorical limits and colimits.

We have seen a “right-handed” or limit-style universal property for Ω as the base of
the universal Scott–open immersion (Theorem 19). In this section, we will see that Ω
has an alternative left-handed universal property as the Sierpiński space (Definition 7)
in the 2-category of dcpos. These two universal properties reflect the role of Ω as a
dualising object in the algebro-geometric context of domain theory.

Theorem 20. The following is a cocomma square in the 2-category dcpo, and so Ω is
the Sierpiński space in the sense of Definition 7:

1

1

1

Ω

⊤

⊥

t (29)
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Proof. Consider an arbitrary lax square in the following configuration:

1

1

1

𝐶

𝑐1

𝑐0

t (30)

The universal map ℎ : Ω→ 𝐶 factoring 𝑐0 through ⊥ and 𝑐1 through ⊤ is defined
so as to send 𝜙 : Ω to

∨
1+𝜙 [𝑐0 | 𝑐1], i.e. supremum of the union of {𝑐1 | 𝜙 = ⊤} and

{𝑐0}. It is also observed easily that this assignment preserves directed suprema in Ω.
That ℎ : Ω→ 𝐶 is unique with this factorization property follows from the uniqueness
of suprema: any map factoring 𝑐0 and 𝑐1 in this sense is supremum of the same directed
subset. □

By virtue of Theorem 20, we may define Σ :≡ Ω; therefore, unless the law of
excluded middle holds, it need not be the case that Σ has exactly two points — although
the law of non-contradiction ensures that no third point can be proved unequal to both ⊥
and ⊤.4

Remark 21. It is perhaps surprising at first that the Sierpiński space in the 2-category
of posets nonetheless has only two elements in constructive mathematics, in spite of
Theorem 20. This is not so strange, however: the ideal completion 2-functor from posets
to dcpos is left adjoint to the forgetful functor, and so it necessarily preserves Sierpiński
objects. But in constructive mathematics, the set of ideals in 2 = {0 ≤ 1} necessarily
contains all directed downsets of 2 and not just the decidable ones; thus we see, by
means of a more conceptual argument than that of Lemma 18, that the Sierpiński dcpo
must be given by Ω.

Lemma 22. The universal open immersion ⊤ : 1 ↩→ Σ is a opfibration of dcpos in the
sense of Definition 11.

Proof. Letting 𝐴 be an arbitrary dcpo; we must check that the canonical morphism
Δ1 ⋔ 1→ ⊤ ↓ Σ has a left adjoint right inverse. In fact, Δ1 ⋔ 1 � 1 � ⊤ ↓ Σ, so we
are done. □

Definition 23 (Paths between dpco morphisms). Let 𝑓 , 𝑔 : 𝐴 → 𝐵 be a morphism
of dcpos; a path from 𝑓 to 𝑔 is defined to be a morphism 𝛼 : Σ × 𝐴 → 𝐵 such that
𝛼 ◦ (⊥,−) = 𝑓 and 𝛼 ◦ (⊤,−) = 𝑔.

Corollary 24 (Path enrichment). The following properties of paths hold:

1. There is at most one path between any two morphisms 𝑓 , 𝑔 : 𝐴→ 𝐵 of dcpos.

2. For 𝑓 , 𝑔 : 𝐴→ 𝐵, there exists a path from 𝑓 to 𝑔 if and only if 𝑓 ⊑ 𝑔.

Proof. These are immediate consequences of Theorem 20. □

4From the external point of view, there will generally be many distinct global points of the internal dcpo Σ.
But even if 𝑝, 𝑞, 𝑟 are distinct global points, the topos logic will not deduce 𝑝 ≠ 𝑞 ≠ 𝑟 unless the topos is the
empty topos (i.e. the trivial category).
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3.3 Enriched cocompleteness of the category of dcpos
Our study of the Sierpiński space and the path-enrichment of dcpo (Corollary 24)
implies the important property that any 1-categorical colimits of dcpos that we may
construct are, in fact, 2-categorical colimits.

Corollary 25 (Enrichment of colimits). Colimits in dcpo are poset-enriched.

Proof. This follows immediately from Corollary 24 and the fact that the product functor
Σ × − has a right adjoint and is therefore cocontinuous. □

We have not seen, however, how to actually construct any given colimit of dcpos.
Although it is not hard to see that dcpo is cocomplete in a classical metatheory using
the adjoint functor theorem [Abramsky and Jung, 1995], it is unclear how to satisfy
the solution set condition in constructive mathematics, although it may nonetheless
be possible. Luckily, it happens that the constructive cocompleteness of dcpo is an
immediate consequence of the (fully constructive) generalized coverage theorem of
Townsend [1996].

Lemma 26 (Townsend [1996, p. 72]). The category of dcpos is closed under coequalisers,
and is therefore cocomplete.

Proof. Townsend [1996] has shown that the coequaliser of dcpos can be computed in
their enveloping sup-lattices and then extracted by means of an image factorization that
isolates the smallest subdcpo of the coequaliser sup-lattice containing the original dcpo
that we wished to quotient. □

The argument of op. cit. is a more conceptual version of the explicit construction
of dcpo quotients in terms of dcpo presentations [Jung et al., 2008], or the even more
explicit constructions of Fiech [1996], Goubault-Larrecq [2019].

4 The lifting monad and its algebras

4.1 The partial map classifier
In this section, we shall study the structure of partial maps of dcpos in terms of
2-category–theoretic universal properties.

Definition 27. A partial map from 𝐴 to 𝐵 is given by a span 𝐴←↪ 𝑈 → 𝐵 in which
𝑈 ↩→ 𝐴 is a Scott–open immersion. An inequality from 𝐴←↪ 𝑈 → 𝐵 to 𝐴←↪ 𝑈′ → 𝐵

is given by an embedding 𝑈 ↩→ 𝑈′ making both triangles below commute:

𝑈

𝐴 𝐵

𝑈′
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Observation 28. The partial order of partial maps from 𝐴 to 𝐵 is precisely the (posetal)
category dcpo⊤ (𝐴, 𝐵) of nondeterministic maps from 𝐴 to 𝐵 with coefficients in the
universal Scott–open immersion ⊤ : 1 ↩→ Σ.

Proof. This follows immediately from the universal property of ⊤ : 1 ↩→ Σ as the
universal Scott–open immersion (Lemma 22). □

Thus the appropriate enriched / 2-categorical universal property for classifying
partial maps is given by partial products (Definition 14). We will now give an explicit
description of the classification of partial maps into 𝐵 by the partial product P• (⊤, 𝐵).
Construction 29 (The lifting operation on dcpos). Given a dcpo 𝐴, the lifted dcpo 𝐿𝐴

is defined to have the (base of) the partial map classifier 𝐿𝐴 :≡ ∑
𝜙:Ω 𝐴𝜙 of 𝐴 as its

underlying set, with the following partial order:

(𝜙, 𝑢) ⊑𝐿𝐴 (𝜓, 𝑣) ⇐⇒ ∀𝑥 : 𝜙. ∃𝑦 : 𝜓. 𝑢𝑥 ⊑ 𝑣𝑦

⇐⇒ (𝜙 ⊑Σ 𝜓) ∧ ∀𝑥 : 𝜙, 𝑦 : 𝜓. 𝑢𝑥 ⊑ 𝑣𝑦

If we write 𝜂 : 𝐴 ↩→ 𝐿𝐴 for the unit map sending 𝑎 to (⊤, 𝜆𝑥. 𝑎), then we see that
we also have the following logical equivalence:

(𝜙, 𝑢) ⊑𝐿𝐴 (𝜓, 𝑣) ⇐⇒ ∀𝑎 : 𝐴. 𝑎 ∈ 𝜂−1𝑢 → ∃𝑏 : 𝐵. 𝑏 ∈ 𝜂−1𝑣

It is not difficult to show that if 𝐴 is directed-complete, then so is 𝐿𝐴; suprema are
computed so that the (clearly monotone) projection 𝜋1 : 𝐿𝐴→ Σ is Scott-continuous
and so a morphism of dcpos.

Theorem 30. Each lifted dcpo 𝐿𝐵 is the partial product of ⊤ : 1 ↩→ Σ with 𝐵.

Proof. We must construct an isomorphism of posets from dcpo(𝐴, 𝐿𝐵) to the poset
dcpo⊤ (𝐴, 𝐵) of partial maps from 𝐴 to 𝐵. Given 𝑓 : 𝐴→ 𝐿𝐵, we choose the following
partial map from 𝐴 to 𝐵:

{𝑥 : 𝐴 | 𝜋( 𝑓 𝑥) = ⊤}

𝐴

1

Σ

⊤

𝜋 ◦ 𝑓

𝐵
𝜋2 ◦ 𝑓

(31)

Monotonicity is immediate. Conversely, we consider an arbitrary partial map:

𝑈

𝐴

1

Σ

⊤

𝑝

𝐵
𝑒

(32)

The above corresponds to the map 𝐴→ 𝐿𝐵 sending 𝑥 : 𝐴 to (𝑝𝑥, 𝜆𝑧. (𝑥, 𝑧)). □
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Corollary 31. Let 𝐴 be a dcpo; then the evaluation map 𝑒 : 𝑈 → 𝐴 in the universal
nondeterministic map with coefficients in ⊤ : 1 ↩→ Σ is an isomorphism.

𝑈

P• (⊤, 𝐴)

1

Σ

⊤

𝜋

𝐴
𝑒

(33)

4.2 Geometry of the partial map classifier
In Sections 3.1 and 3.2 we have seen that the classifier of Scott–open subsets has an
additional left-handed universal property as a 2-categorical colimit: the Sierpiński space.
In this section, we will upgrade this result to see that the partial map classifier of a given
dcpo 𝐴 has an additional left-handed universal property as the Sierpiński cone of 𝐴.
From this, we will obtain the most important reasoning principle for the lifting doctrine
in constructive domain theory, namely our Corollaries 33 and 34.

Theorem 32 (Lifting = Sierpiński cone). For any dcpo 𝐴, the following lax square
involving the lifting operation is a co-comma square:

𝐴

1

!𝐴

𝐴

𝐿𝐴

𝜂𝐴

⊥

t (34)

In other words, the lifted dcpo 𝐿𝐴 is in fact the Sierpiński cone of 𝐴 in dcpo.

Proof. Consider an arbitrary lax square in the following configuration:

𝐴

1

𝐴

𝐶

𝑐1

𝑐0

t (35)

The universal map ℎ : 𝐿𝐴→ 𝐶 factoring 𝑐0 through ⊥ and 𝑐1 through 𝜂𝐴 is defined
so as to send 𝑢 : 𝐿𝐴 to the supremum of the union of {𝑐0} with {𝑐1𝑥 | 𝑢 = 𝜂𝐴𝑥}. This
set is evidently directed, and so each ℎ𝑢 is well-defined; to see that the assignment
𝑢 ↦→ ℎ𝑢 is continuous, we fix a directed subset 𝑉 ⊆ 𝐿𝐴:

ℎ
⊔

𝑉 =
⊔(
{𝑐0} ∪

{
𝑐1𝑥

�� ⊔𝑉 = 𝜂𝐴𝑥
})
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=
⊔ ({𝑐0} ∪ {𝑐1𝑥 | 𝜂𝐴𝑥 ∈ 𝑉})

=
⊔

𝑢∈𝑉 ({𝑐0} ∪ {𝑐1𝑥 | 𝑢 = 𝜂𝐴𝑥})
=
⊔

𝑢∈𝑉 ℎ𝑢

Lastly, we must check that ℎ : 𝐿𝐴→ 𝐶 is unique with this property. We will show
that any two ℎ, ℎ′ : 𝐿𝐴→ 𝐶 factoring our lax square in the appropriate sense are equal,
fixing 𝑢 : 𝐿𝐴.

ℎ𝑢 = ℎ
⊔ ({⊥} ∪ {𝜂𝐴𝑥 | 𝑢 = 𝜂𝐴𝑥})

=
⊔ ({ℎ⊥} ∪ {ℎ(𝜂𝐴𝑥) | 𝑢 = 𝜂𝐴𝑥})

=
⊔ ({ℎ′⊥} ∪ {ℎ′ (𝜂𝐴𝑥) | 𝑢 = 𝜂𝐴𝑥})

= ℎ′
⊔ ({⊥} ∪ {𝜂𝐴𝑥 | 𝑢 = 𝜂𝐴𝑥})

= ℎ′𝑢 □

From the universal property of 𝐿𝐴 as the Sierpiński cone of 𝐴, we can deduce the
following important reasoning principle.

Corollary 33. For any dcpo 𝐴, the two embeddings ⊥ : 1 ↩→ 𝐿𝐴 and 𝜂𝐴 : 𝐴 ↩→ 𝐿𝐴 are
jointly epimorphic; as such, we have an epimorphic embedding [⊥ | 𝜂𝐴] : 1 + 𝐴 ↩↠ 𝐿𝐴.

Proof. This is an immediate consequence of Theorem 32: because 𝐿𝐴 is the Sierpiński
cone of 𝐴, equality of maps 𝐿𝐴→ 𝐶 can be checked by restriction along the embeddings
⊥ : 1 ↩→ 𝐿𝐴 and 𝜂𝐴 : 𝐴 ↩→ 𝐿𝐴. □

It was Fiore [1995] who first argued for the importance of Corollary 33 for the
general axiomatics of lifting monads as Kock–Zöberlein doctrines, i.e. lax idempotent
2-monads. In this paper, we consider a stronger enriched version of this statement.

Corollary 34. For any dcpo 𝐴, the embedding [⊥ | 𝜂𝐴] : 1 + 𝐴 ↩↠ 𝐿𝐴 is lax epimor-
phic in the 2-category of dcpos, so that for any dcpo 𝐶 the induced restriction map
dcpo( [⊥ | 𝜂𝐴], 𝐶) : dcpo(𝐿𝐴,𝐶) → dcpo(1 + 𝐴,𝐶) is an order-embedding.

Proof. This is a consequence of Corollaries 25 and 33. □

4.3 Lifting as a 2-monad
It is not difficult to see that the lifting operation on dcpos is functorial and, indeed, a
monad; on point-sets, these operations are the same as those of the (discrete) partial
map classifier on sets — as the functorial action sends continuous maps to continuous
maps, and both the unit and multiplication can be seen to be continuous. Moreover, the
functorial action is in fact monotone in hom posets. Therefore:

Lemma 35 (Enrichment). Lifting gives rise to a 2-monad L = (𝐿, 𝜂, 𝜇) on dcpo.

Proof. This amounts to the fact that each functorial map taking 𝑓 : 𝐴→ 𝐵 to 𝐿 𝑓 : 𝐿𝐴→
𝐿𝐵 is monotone as a function on hom posets. That the unit and multiplication are
2-natural is automatic in the locally posetal setting. □
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Essentially by definition, the Kleisli 2-category for L is given by dcpos with partial
maps between them. The rest of this section is devoted to understanding the broader
Eilenberg–Moore resolution of L, which extends beyond the free lifting algebras to
arbitrary lifting algebras. We will show in Section 4.5 that lifting algebras, pointed
dcpos, and inductive partial orders give equivalent 2-categories; in Section 4.6, we will
show that the category of lifting algebras is cocomplete.

Definition 36. We shall emphasise the property of dcpo morphism 𝑓 : 𝑈𝑋 → 𝑌𝑈

tracking a morphism of L-algebras by calling it linear.

The following can be seen by unfolding definitions.

Observation 37. Each unit map 𝜂𝐴 : 𝐴→ 𝐿𝐴 is an order-embedding.

4.4 Lifting as a Kock–Zöberlein doctrine
The lifting 2-monad is lax idempotent and so gives rise to a Kock–Zöberlein doctrine on
dcpos. We will see this doctrine takes the form of cocompletion under bottom elements,
constructivising the classical viewpoint of dcpo lifting algebras as pointed dcpos.

Lemma 38. The lifting 2-monad is lax idempotent: for any algebra 𝑋 ∈ dcpoL, the
structure map 𝛼𝑋 : 𝐿𝑈𝑋 → 𝑈𝑋 is left adjoint to the unit 𝜂𝑈𝑋 : 𝑈𝑋 → 𝐿𝑈𝑋 in dcpo.

Proof. The counit 𝛼𝑋 ◦ 𝜂𝑈𝑋 ⊑ 1𝑈𝑋 is automatic (and invertible) by the unit law for
monad algebras. To exhibit the unit 1𝐿𝑈𝑋 ⊑ 𝜂𝑈𝑋 ◦ 𝛼𝑋, it suffices by Corollary 34 to
check both ⊥ ⊑ 𝜂𝑈𝑋𝛼𝑋⊥ and 𝜂𝑈𝑋 ⊑ 𝜂𝑈𝑋𝛼𝑋𝜂𝑈𝑋. The former is immediate and the
latter holds by the unit law for monad algebras. □

Corollary 39. There is at most one lifting algebra structure on a dcpo.

Proof. Left adjoints are unique! □

4.5 Lifting algebras, pointed dcpos, and ipos
The abstract notion of a lifting algebra can be identified with two more concrete notions:
pointed dcpos and inductive partial orders (ipos).

Definition 40. A subset 𝑈 ⊆ 𝐴 of a partial order 𝐴 is called semidirected when for any
two 𝑥, 𝑦 ∈ 𝑈 there exists an upper bound for 𝑥 and 𝑦 in 𝑈. A subset is called directed
when it is both semidirected and inhabited.

Definition 41. A partial order 𝐴 is called inductive when any semidirected subset
𝑈 ⊆ 𝐴 has a supremum in 𝐴. A morphism of inductive partial orders is an inductive
function, i.e. one that preserves semidirected suprema.

We shall abbreviate inductive partial orders as ipos, writing ipo for the category of
ipos and morphisms of ipos.

Definition 42. A dpco 𝐴 is called pointed when it has a bottom element ⊥, i.e. such
that ⊥ ⊑ 𝑎 for all 𝑎 : 𝐴.
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Definition 43. A Scott–continuous map between pointed dcpos is called strict when it
preserves the bottom element.

We shall abbreviate pointed dcpos as dcppos and write dcppo for the category of
pointed dcpos and strict maps.

Lemma 44. A dcpo 𝐴 is pointed if and only if it is inductive, i.e. semidirected-complete.

Proof. Suppose that 𝐴 is closed under suprema of semidirected subsets. Then the
supremum of the empty subset (which is trivially semidirected) is can be seen to be the
bottom element using the universal property of suprema.

Conversely, suppose that 𝐴 is pointed and let 𝐼 ⊆ 𝐴 be semidirected. Then we may
replace 𝐼 ⊆ 𝐴 by the directed subset 𝐼 ′ = 𝐼 ∪ {⊥}; the inclusion 𝐼 ⊆ 𝐼 ′ is clearly cofinal
as ⊥ lies below everything, so the supremum of 𝐼 ′ is also the supremum of 𝐼. □

Lemma 45. A Scott–continuous morphism between pointed dcpos is strict if and only if
it is inductive, i.e. preserves suprema of semidirected subsets.

Proof. An inductive morphism obviously preserves the bottom element. Conversely,
let 𝑓 : 𝐴 → 𝐵 preserve directed suprema and the bottom element and let 𝐼 ⊆ 𝐴

be a semidirected subset of 𝐴. To show that 𝑓
⊔

𝐼 =
⊔

𝑖:𝐼 𝑓 𝑖, we note that 𝐼 ⊆
𝐼 ∪ {⊥} is a cofinal inclusion onto a directed subset, and so 𝑓

⊔
𝐼 = 𝑓

⊔ ({⊥} ∪ 𝐼) =⊔
1+𝐼 [ 𝑓⊥ | 𝑓 ] =

⊔
1+𝐼 [⊥ | 𝑓 ] =

⊔
𝑖:𝐼 𝑓 𝑖. □

Lemma 46 (Pointed dcpos are lifting algebras). Any pointed dcpo carries a lifting
algebra structure.

Of course, by Corollary 39 any lifting algebra structure we impose on a dcpo, pointed
or not, is unique.

Proof. Let 𝐴 be a pointed dcpo; we define the structure map 𝛼𝐴 : 𝐿𝐴 → 𝐴 to take
𝑢 : 𝐿𝐴 to the supremum of the semidirected subset {𝑥 : 𝐴 | 𝑢 = 𝜂𝐴𝑥}, computed via
Lemma 44. The unit law is trivial, and the multiplication law follows from the fact that
a supremum of suprema can be computed as the supremum of a single subset. □

Lemma 47 (Lifting algebras are pointed). For any lifting algebra 𝑋 ∈ dcpoL, the
underlying dcpo 𝑈𝑋 is pointed.

Proof. The bottom element of 𝑈𝑋 is obtained by applying the structure map to the
bottom element of 𝐿𝑈𝑋 , so we have ⊥ :≡ 𝛼𝑋 (⊥, ∗). That this does in fact compute the
bottom element can be seen as follows: fixing 𝑢 : 𝑈𝑋 , we note that 𝛼𝑋 (⊥, ∗) ⊑𝑈𝑋 𝑢 is
equivalent to ⊥ ⊑𝐿𝑈𝑋 𝜂𝑈𝑋𝑢 because 𝛼𝑋 ⊣ 𝜂𝑈𝑋 by Lemma 38 (lax idempotence). □

Lemma 48 (Strict maps vs. algebra homomorphisms). A Scott–continuous map between
pointed dcpos is strict if and only if it tracks a lifting algebra homomorphism.
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Proof. It is clear from the proof of Lemma 47 that a homomorphism of algebras must
preserve the bottom element. On the other hand, we suppose that 𝑓 : 𝐴→ 𝐵 is strict to
check that the following diagram commutes:

𝐿𝐴

𝐴

𝛼𝐴

𝐿𝐵

𝐵

𝐿 𝑓

𝛼𝐵

𝑓

(36)

By Corollary 33 and the fact that all maps in sight are strict, it is enough to consider
the restriction of Diagram 36 along 𝜂𝐴 : 𝐴 ↩→ 𝐿𝐴; then we have 𝛼𝐵 ◦ 𝐿 𝑓 ◦ 𝜂𝐴 =

𝛼𝐵 ◦ 𝜂𝐴 ◦ 𝑓 = 𝑓 = 𝑓 ◦ 𝛼𝐴 ◦ 𝜂𝐴 by the unit law for algebras. □

Corollary 49. The 2-categories of lifting algebras, pointed dcpos, and inductive partial
orders are all canonically equivalent.

Proof. Having and preserving bottom elements, semidirected suprema, and lifting
algebra structures are all properties (we have seen the latter in Corollary 39). Therefore,
we may argue that these categories all arise as the same (non-full) subcategory of dcpo
via Lemmas 44 to 48. □

Corollary 50 (Monadicity). The forgetful functors dcppo→ dcpo and ipo→ dcpo are
both monadic.

4.6 Cocompleteness of lift-algebras
Lemma 51. The lifting endofunctor 𝐿 : dcpo→ dcpo preserves connected colimits.

Proof. Let 𝐴• : ℐ → dcpo be a connected diagram, i.e. such that ℐ is inhabited and
has a finite zigzag between any two objects; further suppose that there exists a universal
cocone 𝑎• : 𝐴• → {𝐴∞}, to check that the lifted cocone 𝐿𝑎• : 𝐿𝐴• → {𝐿𝐴∞} is also
universal. We fix a cocone 𝑏• : 𝐿𝐴• → {𝐵} and must check that there exists a unique
map 𝑏∞ : 𝐿𝐴∞ → 𝐵 factoring 𝑏• through 𝐿𝑎•. We have shown in Theorem 32 that
𝐿𝐴∞ is the Sierpiński cone of 𝐴∞, so a map 𝑏∞ : 𝐿𝐴∞ → 𝐵 is uniquely determined by
an element 𝑏⊥∞ : 1→ 𝐵 and a map 𝑏⊤∞ : 𝐴∞ → 𝐵 such that 𝑏⊥∞ ◦ !𝐴∞ ⊑ 𝑏⊤∞.

We first define 𝑏⊥∞ to be the unique element of 𝐵 that is equal to 𝑏𝑘⊥ for all 𝑘 ∈ ℐ;
that this element is exists and is unique follows from connectedness of ℐ. Next, we
define 𝑏⊤∞ : 𝐴∞ → 𝐵 using the universal property of 𝑎• : 𝐴• → {𝐴∞}:

𝐴•

𝐿𝐴•

𝜂𝐴•

{𝐴∞}

{𝐵}

𝑎•

{𝑏⊤∞}

𝑏•

(37)
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Finally we check that 𝑏⊥∞ ◦ !𝐴∞ ⊑ 𝑏⊤∞; by Corollary 25, it suffices to check that
𝑏⊥∞ ◦ !𝐴𝑖

⊑ 𝑏⊤∞ ◦ 𝑎𝑖 for each 𝑖 ∈ ℐ; fixing 𝑥 : 𝐴𝑖 , we do indeed have 𝑏⊥∞ = 𝑏𝑖⊥ ⊑
𝑏𝑖 (𝜂𝐴𝑖

𝑥) = 𝑏⊤∞ (𝑎𝑖𝑥) by monotonicity of 𝑏𝑖 : 𝐿𝐴𝑖 → 𝐵 on ⊥ ⊑ 𝜂𝐴𝑖
𝑥.

Thus we have defined a map 𝑏∞ : 𝐿𝐴∞ → 𝐵 such that 𝑏∞⊥ = 𝑏𝑘⊥ for all 𝑘 ∈ ℐ
and 𝑏∞ (𝜂𝐴∞𝑥) = 𝑏⊤∞𝑥 for all 𝑥 : 𝐴∞. We need to check that 𝑏∞ : 𝐿𝐴∞ → 𝐵 uniquely
factors 𝑏• : 𝐿𝐴• → {𝐵} through 𝐿𝐴• : 𝐿𝐴• → {𝐿𝐴∞}:

𝐿𝐴• {𝐿𝐴∞}

{𝐵}

𝐿𝑎•

𝑏∞𝑏•
(38)

We check the factorization above using Corollary 33. In particular, it is enough to
check that 𝑏∞ (𝐿𝑎𝑖 (⊥)) = 𝑏𝑖⊥ and that 𝑏∞ (𝐿𝑎𝑖 (𝜂𝐿𝐴𝑖

𝑥)) = 𝑏𝑖 (𝜂𝐴𝑖
𝑥) for each 𝑥 : 𝐴𝑖 .

The former holds as we have 𝑏∞ (𝐿𝑎𝑖 (⊥)) = 𝑏∞⊥ = 𝑏⊥∞ = 𝑏𝑖⊥, and the latter holds
by 𝑏∞ (𝐿𝑎𝑖 (𝜂𝐿𝐴𝑖

𝑥)) = 𝑏∞ (𝜂𝐿𝐴∞ (𝑎𝑖𝑥)) = 𝛽⊤∞ (𝑎𝑖𝑥) = 𝑏𝑖 (𝜂𝐴𝑖
𝑥). Finally, we check

that any two factorizations 𝑓 , 𝑔 : 𝐿𝐴∞ → 𝐵 of 𝑏• through 𝐿𝐴• are equal. But this
follows by construction via Corollary 33 and the universal property of the cocone
𝑎• : 𝐴• → {𝐴∞}. □

Corollary 52. The category of lift-algebras is closed under connected colimits, and
these are created by the forgetful functor 𝑈 : dcpoL → dcpo.

Proof. By Lemmas 6, 26 and 51. □

Lemma 53 (Linton [1969]). The category of lift-algebras is closed under coproducts.

Proof. Coproducts in dcpoL are computed using a reflexive coequaliser involving the
coproducts from dcpo. By Corollary 52, we know that dcpoL is closed under reflexive
coequalisers and these are computed as in dcpo. □

Corollary 54. The category of lift-algebras is cocomplete.

Proof. By Corollary 52 and Lemma 53. □

5 Tensorial structure of the lifting adjunction

5.1 Enrichment and commutativity of the lifting monad
We shall view dcpo as a symmetric monoidal closed category via its cartesian product
and exponential, canonically self-enriched. We first observe that dcpoL = dcppo = ipo
inherits this dcpo-enrichment.

Lemma 55. The category dcppo of pointed dcpos is dcpo-enriched in the sense that
every hom poset dcppo(𝐴, 𝐵) is closed under suprema of directed subsets.
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Proof. Given pointed dcpos 𝐴 and 𝐵, we must check that the supremum of a directed
set of strict maps from 𝐴 to 𝐵, computed in the dcpo exponential 𝐵𝐴, is strict. This
can be seen immediately from the fact that function application is continuous in its first
argument: (⊔

𝑖:𝐼 𝑓𝑖
)
⊥ =

⊔
𝑖:𝐼 𝑓𝑖⊥ =

⊔
𝑖:𝐼 ⊥ = ⊥ □

Lemma 56. The category dcppo of pointed dcpos is closed under dcpo-powers.

Proof. Let 𝐴 be a dcpo and let 𝐵 be a pointed dcpo. The power 𝐴 ⋔ 𝐵 of 𝐵 by 𝐴 has the
dcpo exponential 𝐵𝐴 as its underlying (pointed) dcpo. To check the universal property,
we observe that a strict map from 𝐶 to 𝐴 ⋔ 𝐵 is the same as a map from 𝐶 × 𝐴 to 𝐵 that
is strict in its first argument. Of course, this is the same as a Scott–continuous map from
𝐴 to dcppo(𝐶, 𝐵). Thus we have dcppo(𝐶, 𝐴 ⋔ 𝐵) � dcpo(𝐴, dcppo(𝐶, 𝐵)) and so
we are done. □

Lemma 57. The poset-enrichment of the lifting monad L on dcpo extends to a dcpo-
enrichment.

Proof. The functorial action and monadic operations can all be internalised as Scott–
continuous operations □

Corollary 58. The lifting monad L extends to a strong monad on dcpo.

Proof. Strengths for a given monad on a cartesian closed category V correspond
precisely toV-enrichments of the monad [McDermott and Uustalu, 2022]. □

Lemma 59. The dcpo-enriched lifting monad L is commutative.

Proof. We use Kock’s criterion for commutativity of a strong monad on a closed
category. Fixing a pointed dcpo 𝐵 and a dcpo 𝐴, we must check that the extension
map (−)† : 𝐴 ⋔ 𝐵 → 𝐿𝐴 ⋔ 𝐵 is strict. As the bottom element of any power 𝐼 ⋔ 𝐵 is
pointwise, we are trying to check that (𝜆𝑥.⊥)†𝑢 = ⊥ for any 𝑢 : 𝐿𝐴. By Corollary 33,
it suffices to observe that (𝜆𝑥.⊥)†⊥ = ⊥ and (𝜆𝑥.⊥)† (𝜂𝐴𝑎) = (𝜆𝑥.⊥)(𝑎) = ⊥. □

Corollary 60. The lifting monad L is symmetric monoidal.

Proof. This is in fact equivalent to being commutative. □

Construction 61 (Commutator). The commutator 𝜅𝐴,𝐵 : 𝐿𝐴 × 𝐿𝐵 → 𝐿 (𝐴 × 𝐵) is
given by iterated (internal) Kleisli extension; the commutativity property ensures that it
doesn’t matter in which order these extensions are taken.

5.2 Smash products and the universal bistrict morphism
Lemma 62. The following are equivalent for a morphism of dcpos 𝑓 : 𝐴 × 𝐵 → 𝐶

where 𝐴 and 𝐵 are pointed:
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1. Any of the following diagrams commute:

𝐴 + 𝐵 𝐴 × 𝐵 𝐶
⊥ ◦ !𝐴+𝐵

[(1𝐴,⊥) | (⊥, 1𝐵)]

𝑓
(39)

𝐿 (𝐴 + 𝐵) 𝐴 × 𝐵 𝐶

⊥ ◦ !𝐿 (𝐴+𝐵)

[(1𝐴,⊥) | (⊥, 1𝐵)]†

𝑓
(40)

2. For any 𝑎 : 𝐴 and 𝑏 : 𝐵 we have 𝑓 (⊥, 𝑏) = 𝑓 (𝑎,⊥).

Proof. The last condition is immediately equivalent to Diagram 39 commuting. The
equivalence between Diagrams 39 and 40 is deduced from Corollary 33, noting that the
parallel maps in Diagram 40 are both strict. □

Lemma 63. The following are equivalent for a (not necessarily strict) morphism
𝑓 : 𝐴 × 𝐵→ 𝐶 of dcpos where 𝐴, 𝐵, and 𝐶 are pointed:

1. Any of the equivalent conditions of Lemma 62.

2. Either of the following diagrams commute:

𝐴 + 𝐵 𝐿 (𝐴 × 𝐵) 𝐶
⊥ ◦ !𝐴+𝐵

𝜂𝐴×𝐵 ◦ [(1𝐴,⊥) | (⊥, 1𝐵)]

𝑓 †
(41)

𝐿 (𝐴 + 𝐵) 𝐿 (𝐴 × 𝐵) 𝐶

⊥ ◦ !𝐿 (𝐴+𝐵)

𝐿 [(1𝐴,⊥) | (⊥, 1𝐵)]

𝑓 †
(42)

Proof. Diagram 39 commutes if and only if Diagram 41 commutes, by the unit law
for 𝐶 as a lifting algebra; for the same reason, Diagram 40 commutes if and only if
Diagram 42 commutes. □

Definition 64 (Bistrict morphism). Let 𝐴, 𝐵, and 𝐶 be pointed dcpos. A Scott–
continuous morphism 𝑓 : 𝐴 × 𝐵 → 𝐶 is called bistrict when any of the following
equivalent conditions hold:

1. The morphism 𝑓 : 𝐴×𝐵→ 𝐶 is strict and satisfies any of the equivalent conditions
of Lemmas 62 and 63.

2. For any 𝑎 : 𝐴 and 𝑏 : 𝐵 we have 𝑓 (⊥, 𝑏) = 𝑓 (𝑎,⊥) = ⊥.

Theorem 65 (The universal bistrict map). For any pointed dcpos 𝐴 and 𝐵, we may
define a pointed 𝐴 ⊗ 𝐵 equipped with a universal bistrict map ⊗𝐴,𝐵 : 𝐴× 𝐵→ 𝐴 ⊗ 𝐵, in
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the sense that any bistrict 𝑓 : 𝐴 × 𝐵→ 𝐶 factors uniquely through it by a unique strict
map 𝑓 : 𝐴 ⊗ 𝐵→ 𝐶 as depicted below:

𝐴 × 𝐵 𝐶

𝐴 ⊗ 𝐵

⊗𝐴,𝐵

𝑓

∃!
�̄�

(43)

Moreover, the following diagram is a coequaliser in dcppo:

𝐿 (𝐴 + 𝐵) 𝐴 × 𝐵 𝐴 ⊗ 𝐵

⊥ ◦ !𝐿 (𝐴+𝐵)

[(1𝐴,⊥) | (⊥, 1𝐵)]†

⊗𝐴,𝐵
(44)

Proof. We may compute desired coequaliser, as we have already shown in Corollary 54
that dcpoL = dcppo is cocomplete. The coequaliser map ⊗𝐴,𝐵 : 𝐴 × 𝐵 ↠ 𝐴 ⊗ 𝐵 is
bistrict by definition, as Diagram 44 is an instance of Diagram 40 from Lemma 62. The
unique factorisation condition of Diagram 43 is, then, precisely the universal property
of Diagram 44 as a coequaliser in dcppo. □

Corollary 66. The following are coequaliser diagrams in both dcppo and dcpo:

𝐿 (𝐴 + 𝐵) 𝐴 × 𝐵 𝐴 ⊗ 𝐵

⊥ ◦ !𝐿 (𝐴+𝐵)

[(1𝐴,⊥) | (⊥, 1𝐵)]†

⊗𝐴,𝐵
(44)

𝐿 (𝐴 + 𝐵) 𝐿 (𝐴 × 𝐵) 𝐴 ⊗ 𝐵

⊥ ◦ !𝐿 (𝐴+𝐵)

𝐿 [(1𝐴,⊥) | (⊥, 1𝐵)]

⊗†
𝐴,𝐵

(45)

The following are coequaliser diagrams in dcpo:

𝐴 + 𝐵 𝐴 × 𝐵 𝐴 ⊗ 𝐵
⊥ ◦ !𝐴+𝐵

[(1𝐴,⊥) | (⊥, 1𝐵)]

⊗𝐴,𝐵
(46)

𝐴 + 𝐵 𝐿 (𝐴 × 𝐵) 𝐴 ⊗ 𝐵
⊥ ◦ !𝐴+𝐵

[(1𝐴,⊥) | (⊥, 1𝐵)]

⊗†
𝐴,𝐵

(47)

Proof. We have seen in Corollary 52 that the forgetful functor 𝑈 : dcppo → dcpo
creates connected colimits; therefore, a coequaliser diagram dcppo is equally well a
coequaliser diagram in dcpo. Diagram 44 is therefore a coequaliser in both categories by
Theorem 65. That Diagrams 45 to 47 are all coequalisers follows from Lemma 63. □
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Lemma 67. Up to isomorphism, the lifting monad sends any cartesian product 𝐴× 𝐵 to
the smash product 𝐿𝐴×𝐿𝐵. In particular, the commutator 𝜅𝐴,𝐵 : 𝐿𝐴×𝐿𝐵→ 𝐿 (𝐴 × 𝐵)
is the universal bistrict map in the sense of Theorem 65.

Proof. It suffices to show that any bistrict map 𝑓 : 𝐿𝐴 × 𝐿𝐵 → 𝐶 extends uniquely
along 𝜅𝐴,𝐵 : 𝐿𝐴 × 𝐿𝐵 → 𝐿 (𝐴, 𝐵). We let 𝑓 : 𝐿 (𝐴 × 𝐵) → 𝐶 be the extension of
𝑓 ◦ 𝜂𝐴 × 𝜂𝐵 : 𝐴 × 𝐵→ 𝐶, which is automatically strict. Uniqueness of the extension is
deduced using Corollary 33. □

5.3 Bilinear morphisms and Seal’s general theory
Although we have developed smash products and their universal property (Section 5.2)
with respect to bistrict morphisms in the concrete, Seal [2013] has provided a general
theory for deducing tensorial structure from commutative monads. In this section,
we show that op. cit.’s notion of bilinear map coincides with our bistrict maps and,
moreover, that the tensor products of op. cit. satisfy the same universal property as our
smash product.

Definition 68 (Bilinear morphism, Seal [2013]). Let 𝐴, 𝐵, and 𝐶 be pointed dcpos.
A Scott–continuous morphism 𝑓 : 𝐴 × 𝐵 → 𝐶 is called bilinear when the following
diagram commutes:

𝐿𝐴 × 𝐿𝐵

𝐴 × 𝐵

𝛼𝐴 × 𝛼𝐵

𝐿 (𝐴 × 𝐵)

𝐶

𝜅𝐴,𝐵

𝑓 †

𝑓

(48)

Lemma 69. A morphism 𝑓 : 𝐴 × 𝐵→ 𝐶 is bistrict if and only if it is bilinear.

Proof. A bilinear map is clearly bistrict. Conversely, assume that 𝑓 : 𝐴 × 𝐵 → 𝐶

is bistrict. By Corollary 33, both of the embeddings [⊥ | 𝜂𝐴] : 1 + 𝐴 ↩↠ 𝐿𝐴 and
[⊥ | 𝜂𝐵] : 1 + 𝐵 ↩↠ 𝐿𝐵 are epimorphic, and therefore so is their cartesian product.
Therefore, it suffices to consider the restriction of Diagram 48 from Definition 68 along
[⊥ | 𝜂𝐴] × [⊥ | 𝜂𝐵] : (1 + 𝐴) × (1 + 𝐵) ↩↠ 𝐿𝐴 × 𝐿𝐵, or, equivalently, along each of
the following four embeddings:

(⊥,⊥) : 1 ↩→ 𝐿𝐴 × 𝐿𝐵 (49)
(𝜂𝐴,⊥) : 𝐴 ↩→ 𝐿𝐴 × 𝐿𝐵 (50)
(⊥, 𝜂𝐵) : 𝐵 ↩→ 𝐿𝐴 × 𝐿𝐵 (51)
(𝜂𝐴, 𝜂𝐵) : 𝐴 × 𝐵 ↩→ 𝐿𝐴 × 𝐿𝐵 (52)

From this reduction, it is easily seen that bistrictness implies bilinearity. □

Now we recall Seal’s construction of the tensor product.

28



Definition 70 (Seal [2013, §2.2]). The tensor product 𝐴⊠𝐵 of two pointed dcpos 𝐴 and
𝐵 is given by the following coequalier in dcppo, which exists by virtue of Corollaries 49
and 54:

𝐿 (𝐿𝐴 × 𝐿𝐵) 𝐿 (𝐴 × 𝐵) 𝐴 ⊠ 𝐵

𝜅
†
𝐴,𝐵

𝐿 (𝛼𝐴 × 𝛼𝐵)

𝑞𝐴,𝐵
(53)

Seal [2013] proves a universal property for the tensor product with respect to bilinear
morphisms.

Theorem 71 (Seal [2013]). The tensor product 𝐴 ⊠ 𝐵 represents bilinear maps in
the sense that for any bilinear morphism 𝑓 : 𝐴 × 𝐵 → 𝐶 there exists a unique linear
morphism 𝑓 : 𝐴 ⊠ 𝐵→ 𝐶 making the following triangle:

𝐿 (𝐴 × 𝐵) 𝐶

𝐴 ⊠ 𝐵

𝑞𝐴,𝐵

𝑓 †

∃!
�̄�

(54)

Moreover, let ⊠𝐴,𝐵 : 𝐴× 𝐵→ 𝐴⊠ 𝐵 be the composite 𝐴× 𝐵
𝜂𝐴×𝐵−−−−→ 𝐿 (𝐴 × 𝐵)

𝑞𝐴,𝐵−−−−→
𝐴⊠𝐵. Then for any linear morphism ℎ : 𝐴⊠𝐵→ 𝐶, the restriction ℎ◦⊠𝐴,𝐵 : 𝐴×𝐵→ 𝐶

is bilinear and induces ℎ in the sense that ℎ ◦ ⊠𝐴,𝐵 = ℎ.

Proof. This follows from Seal [2013, Lemma 2.3.3] via Corollary 58. □

In order to show that Seal’s tensor product satisfies the same universal property as
our smash product, we must deduce a slight reformulation of Theorem 71.

Lemma 72 (Universal bilinear map). The composite ⊠𝐴,𝐵 = 𝑞𝐴,𝐵 ◦ 𝜂𝐴×𝐵 : 𝐴 × 𝐵 →
𝐴 ⊗ 𝐵 is the universal bilinear map in the sense that any bilinear map 𝑓 : 𝐴 × 𝐵→ 𝐶

factors uniquely through it in dcppo as depicted below:

𝐴 × 𝐵 𝐶

𝐴 ⊠ 𝐵

⊠𝐴,𝐵

𝑓

∃!
�̄�

(55)

Proof. First of all, ⊠𝐴,𝐵 : 𝐴 × 𝐵 → 𝐴 ⊗ 𝐵 is indeed bilinear by the second part of
Theorem 71. That any bilinear map 𝑓 : 𝐴 × 𝐵→ 𝐶 factors uniquely through it follows
from the first part of Theorem 71 via Corollary 33. Indeed, we first let 𝑓 : 𝐴 ⊠ 𝐵→ 𝐶
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be the map determined by Theorem 71 as follows:

𝐿 (𝐴 × 𝐵) 𝐶

𝐴 ⊠ 𝐵

𝑞𝐴,𝐵

𝑓 †

�̄�

(56)

By Corollary 33, the diagram above commutes if and only if its restrictions along
⊥ : 1 → 𝐿 (𝐴 × 𝐵) and 𝜂𝐴×𝐵 : 𝐴 × 𝐵 commute. The former is automatic because all
maps in sight are strict; the latter is precisely the property of 𝑓 extending 𝑓 along
⊠𝐴,𝐵. □

Corollary 73. There exists a unique bilinear / bistrict isomorphism 𝐴 ⊠ 𝐵 → 𝐴 ⊗ 𝐵

from Seal’s tensor product to our smash product factoring the universal bistrict map
through the universal bilinear map, and vice versa:

𝐴 × 𝐵 𝐴 ⊗ 𝐵

𝐴 ⊠ 𝐵

⊠𝐴,𝐵

⊗𝐴,𝐵

⊗ 𝐴
,𝐵

𝐴 × 𝐵 𝐴 ⊠ 𝐵

𝐴 ⊗ 𝐵

⊗𝐴,𝐵

⊠𝐴,𝐵

⊠ 𝐴
,𝐵

(57)

Proof. This is an immediate consequence of the fact that bilinear and bistrict map
coincide (Lemma 69). □

5.4 Symmetric monoidal structure of the smash product
The smash product of pointed dcpos from Section 5.2 extends to a full symmetric
monoidal structure on dcpoL = dcppo = ipo with identity 𝐼 = 𝐿1; this result can be
taken off the shelf from Seal [2013, Theorem 2.5.5], in combination with our own result
𝐴 ⊗ 𝐵 = 𝐴 ⊠ 𝐵 from Corollary 73.

5.5 Symmetric monoidal structure of the lifting adjunction
Seal [2013] shows that under assumptions that we have established in this paper for the
lifting monad L and its category of algebras dcpoL = dcppo = ipo, the Eilenberg–Moore
adjunction 𝐿 ⊣ 𝑈 : dcppo→ dcpo is monoidal: the left adjoint is strong monoidal (cf .
our own Lemma 67) and the right adjoint is lax monoidal.

In this section, we extend the result of op. cit. in our specific case to show that
𝐿 ⊣ 𝑈 : dcppo→ dcpo is symmetric monoidal. We first recall the braiding 𝛽⊗

𝐴,𝐵
: 𝐴 ⊗

𝐵 → 𝐵 ⊗ 𝐴 of the smash product in dcppo in terms of the braiding of the Cartesian
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product on dcpo:

𝐴 × 𝐵 𝐵 × 𝐴 𝐵 ⊗ 𝐴

𝐴 ⊗ 𝐵

⊗𝐴,𝐵

𝛽×
𝐴,𝐵 ⊗𝐵,𝐴

∃!𝛽
⊗
𝐴,
𝐵

(58)

Lemma 74. The functor 𝐿 : dcpo→ dcppo is symmetric monoidal in the sense that the
following diagram commutes in dcppo for dcpos 𝐴, 𝐵, 𝐶:

𝐿𝐴 ⊗ 𝐿𝐵

𝐿 (𝐴 × 𝐵)

𝜅𝐴,𝐵

𝐿𝐵 ⊗ 𝐿𝐴

𝐿 (𝐵 × 𝐴)

𝛽⊗
𝐴,𝐵

𝜅𝐵,𝐴

𝐿 (𝛽×
𝐴,𝐵
)

(59)

Proof. To check that Diagram 59 commutes, it suffices to consider its restriction along
the universal bistrict map ⊗𝐿𝐴,𝐿𝐵 : 𝐿𝐴 × 𝐿𝐵→ 𝐿𝐴 ⊗ 𝐿𝐵. Therefore, to check that the
lower inner square commutes in Diagram 60 below, it suffices to check that the outer
square commutes in the sense that 𝐿 (𝛽×

𝐴,𝐵
) ◦ 𝜅𝐴,𝐵 = 𝜅𝐵,𝐴 ◦ 𝛽×𝐿𝐴,𝐿𝐵

:

𝐿𝐴 ⊗ 𝐿𝐵

𝐿 (𝐴 × 𝐵)

𝜅𝐴,𝐵

𝐿𝐵 ⊗ 𝐿𝐴

𝐿 (𝐵 × 𝐴)

𝛽⊗
𝐴,𝐵

𝜅𝐵,𝐴

𝐿 (𝛽×
𝐴,𝐵
)

?

𝐿𝐴 × 𝐿𝐵 𝐿𝐵 × 𝐿𝐴

⊗𝐿𝐴,𝐿𝐵

𝛽×
𝐿𝐴,𝐿𝐵

⊗𝐿𝐵,𝐿𝐴

𝜅𝐵,𝐴𝜅𝐴,𝐵 (60)

By Corollary 33 and the fact that all maps in sight are strict, it suffices to consider
just three cases:

𝐿 (𝛽×𝐴,𝐵) (𝜅𝐴,𝐵 (𝜂𝐴𝑥,⊥)) = 𝐿 (𝛽×𝐴,𝐵)⊥
= ⊥
= 𝜅𝐵,𝐴(⊥, 𝜂𝐴𝑥)
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= 𝜅𝐵,𝐴(𝛽×𝐿𝐴,𝐿𝐵 (𝜂𝐴𝑥,⊥))
𝐿 (𝛽×𝐴,𝐵) (𝜅𝐴,𝐵 (⊥, 𝜂𝐵𝑦)) = 𝐿 (𝛽×𝐴,𝐵)⊥

= ⊥
= 𝜅𝐵,𝐴(𝜂𝐵𝑦,⊥)
= 𝜅𝐵,𝐴(𝛽×𝐿𝐴,𝐿𝐵 (⊥, 𝜂𝐵𝑦))

𝐿 (𝛽×𝐴,𝐵) (𝜅𝐴,𝐵 (𝜂𝐴𝑥, 𝜂𝑏𝑦)) = 𝐿 (𝛽×𝐴,𝐵) (𝜂𝐴×𝐵 (𝑥, 𝑦))
= 𝜂𝐵×𝐴(𝛽×𝐴,𝐵 (𝑥, 𝑦))
= 𝜂𝐵×𝐴(𝑦, 𝑥)
= 𝜅𝐵,𝐴(𝜂𝐵𝑦, 𝜂𝐴𝑥)
= 𝜅𝐵,𝐴(𝛽×𝐿𝐴,𝐿𝐵 (𝜂𝐴𝑥, 𝜂𝐵𝑦)) □

Lemma 75. The forgetful functor 𝑈 : dcppo → dcpo is symmetric monoidal in the
sense that the following diagram commutes in dcpo for pointed dcpos 𝐴, 𝐵, 𝐶:

𝐴 × 𝐵

𝐴 ⊗ 𝐵

⊗𝐴,𝐵

𝐵 × 𝐴

𝐵 ⊗ 𝐴

𝛽×
𝐴,𝐵

⊗𝐵,𝐴

𝛽⊗
𝐴,𝐵

(61)

Proof. That Diagram 61 commutes is in fact the defining property of the braiding 𝛽⊗
𝐴,𝐵

as constructed in Diagram 58. □

Corollary 76. The adjunction 𝐿 ⊣ 𝑈 : dcppo → dcpo is symmetric monoidal in the
sense that 𝐿 : dcpo→ dcppo is strong symmetric monoidal and 𝑈 : dcppo→ dcpo is
lax symmetric monoidal.

Proof. By Lemmas 74 and 75 via Seal [2013, Remark 2.7.3]. □

5.6 Closed structure of the lifting adjunction
Kock [1971] has provided a method to lift the closed structure of dcpo to dcpoL by
means of an equaliser of dcpos. Of course, the forgetful functor 𝑈 : dcppo→ dcpo is
monadic (Corollary 49) and so creates limits; therefore we can slightly reformulate the
construction of op. cit. by computing an equaliser of pointed dcpos directly.

Definition 77. Let 𝐴 and 𝐵 be pointed dcpos. We define the linear function space
𝐴 ⊸ 𝐵 to be the following equaliser in dcppo, where 𝜎𝐴,𝐵 : 𝐵𝐴→ 𝐵𝐿𝐴 is the internal
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extension map induced by the strength of 𝐿 and the algebra structure of 𝐵:

𝐴 ⊸ 𝐵 𝐵𝐴 𝐵𝐿𝐴
𝐵𝛼𝐴

𝜎𝐴,𝐵

(62)

The results of Kock [1971] then imply that the adjunction 𝐿 ⊣ 𝑈 : dcppo→ dcpo is
closed with respect to the linear function space.

Definition 78. Let 𝐴 and 𝐵 be pointed dcpos. We define the strict function space
𝐴⇒⊥ 𝐵 to be the following equaliser in dcppo:

𝐴⇒⊥ 𝐵 𝐵𝐴 𝐵
𝐵⊥

⊥◦!𝐵𝐴

(63)

Lemma 79. The strict and linear function spaces coincide.

Proof. We will show that for any strict map 𝑓 : 𝐶 → 𝐵𝐴, we have 𝐵⊥ ◦ 𝑓 = ⊥ ◦ !𝐵𝐴 ◦ 𝑓
if and only if 𝐵𝛼𝐴 ◦ 𝑓 = 𝜎𝐴,𝐵 ◦ 𝑓 . Fixing 𝑥 : 𝐶, we must check that 𝑓 𝑥⊥ = ⊥ if and
only if 𝑓 𝑥 ◦ 𝛼𝐴 = 𝜎𝐴,𝐵 ◦ 𝑓 𝑥. These are equivalent by Corollary 33 and the unit laws
for algebras. □

By virtue of Lemma 79, we will freely write 𝐴 ⊸ 𝐵 for both the linear and strict
function spaces.

Lemma 80. For any pointed dcpo 𝐴, we have an adjunction − ⊗ 𝐴 ⊣ 𝐴 ⊸ − on dcppo.

Proof. Fix 𝑓 : 𝐶 ⊗ 𝐴 → 𝐵 for some bistrict 𝑓 : 𝐶 × 𝐴 → 𝐵. By definition, the mate
𝑓 ♯ : 𝐶 → 𝐵𝐴 in − × 𝐴 ⊣ (−)𝐴 is strict and moreover satisfies the defining property
of Diagram 63, so we may factor 𝑓 ♯ : 𝐶 → 𝐵𝐴 through 𝐴 ⊸ 𝐵 ↣ 𝐵𝐴 by some
unique strict map 𝑓 ♯ : 𝐶 → 𝐴 ⊸ 𝐵. It can be seen that this assignment is naturally
bĳective. □
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