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Unlike unitary dynamics, measurements of a subsystem can induce long-range entanglement via
quantum teleportation. The amount of measurement-induced entanglement or mutual information
depends jointly on the measurement basis and the entanglement structure of the state (before
measurement), and has operational significance for whether the state is a resource for measurement-
based quantum computing, as well as for the computational complexity of simulating the state
using quantum or classical computers. In this work, we examine entropic measures of measurement-
induced entanglement (MIE) and information (MII) for the ground-states of quantum many-body
systems in one- and two- spatial dimensions. From numerical and analytic analysis of a variety of
models encompassing critical points, quantum Hall states, string-net topological orders, and Fermi
liquids, we identify universal features of the long-distance structure of MIE and MII that depend only
on the underlying phase or critical universality class of the state. We argue that, whereas in 1d the
leading contributions to long-range MIE and MII are universal, in 2d, the existence of a teleportation
transition for finite-depth circuits implies that trivial 2d states can exhibit long-range MIE, and the
universal features lie in sub-leading corrections. We introduce modified MIE measures that directly
extract these universal contributions. As a corollary, we show that the leading contributions to
strange-correlators, used to numerically identify topological phases, are in fact non-universal in two
or more dimensions, and explain how our modified constructions enable one to isolate universal
components. We discuss the implications of these results for classical- and quantum- computational
simulation of quantum materials.

I. Introduction

Entanglement is a fundamentally quantum phe-
nomenon, that serves as the resource for quantum com-
putation, and offers a powerful lens through which to
classify ground-state and dynamical phases and criti-
cal phenomena in quantum many-body systems. The
universal structure of entanglement in quantum many-
body ground-states offers a quantum information the-
oretic fingerprint of various quantum orders and crit-
ical phenomena. Since local Hamiltonian or quantum
circuit dynamics can generate and propagate entangle-
ment only at a finite speed, the long distance structure
of entanglement is stable under such dynamics and is
therefore useful for characterizing and classifying quan-
tum phases [1, 2]. By contrast, quantum measurement,
an inherently stochastic and non-unitary operation, can
instantly generate non-local entanglement – as famously
illustrated by quantum teleportation. This capability al-
lows short-depth circuits with measurements to generate
certain types of long-range entangled states [3–10]. Fur-
thermore, pre-existing entanglement in many-body states
can also serve as a computational resource [11–16], and
there is a close connection between the universal phase
structure of the pre-measured state and its computa-
tional power [17, 18].

In this work, we investigate the connections between
the phase of a various quantum many-body ground-states
in 1d and 2d, and the amount of measurement-induced

long-range entanglement between distant regions, quan-
tified by two related quantities: measurement-induced
entanglement [19] (MIE) and measurement-induced in-
formation (MII), which we define below. The paper is
organized as follows. We begin by reviewing and dis-
cussing the operational significance of MIE and MII and
related quantities for various classical and quantum com-
putational tasks. We then conduct a numerical and an-
alytic investigation of the universal features of MIE and
MII in a variety of 1d and 2d phases of matter and crit-
ical points through a mixture of numerical and analytic
methods. We focus on states that have an efficient classi-
cal description through exactly solvable models, includ-
ing free-fermion descriptions and stabilizer states. De-
spite their computational simplicity, this class of states
encompasses a wide range of long-range entangled states
including quantum critical points, topologically ordered
states, and Fermi liquids, and provides a rich set of ex-
amples.

In 1d, we show that the leading long-range contribu-
tion to MIE and MII have universal scale-invariant be-
havior at both conformal and non-conformal (strongly-
disordered) quantum critical points. By contrast, in 2d
(or higher-d), we argue that the leading contribution
to MIE is generally non-universal, due to the existence
of long-range measurement-induced teleportation prop-
erties of short-depth 2d circuits, and discuss implications
for other closely-related quantities such as strange cor-
relators [20]. Despite this, we find that the sub-leading
corrections to MIE and MII do exhibit universal features
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of topological orders and Fermi surfaces, and define mod-
ified notions of MIE that can directly extract these uni-
versal components.

A. Definitions

Measurement induced entanglement (MIE) is a tripar-
tite measure of how measurements affect the entangle-
ment structure of a state, |ψ⟩. Partition space into three
regions: A, B, and their complement M = (AB)c. Con-
sider measuring M in a fixed basis b with outcome m,
which results in the post-measurement state |ψm⟩ which
occurs with Born probability pm. Then, we define the
measurement induced entanglement, MIEb(A,B) of re-
gion A to be the entanglement entropy S(A)[|ψm⟩] of the
post-measured state averaged over measurements:

MIEb(A,B)[|ψ⟩] =
∑
m

pmS(A)[|ψm⟩]. (1)

Here we have included a subscript b to emphasize that
the result depends (often qualitatively) on the choice
measurement basis. We will occasionally drop the
measurement-basis subscript where it is clear from con-
text.

Despite its title, MIE, does not necessarily reflect en-
tanglement that is “induced” by the measurement, but
also may capture preexisting entanglement in the initial
state before measurement. To isolate the effects of mea-
surement, we also define the measurement induced infor-
mation (MII):

MIIb(A,B) =
∑
m

pmI(A,B)[|ψm⟩]− I(A,B)[|ψ⟩] (2)

where mutual information, I, is defined as:

I(A,B) = S(A) + S(B)− S(AB). (3)

Unless otherwise specified, we will consider the case
where ABM is in a pure state, in which case the average
mutual information after measurement is simply related
to the MIE as

∑
m pmI(A,B)[|ψm⟩] = 2MIE(A,B).

MII probes the average amount of mutual information
between A and B that is induced by the measurement,
but did not exist before the measurement. Note that this
quantity can be either positive, zero, or negative depend-
ing on the state and measurement basis. Measurements
can increase information, resulting in positive MII, for
example, when bipartite information purely between A
and M and M and B gets “teleported” by the measure-
ment into entanglement between A and B. A simple
example of this arises in a system with four site spin-1/2
chain, with A = {1}, M = {2, 3} and B = {4}, |ψ⟩ is
a product of singlets on sites 1,2 and 3,4 respectively,
and M is measured in the Bell basis of sites 2, 3. How-
ever, measurements can also reduce or collapse entan-
glement. A simple example is a three qubit GHZ state:

(|000⟩+ |111⟩)/
√
2 which has I = 2 log 2 information be-

tween any pair of qubits before measurement, but col-
lapses to a product state upon measuring any of the three
qubits in the computational (Z) basis: MIIZ = −2 log 2
(whereas MIIX = 0 for this example).

B. Significance for quantum and classical
computing

In quantum information processing settings, MIE and
closely-related quantities characterize how pre-existing
quantum correlations in the state can be used as a re-
source for generating entanglement by measurements.
MIE and MII also have implications for the quantum
and classical complexity of describing a quantum state.
Here, we briefly review and describe the operational sig-
nificance of measures of measurement-induced entangle-
ment for computational tasks.
a. Localizable entanglement: The localizable en-

tanglement (LE) [21] is defined as the maximum
over measurement bases of the MIE: LE(A,B) =
supb MIEb(A,B), for the special case where regions A
and B are single sites. LE upper-bounds correlation func-
tions, thereby enabling the definition of an entanglement
length scale in many-body systems that can probe non-
classical correlations and has an operational meaning for
contexts such as building quantum repeaters for quantum
networks where one wishes to concentrate entanglement
of a multipartite state into two subsystems [21]. The
maximization in the definition of LE makes it difficult to
compute, and it is most useful for establishing bounds.
b. Measurement based quantum computing (MBQC):

MIE also partially characterizes the utility of a state for
MBQC [22], where (adaptive) measurements on an en-
tangled resource state are used to propagate and pro-
cess quantum information. Long-range MIE between dis-
tant regions A,B of a state is clearly a necessary con-
dition for having a measurement-propagable computa-
tional subspace in MBQC. However, long range MIE is
not a sufficient condition for MBQC as it does not ad-
dress whether universal computations can be performed
on the propagated information via adaptively chosen se-
quence of measurements in regionM . For example, Haar
random states have long range MIE between any subre-
gions A,B, yet are well-known to be useless for MBQC
based on single qubit measurements [23, 24].
c. Measurement-induced phase transitions: Mea-

surements can also induce phase-transitions in the post-
measured trajectories, |ψm⟩ [25–33]. In particular, 2d
random circuits were shown to exhibit a phase transi-
tion between short- and long- range MIE tuned by the
circuit depth [34] (the teleportation fidelity order pa-
rameter used in this work is precisely the same as MIE
and MII). This phenomenon was dubbed a teleportation
phase transition, and has since been realized experimen-
tally in superconducting qubit quantum processors [35].
The existence of long-range MIE in “trivial” states of
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matter (related by a finite-depth circuit to an unentan-
gled product state) will play an important role in our
discussion of universality of MIE and MII below. Analo-
gous to the absence of symmetry-breaking order in low-
dimensions, this teleportation phase transition is believed
to be possible only in two or more spatial dimensions for
finite-depth local circuits.

d. Sign problem for Monte Carlo sampling: Recent
work [19] showed that a sign problem for Monte Carlo
sampling amplitudes of a state in the b basis arises when
the MIE is larger than the pre-measurement mutual in-
formation: MIEb(A,B) > I(A,B)[|ψ⟩]. We note that
MIE(A,B) − I(A,B) differs from MII since for a pure
state of AB I(A,B) = 2S(A) = 2S(B). This observation
directly relates the MIE to the complexity of classical
simulations of quantum states.

e. Strange correlators: MIE also arise in analytic
and numerical probes of topology of a state that arise
in the so-called strange correlators [20]:

⟨ψm|OAOB |ψ⟩
⟨ψm|ψ⟩

(4)

where OA,B are (charged) local operators in regions A,B
respectively, and |ψm⟩ is a product state, for exam-
ple given by the result of measuring the system in a
given single-site basis. In a path integral representation,
strange correlators for topological states |ψ⟩ are related
to correlators of OA, OB at the edge of |ψ⟩, and hence
probe the presence of topological edge modes. Just as
ordinary mutual-information between regions A and B
sets an upper bound for correlations between local oper-
ators in these regions, the MIE upper bounds the average
strange correlators of |ψm⟩ (See Appendix D). Below, we
will show that MIE and conventionally-defined strange-
correlators are potentially dominated by non-universal
contributions in two and higher dimensions, and intro-
duce modified definitions of these that extract the leading
universal components.

f. Complexity of quantum and classical tensor net-
work calculations: Tensor network states (TNS) provide
efficient compressed representations of low-entangled
states, such as the ground states of many local Hamil-
tonians. TNS wave-function amplitudes are expressed
as a contraction of virtual bond degrees of freedom:
⟨s1, s2, . . . sN |Ψ⟩ = C [T s1T s2 . . . T sN ], where T s

ijk... are
tensors with s representing the physical degree of free-
dom on each site, i, j, k, · · · = 1 . . . χ representing the
virtual bond space, and C denoting summing over vir-
tual indices. As explained below, the MIE structure of
a state relates to measurement-induced phase transitions
(MIPTs) in the bond-space of certain tensor network de-
scriptions of the state, which informs both the design
principles for quantum circuit-based tensor network cal-
culations on quantum processors, and also the classical
complexity of computing properties of tensor network
states.

Classical [36] and quantum-circuit based [37] meth-
ods for sampling from tensor network state (TNS) wave-

functions often involve simulating the transfer-matrix
“dynamics” of the virtual (bond) space of a codimension-
one subsystem. For example a standard method to con-
tract 2d TNS is to represent the first row of the TNS
as a 1d matrix product state (MPS) in bond-space, and
contract the network by evolving this MPS under the
action of the row transfer matrices. For isometric TNS
(isoTNS), quantum algorithms for materials simulation
have also been introduced [38] and demonstrated [39],
in which quantum circuit dynamics together incorpo-
rating mid-circuit measurements are used to simulate
the non-unitary transfer matrix dynamics. In this con-
text, the exponential of the MIE between distant co-
dimension-one slices, A,B of the TNS reflects the typi-
cal classical memory to sample wave-function amplitudes
⟨s1, s2, . . . sN |Ψ⟩, with s1 . . . sN representing the mea-
surement outcomes. Similarly, for isoTNS, the MIE it-
self represents the average (over values s1, . . . sN ), quan-
tum resources needed to sample wave-function ampli-
tudes with a quantum computer.

Further, when for TNS with spatial dimension
larger than one, the transfer matrix for calculating
⟨s1, s2, . . . sN |Ψ⟩ involves dynamics of a many-body
system post-selected on measurement outcomes s1...N ,
which may exhibit distinct phases with area- or volume-
law entanglement (with respect to the transfer-matrix
dimension), that are separated by MIPTs [34, 40, 41].
These MIPTs represent a classical computational com-
plexity phase transition in the difficulty of contracting
the TNS. We note that while such complexity phase
transitions may arise for sampling wave-function am-
plitudes or related global properties such as strange-
correlators or wave-function overlaps, for many practical
purposes one is interested mainly in correlation functions
of local observables that have recently been argued to
not have a complexity phase transition for fixed bond-
dimension [42].

C. Universal structure of MIE

These connections motivate the need to character-
ize the universal features of MIE and MII in quantum
many-body states, particularly the ground-states of local
Hamiltonians. For example, for short-range entangled
states the MBQC power is closely connected to the un-
derlying symmetry and topology of the phase to which
the state belongs. Moreover, in quantum simulation al-
gorithms based on classical or quantum tensor network
methods, such relations could reveal how the properties
(symmetry, topology, correlation length, operator scaling
dimensions, etc...) of a state that one wishes to simulate
inform the circuit design principles for its quantum ten-
sor network representation, or the complexity to perform
calculations with classical tensor network methods.

Specifically, we aim to understand: what features of
MIE and MII for ground-states are universal : i.e. which
are insensitive to perturbations to the parent Hamilto-
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nian that do not drive a phase transition, or equivalently,
which cannot be altered by a short-depth quantum cir-
cuit, and how are these measurement-induced entangle-
ment features related to the phase or universality class of
the state in question. To this end, we explore, through
analytic and numerical methods, the universal structure
of MIE and MII in a variety of states with various types
of topological orders or criticality. In particular, we em-
phasize the difference between the universality in 1d and
higher dimensions, where a measurement-induced entan-
glement phase transition can occur at a finite circuit
depth, while pre-measurement states remain in the same
phase (See Sec.III A). In the presence of such nonuni-
versal long-range behavior, the universal properties only
show in the subleading contribution. The main results of
the paper are summarized in the Table I.

System I(A,B) Basis b MIEb(A,B)

1d SPT short-ranged
symmetry
preserving

logD

XX model η0.5 [43] σz η0.31

Random singlet r−2 [44] Bell log 2 or r−0.34

Random MERA
with large D

η̃logD Arbitrary
local

Extensive

Chern insulator short-ranged
occupation
number

r−0.9

2d metal r−2 [45]
occupation
number

r−0.23

Toric code short-ranged σz or σx log 2

TABLE I. Mutual information and MIE behaviors in differ-
ent systems. D refers to the dimension of edge states for 1d
symmetry-protected topological (SPT) phases and the bond
dimension for random multi-scale entanglement renormaliza-
tion ansatz (MERA). For the XX model and random singlet
phase, the configuration of MIE is shown in the inserted figure
of Fig. 1(a) and Fig. 2(a) respectively with η = x12x34/x13x24

and r = x23. The configuration for the random MERA is
given by Fig. 3 with η̃ = x12x34/x23x14. The configuration
for the Chern insulator and 2d metal is given by Fig. 6(b) ,
and the layout for toric code is given by Fig. 9.

The paper is structured as follows. In Sec. II we explore
the universal behavior of MIE and MII in 1d ground-
states of both gapped, short-range correlated systems
and gapless, critical systems. In Sec. III we discuss the
measurement-induced entanglement phase transition oc-
curing at a finite circuit depth and potential adjustment
of the definition of MIE and MII. Moreover, we study the
universal parts of MIE and MII in topological phases and
metals.

II. MIE in 1d systems

We begin by exploring universal properties of MIE and
MII in 1d ground-states of both gapped, short-range cor-
related systems and gapless, critical systems. We review

known structure of MIE for gapped symmetry-protected
topological phases [17, 46], and selected 1 + 1d confor-
mal field theories (CFTs) were previously explored [19],
add additional examples of conformal and non-conformal
critical points, and investigate the stability to irrelevant
perturbations.

A. Gapped 1d states

Absent fine-tuning, typical gapped 1d states and
generic measurement bases exhibit short range
MIE(A,B) that decays exponentially in distance between
A and B. This follows from the MPS representation
of gapped, 1d states: ⟨s1, . . . sN |Ψ⟩ = trAs1As2 . . . AsN ,
where As

i,j are χ × χ matrices. For unique gapped
ground-states of local Hamiltonians, the matrices A
satisfy an injectivity property [47], which guarantees
short-range correlations.
A notable exception arises for the symmetry-protected

topological (SPT) phases with measurements taken in
an appropriate symmetry-preserving basis [46], which ex-
hibit long-range limxA,B→∞ MIE(A,B) = logD where D
is the dimension of the SPT’s edge states, and xA,B is the
distance between regions A,B. This property is directly
related to the fact that 1d SPTs can act as good “quan-
tum wires” for MBQC (i.e. are capable of coherently
storing a quDit in the MBQC context). By contrast, as
argued in [46], measurements in generic bases lead to ex-
ponentially decaying MIE. Viewed from the perspective
of the MPS transfer matrix dynamics, this short-range
MIE results from mixing between the projective- and
ordinary/linear- (a.k.a. “junk”) symmetry blocks of of
the bond-space. We note that, despite this short range
MIE for general measurement bases, it has been shown
that generic MBQC operations can be performed with
arbitrary target fidelity by splitting a MBQC gate into
many small operations [17], implemented by a gradually-
evolving (and adaptively-chosen) measurement bases.

B. Gapless or Critical 1d states

We next turn to gapless critical states with emergent
conformal invariance, i.e. which are described in the con-
tinuum limit by a conformal field theory (CFT). Pre-
vious numerical investigations on select critical states
of Ising-like spin chains using density matrix renormal-
ization group [19] demonstrated that MIE of regions
A = [x1, x2], B = [x3, x4], depend only on the cross-
ratio:

η = x12x34/x13x24, (5)

and decayed as ηα for small η (i.e. distance between
intervals much larger than interval size).
While suggestive power-law decaying behavior does

not necessarily imply universality. For example, there
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FIG. 1. Data collapse of MIE in XX chain versus cross ra-
tio η = x12x34/x13x24 with fill factor (a) nf = 0.5 and (b)
nf = 0.375. Inserted figure in (a) shows the geometry of MIE
regions where measured region is in black. Data are averaged
over 106 samples.

are other closely-related setups in which non-universal
power-law behavior can arise. Namely, Ref. [48], ob-
served power-law dependence in Loschmidt echo of a
CFT with a random time-dependent noise applied to a
boundary, where the power was continuously tuned by
non-universal parameters of the noise. On its face, this
problem appears very different, yet, it is described by
a very-similar field theory construction as MIE. Specifi-
cally, a path-integral description Loschmidt echo for the
stochastically-driven boundary CFT is related by a con-
formal mapping to the path integral setup for calculating
a second Renyi entropy version a forced-MIE in which
the measurement outcomes are “forced” to be equal to
the stochastic boundary drive. A potentially important
difference between the average MIE and this stochastic
boundary drive, is that, in the MIE, the averaging is
weighted by the Born probability of the measurement
outcomes, whereas in the stochastic drive setting, it is
externally imposed by the drive. Does this weighting
by Born probabilities restore universality? Or could it
be that the observed power-law decays of MIE for CFT
states is more akin to the non-universal behavior ob-
served in the driven boundary CFT?

II.B.1) XX chain — To investigate this question, we
numerically study the MIE of an XX spin chain with
periodic boundary condition:

HXX =
∑
i

J(σx
i σ

x
i+1 + σy

i σ
y
i+1) (6)

which can be mapped, by a Jordan-Wigner (JW) trans-
formation, to a free fermion chain with nearest-neighbor
hopping J at half-filling, and exhibits Luttinger liquid
ground-state described by a free-boson CFT. Specifically
we consider the ferromagnetic interaction J = − 1

2 , and
then the Hamiltonian in free fermion language takes the
form

H = −
∑
i

(
c†i ci+1 + c†i+1ci

)
+ const. (7)

with peridoic (antiperiodic) boundary condition when
the total number of fermion is odd (even). For the free
fermion systems, the single orbital measurements (σz-
basis measurements in the spin picture) can be imple-

mented based on correlation matrix Cij = ⟨c†i cj⟩ (See
Appendix A). The correlation matrix for the ground state
of Hamiltonian in Eq. (7) is given by (See Appendix B
for the derivation):

Cij =
sinπnf (i− j)

L sin π(i−j)
L

, (8)

where nf is the fermion filling factor, which is 0.5 when
there is no external field. In Fig. 1 (a) we show the
data collapse of MIE for L = 128 and L = 256 with η
over several orders of magnitude, giving α ≈ 0.3, which
is much smaller the α = 2. in the forced measurement
case [49]. Note that in the cross ratio, the finite-size effect
has been taken into account by replacing xij = |xj − xi|
with the chord length L

π sin
(

π|xj−xi|
L

)
.

To test the universality of power-law relation observed
in MIE, we perturb the idealized XX model with chemi-
cal potential µ

∑
i σ

z
i , which modifies the filling factor to

nf = arccosµ
π and Eq. (8) still holds. In Fig. 1 (b) the

data collapse of MIE with similar power-law exponent in-
dicates the universality of MIE. On the other hand, the
mutual information from 1 + 1d CFT calculation scales
as ∼ η

1
2 at the small η limit [43], thus MII is positive

and dominated by the measurement-induced part at the
large distance limit.
For the measurement bases, such as σx, that do not

conserve the fermion parity, the method in Appendix A
becomes ineffective. In Appendix C, we apply the density
matrix renormalization group (DMRG) method to simu-
late MIE of both the XX model in the σx basis and XXZ
model in the σz basis for smaller system sizes (L = 48 and
L = 64). A similar exponent α ≈ 0.3 is found for MIEσx

,
while for the XXZ model the exponent α increases along
with the increasing anisotropic interaction parameter ∆,
which is consistent with the analytically understood in-
crement of α in the mutual information [43].
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50 100 150 200 250
r

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000
n A

B,
M

n A
B

(a)

|A|=|B| = 3
|A|=|B| = 5
|A|=|B| = 7

102

r

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

n A
B,

M
n A

B

(b)

|A|=|B| = 2
|A|=|B| = 4
|A|=|B| = 6

r 0.34

FIG. 2. Number of measurement-induced Bell pairs in a ran-
dom singlet state between A and B with x23 = x14 = r for (a)
odd |A| = |B| and (b) even |A| = |B| (geometry of the system
is shown in the inserted figure of (a)). Data are averaged over
106 random singlet configurations.

II.B.2) Random singlet phase — Phase transitions
and critical phenomena in 1d disordered systems often ex-
hibit a flow to so-called infinite randomness fixed points
in which the long-distance low-energy behavior are gov-
erned by rare-region effects leading to slow-glassy dynam-
ics, strong differences between average and typical corre-
lation functions [50, 51]. A classic example arises in a 1d
random antiferromagnetic Heisenberg spin- 12 chain:

H =
∑
i

JiSi · Si+1, (9)

where Ji ∈ [0, J ] are random, and identically and inde-
pendently distributed for each bond. Up to RG-irrelevant
local dressing from quantum fluctuations, the ground-
state of this model is a random singlet (RS) state in which
each spin is locked into a singlet state with an another
partner. The distance r between a singlet pair satisfies
the distribution ∼ 1/r2. The entanglement in these long
range singlets produce a log-violation of area-law with

single-region entanglement is proportional to the num-
ber of singlets starting from an interval A of length l and
terminating elsewhere [52]:

S(A) =
log 2

3
log l + k (10)

where k is some non-universal constant. Similarly, the
mutual information between disjoint intervals A and B is
proportional to the number of singlets spanning between
A and B [44]:

I(A,B) = − log 2

3
log(1− η), (11)

where η is the cross ratio defined in Eq. (5). For the case
small intervals A and B separated by a large distance r,
I(A,B) scales as ∼ 1/r2.
Now we consider the MIE and MII for such a RS state

between two pre-measured disjoint intervals A and B.
Measurement in any product-state basis (e.g. the Sz

basis) collapses the entanglement from all singlets be-
tween A/B and M . The only surviving entanglement
arises from singlets that directly connected A and B
in the pre-measured state, resulting in MIESz (A,B) =
I(A,B) [|ψ⟩] /2 and MIISz (A,B) = 0.
On the other-hand, measurement in the Bell basis thus

has the effect of “teleporting” singlets between A/B and
M into Bell-pairs in A∪B, leaving local Bell-pairs in M .
We denote the number of Bell pairs connecting regions
A and B by nA,B . Then the MII for Bell-basis mea-
surements of the random singlet state is proportional to
the number of Bell pairs added to A,B by measurement:
MIIBell = 2 log 2(nAB,M−nA,B). Specifically we consider
the Bell measurements on nearest-neighbor spin pairs in a
measurement region containing an even number of spins.
For the simplest case, i.e. the un-measured regions A and
B only contain single sites. In this case: nAB,M has to
be 1 since all other sites are paired after Bell measure-
ments and no existing pair can be eliminated. In result,
MIEBell = log 2 and limL→∞ MIIBell = 2 log 2. The sim-
ilar long range behavior is expected for odd number of
|A| and |B| (for random singlets, we have assumed to-
tal system size is even), which is numerically verified in
Fig. 2(a). However, for the cases A and B containing
even number of site, there is no guarantee for the for-
mation of long-range Bell pairs. Instead, measurements
can either teleport an A/M singlet into an A/B singlet
contributing to MII, or they might teleport the A/M sin-
glet into a local singlet with both spins in A, which does
not contribute to MII. The ratio of these two possibil-
ities depends in a complicated fashion on the disorder
configuration and geometry of the regions, but neverthe-
less yields a universal scaling form. To investigate it, we
perform a numerical calculation using the strong-disorder
renormalization group method. We start from a random
Heisenbeg Hamiltonain and apply Ma–Dasgupta rule for
the renormalization of the strongest bond until obtaining
a random-singlet ground state. Subsequently, we perform
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FIG. 3. (Left) Schematic figure for MERA tensor networks;
(Right) Mapped statistical mechanics model after Haar ran-
dom average. Mini-cut domain wall is indicated by the orange
wave line.

Bell measurements on nearest-neighboring pairs which ef-
fectively rearrange the Bell pairs. The results shown in
Fig. 2(b) demonstrate for even number of |A| and |B| the
MIIBell(A,B) features a power-law decaying ∼ r−0.34.

II.B.3) Random MERA states — Another tractable
model for computing MIE are random multi-scale entan-
glement renormalization (MERA) tensor networks [53,
54]. MERA tensor networks can produce the states with
logarithmic entanglement. Consequently, they are often
used to model critical ground states that are described
by a CFT [55, 56]. Entanglement features of MERAs
with either non-unitary Gaussian random tensors or Haar
random unitaries and isometries can be analytically com-
puted by mapping them, via a replica trick, to a classi-
cal statistical mechanics model [57–62]. In the limit of
large bond dimension, D → ∞, the statistical mechan-
ics model calculations become tractable and reduced to
pure geometric quantities that are identical to the Ryu-
Takanagi principle for computing entanglement via holo-
graphic field theory/gravity duality [57].

In the stat-mech mapping [63], the entanglement en-
tropy of a boundary region A maps to the free energy
in a classical statistical mechanics model of generalized
“spins” sitting on the vertices of the tensor network, with
ferromagnetic interactions of strength J = logD between
spins connected by edges of the network, and boundary
“magnetic” fields of strength h = logD [57, 58, 61], which
explicitly break the replica permutation symmetry. For
the simplicity, we describe the two-replica case where the
model reduces to an Ising model with two spin configu-
rations ↑, ↓ (for general number, Q, of replicas, the re-
sulting model is Potts-like with Q spin-flavors, but the
universal features inside the ordered phase of the model
at large-D are expected to be independent of Q). The
phase diagram of Ising models on graphs with hyper-
bolic geometry has been studied both analytically [64]
and numerically[65]. Unlike for Euclidean geometries,
where boundary conditions do not effect bulk critical
properties, on hyperbolic graphs, the boundary contains
an extensive fraction of the total number of sites, and the

resulting phase diagram is sensitive to boundary condi-
tions. For fixed boundary conditions, with an explicitly
symmetry-breaking field at the boundary, there is a sin-
gle bulk order-to-disorder transition. By contrast, for
free-boundary conditions, the “ordered” phase splits into
two phases: a low temperature uniformly-ordered phase
with a single spontaneously-chosen magnetization, and
a moderate temperature phase with a finite fraction of
disordered spins.
In the present context, the single-region entanglement

S(A) is given by the free energy cost having ↑ boundary
fields outside of A and ↓ boundary fields in its counter-
part Ā, which forces a domain wall (DW) into the sys-
tem. Therefore, S(A) corresponds to the fixed-boundary
condition hyperbolic-Ising model, and exhibits a single
(dis)ordering phase transition at a critical Dc. Below
this critical bond-dimension, there is only a local cost
to inserting a boundary domain wall resulting in area-
law entanglement (S(A) ∼ constant). Above this crit-
ical bond-dimension, the bulk is ordered, and the DW
tension (energy cost per unit length) is proportional to
logD/Dc. In the following we consider the limit of large
D, where the effective spin model will be in an ordered,
ferromagnetic phase. Here, fluctuations in the DW shape
are strongly penalized and the DW follows a minimal
cut of the interaction edges. For a MERA tensor net-
work with a 1d boundary, the minimal cut connects the
ends of region A interval dives down into the bulk as
shown in Fig. 3 and has length ∼ log |A|. which gives
S(A) ∼ logD log |A|. The mutual information for two
disjoint intervals A = [x1, x2] and B = [x3, x4] is given
by the free energy of two competing cut configurations
for S(A ∪B)

I (A,B) = FA + FB + log
(
e−FA−FB + e−FAB

)
, (12)

where FA+FB ∼ logD log x12x34 (Fig. 4(a)) and FAB ∼
logD log x14x23 (Fig. 4(b)). In the limit of D → ∞,
I (A,B) shows an abrupt jump as a function of η̃ =
x12x34/x14x23, which relates to the cross ratio defined
in Eq. (5) as 1/η = 1/η̃ + 1,

I (A,B) ∼

{
logD log η̃ η̃ > 1

η̃logD η̃ < 1
. (13)

We now turn to average MIE and MII for this ran-
dom MERA. We note that, the random nature of the
tensors means that the average MIE does not depend on
measurement basis. The principal difference in the stat-
mech mapping is that the measured region M has free-
boundary condition, and thus exhibits a distinct, separate
phase transition from that of the (fixed-boundary condi-
tion) stat-mech model for entanglement (without mea-
surement). As a result of the free-boundary conditions,
the DW ends are no longer linearly-confined to the ends
of the boundary of entanglement region, but can fluctu-
ate into measured regions. The cost to change the size of
the minority spin domain encapsulating A from the min-
imum domain, to x > |A|, scales as logD log x/|A|. This
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log x12 log x34
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FIG. 4. (a), (b) two possible minimal cuts for S(A ∪ B); (c)
two possible minimal cuts for MIE(A).

competes with an entropic gain ∼ log x from the fluctu-
ations. The competition of energetic vs. entropic loga-
rithmic factors is familiar from Kosterlitz-Thouless (KT)
transitions arising in 1d XY models and discrete 1d spin
chains with long range interactions decaying as ∼ 1/r2

with distance r. By analogy, there should be a critical
bond-dimension D′

c > Dc at which the stat-mech model
for MIE changes from an ordered phase (Dc < D < D′

c)
with short-range MIE, to an ordered phase (D > D′

c)
with MIE(A,B) ∼ log |A| as discussed above. This phase
transition is analogous to the “finite-time” teleportation
transition in 1d quantum circuits with power-law range
gates discussed in [34]. We will discuss the implications
to MIE for a related teleportation transition in finite-
depth 2d circuits below. There we will argue that the
leading contribution to MIE in the teleporting phase is
long-range and non-universal.

In the large-D limit, such fluctuations are strongly sup-
pressed, and thus the leading order of MIE is given by

MIE(A,B) ∼ logD log (min{x12, x34}) , (14)

which is equal to the minimum pre-measurement of en-
tanglement entropy in A and B (min-cuts are given in
Fig. 4(c)). We note that this result holds even when the
distance between A and B becomes very large such that
the pre-measurement I(A,B) ≈ 0. In such case one has

MII(A,B) ≈ 2MIE(A,B) ∼ 2 logD log (min{x12, x34}) .
(15)

This behavior of MIE qualitatively differs from that
found in the free fermion (XX-chain) studied numeri-
cally in the previous section. This deviation is a direct

MAT B T

FIG. 5. Schematic figure for the traced-MII: mutual informa-
tion between A and B with green regions T traced out and
grey regions M measured out,

consequence of the different phase diagrams for ferromag-
netic spin models on hyperbolic geometries with fixed- or
free- boundary conditions. For the CFT, MIE followed
the behavior of a four-point function, depending only on
the cross-ratio: x12x34/x13x24. This suggests a possible
difference in the structure of MIE between holographic
tensor network states and (minimal-model) CFTs. This
behavior contrasts that for the pre-measurement mutual-
information, I(A,B), which behaved like a four-point
function for both models.

III. MIE in 2d

We next turn to investigating the structure of
measurement-induced entanglement in 2d states. Here,
the existence of teleportation phase transitions in finite-
depth 2d circuits dramatically alters the structure and
universality of MIE [34, 40]. Nevertheless, we find that
universal signatures of topology and non-local entangle-
ment associated with Fermi surfaces still arises as sub-
leading corrections to MIE, and discuss how to directly
extract these universal signatures.

A. Trivial Gapped States

A trivial gapped state is one that can be produced
from a product state by a finite depth local circuit. Un-
like 1d systems, measurements in 2d (or higher dimen-
sions) can induce nontrivial entanglement phase transi-
tion with finite-depth random circuits [34, 40], i.e. after
applying t > tc layers of random circuits, arbitrary initial
state can feature extensive measurement-induced entan-
glement MIE (A,B) = O (|A|). Therefore, the leading
order of MIE in 2d is some non-universally constant and
on the other hand, universal behaviors, such power-law
decaying will be overshadowed.

III.A.1) Leading contributions to strange correlators
are non-universal — The existence of extensive term in
MIE also implies a non-universal constant part in strange
correlators in 2d, that there exists two trivial states |ψ⟩
and |ψm⟩ giving long-ranged strange correlator in Eq. (4)
and thus overshadows the diagnosis of nontrivial topolog-
ical states, which contributes a power-law decaying [20].
To show this explicitly, we consider a 2d trivial ini-
tial state |ψ⟩ with application of t > tc layers of ran-
dom circuits which doesn’t have pre-measurement long-
range correlation but is in the “teleportation phase” [34]:
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MIE(A,B) = O (|A|). Specifically, we consider local
Hilbert dimension D = 2, |A| = |B| = 1 separated by
distance r and the rest degrees of freedom are measured
out. Then the post-measurement state can be written as

|ψ⟩AB = λ0|a0⟩|b0⟩+ λ1|a1⟩|b1⟩, (16)

where |a0/1⟩ and |b0/1⟩ are orthonormal local basis sup-
ported by A and B. In the “teleportation phase”
MIE(A,B) = −

(
λ20 log λ

2
0 + λ21 log λ

2
1

)
= O(1), which in-

dicates λ0/1 are both finite non-zero numbers. Then by
choosing OA = |a0⟩⟨a1|, OB = |b0⟩⟨b1| and |ψm⟩AB =
|a0⟩|b0⟩, one can verify that the (connected) strange cor-
relator between |ψ⟩ and |ψm⟩ = |ψm⟩AB |ψm⟩M

⟨ψm|OAOB |ψ⟩
⟨ψm|ψ⟩

− ⟨ψm|OA|ψ⟩
⟨ψm|ψ⟩

⟨ψm|OB |ψ⟩
⟨ψm|ψ⟩

=
λ1
λ0
, (17)

which is generally a non-vanishing number for finite
MIE(A,B) independent of the distance r. Note that the
previous choice of OA, OB and |ψm⟩AB can be in ar-
bitrary local orthonormal basis if we consider the typ-
ical case under random circuits, where each projector
|a0/b0⟩⟨a1/b1| will typically contribute with a prefactor
O
(
1
4

)
, and then the (connected) strange correlator will

still have a finite long-range behavior.

B. Isolating the universal features of MIE and
strange correlators

In this section we introduce two modified versions of
MIE (which can be readily adapted to strange correla-
tors), that isolate the universal contributions of MIE that
depend only on the phase of matter for the pre-measured
state, from the non-universal ones arising from the tele-
portation transition.

a. Scaled MIE To probe the universal behavior
of MIE or strange correlator, one has to go to the
subleading term with power-law decaying. Generally,
the measurement-induced non-universal effect is propor-
tional to the size of post-measurement region A, thus to
get rid of the non-universal extensive term of MIE, one
can redefine MIE as

M̃IE(A,B) = 2MIE1/2(A/2, B/2)−MIE(A,B), (18)

where MIE1/2(A/2) represents the MIE for a system
scaled by 1/2 in the particular direction of interest, not
only for the region A. Within this definition, the ex-
tensive terms in MIE are canceled, while the sub-leading
power-law relation is retained. A non-ideal aspect of this
difference between scaled MIE is that it assumes a spe-
cific form of the subleading universal corrections. In the
next section, we introduce an alternative means to isolate
the universal aspects of MIE from the non-universal tele-
portation transition ones, that is agnostic to the precise
scaling structure of the subleading universal terms.

FIG. 6. (a) Two band model on a square lattice, where

nearest-neighbor hopping amplitudes are t1e
iπ/4 along the ar-

row direction and next-nearest-neighbor hopping amplitudes
are t2 and −t2 along the dashed and dotted diagonals. (b)
MIE on a cylinder geometry where grey region is measured
out.

b. Partially-traced MII Another possible solution is
to consider the quantity that is not affected by the
measurement-induced phase transition but still features
the universal behaviors. One candidate, shown in Fig. 5,
is the partialy-traced MII, where instead of considering
the total mutual information between two post-measured
regions A and B, we consider the mutual information be-
tween two subregions A0, B0 of them. In this case, the
left region A/A0 ∪ B/B0 is traced over (see Fig. 5) and
thus imposes a definite spin configuration in the statisti-
cal mechanics picture which makes this quantity always
vanishing in the long-range limit for trivial initial states.
For the models considered in the remainder of the pa-

per, we find that the ground-states naturally lie in the
non-teleporting phase. For this reason, we do not need
to explicitly modify MIE to subtract a non-universal ex-
tensive piece.

C. Chern insulator

In Chern insulators, the strange correlator decays as
a power law (in particular, for the free-fermion case
∼ r−1) [20, 66, 67], which can be understood by mapping
to the standard correlator in the one-dimensional CFT.
Since in the CFT, MIE is lower-bounded by the averaged
square of strange correlators (see Appendix. D), we ex-
pect the universal part of MIE in Chern insulators also
features a power-law behavior.
To investigate this question, we numerically study the

MIE in a two band model on a square lattice introduced
by Ref. [68], which holds non-trivial Chern number. As
shown in Fig. 6(a), the model consists of two sublat-
tices a and b, where nearest-neighbor hopping amplitudes
are t1e

iπ/4 along the arrow direction and next-nearest-
neighbor hopping amplitudes are t2 and −t2 along the
dashed and dotted diagonals. To compare the results
with trivial insulator, we add a staggered one-site poten-
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FIG. 7. MIE in the two-band model with cylinder geometry
for (a) V = 0 and (b) V = 0.8, where the result is averaged
over 120 measurement realizations.

tial, which is V for a sublattice and −V for b sublattice.
The total tight-binding Hamiltonian reads

H = −t1
∑
⟨i,j⟩

eiϕijc†a,icb,j + h.c.− t2
∑

⟨⟨i,j⟩⟩

τijc
†
a,ica,j

− t2
∑

⟨⟨i,j⟩⟩

τijc
†
b,icb,j + V

∑
i

(
c†a,ica,i − c†b,icb,i

)
, (19)

where ⟨i, j⟩ represents nearest neighbors and ⟨⟨i, j⟩⟩ rep-
resents next-nearest neighbors. ϕij = π/4 (−π/4) if the
hopping is along (against) the direction of the arrow,
and τij = 1 (−1) if the hopping is along dashed (dot-
ted) diagonals. For −4t2/t1 < V < 4t2/t1, the band
features Chern number C = 1, while for V > 4t2/t1 or
V < −4t2/t1, the band is trivial.

Specifically, we let t1 = 1. and t2 = 0.1 and consider
the MIE with measurements taken in the basis of occu-
pation number on each site between two rings with width
2 that are separated by distance r on an L × L lattice
with cylinder geometry (Fig. 6(b)). Since this is a free
fermion system, similar numerical method discussed in
Sec. II B and Appendix A can be applied. As shown in
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M
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FIG. 8. MIE in the 2d free fermion model on the square lattice
with cylinder geometry, where the result is averaged over 120
measurement realizations.

Fig. 7(a), the MIE for nontrivial Chern number (V = 0)
features a power-law decay ∼ r−0.9 satisfying the lower
bound given by the strange correlator. As a comparison,
in a trivial insulator (V = 0.8) the MIE decays exponen-
tially (Fig. 7(b)). Since the ground state of Chern insu-
lators has short-ranged pre-measurement entanglement,
the MII also features power-law decaying.

D. Metals

As a final numerical example, we consider the MIE
of a non-interacting metal, with measurements taken in
the basis of occupation number on each site. Due to the
presence of a Fermi-surface of gapless excitations, the
metallic state has a large entanglement before measure-
ment, with entanglement of a region of size L scaling as
S ∼ kFL logL where kF is the Fermi wave-vector. We
consider MIE in a free fermion tight-binding model

H = −
∑
⟨i,j⟩

(
c†i cj + c†jci

)
, (20)

where ⟨i, j⟩ represents nearest neighbors on a two-
dimensional square lattice. The ground state of this
Hamiltonian can be considered as a metal.

Similar to the Chern insulator case, we consider the
MIE between two rings with width 2 separated by dis-
tance r on an L × L lattice with cylinder geometry
(Fig. 6(b) and apply the free-fermion method discussed
in Sec. II B and Appendix A. As shown in Fig. 8, the
MIE features a power-law decaying ∼ r−0.23, where cor-
responds to α ≈ 0.115 (considering η ∼ r−2 in the large
distance limit), which smaller than α ≈ 0.3 of the 1d
case. Since the pre-measurement 2d free fermion systems
can be decoupled into 1d chains, the mutual informa-
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tion scales as ∼ η [45] 1. By contrast, the random mea-
surement outcomes break the translation invariance, such
that the MIE of the metal does not reduce to decoupled
copies of 1d free-fermion systems for each momentum
parallel to the measurement-region boundary. In par-
ticular, the MIE of the 2d metal decays with a different
power of r than for the 1d free fermion system. Since this
pre-measurement mutual information decays much more
rapidly than the MIE, the MII in large distance limit is
dominated by the measurement-induced part and scales
as r−0.23.

E. Topological orders (String-net liquids)

While leading order of MIE in a trivial gapped state
shows no universal behavior, MIE of a topologically or-
dered state contains a long-range (constant) term that
depends only on the topological information of the mea-
surement scheme, namely it depends only on the homo-
logical class of the measurement region and is invariant
upon deformation of the measurement region.

Measurements of a sub-region of a topologically-
ordered state can be interpreted as imposing boundary
conditions on the unmeasured region. To see this, ob-
serve that after performing a local measurement in a re-
gion M , the state in M is in a tensor product state that
has no topological order while the unmeasured region
remains topologically ordered. Therefore the interface
between the two regions is an interface between topo-
logical order and trivial state. Boundaries of 2d topo-
logical orders are well-understood–they are in 1-1 corre-
spondence with different ways of condensing anyons of
the topological order. This classification and character-
ization of boundary conditions allow us to analyze the
post-measurement state of a topologically order state sys-
tematically.

III.E.1) Toric code on a torus — As a warmup exam-

ple let us consider the toric code, D(Z2), on a torus, T 2,
modeled is a spin 1

2 degree of freedom at each link of a
square lattice, with Hamiltonian:

H =−
∑

X

X
X X −

∑
Z

Z

Z

Z

=−
∑
v

Av −
∑
f

Bp, (21)

where v and p represents vertice and plaquettes, and
Z,X are Pauli operators. If the measurement region

1 Note that although JW transformation can map the XX model
to 1d free fermion chain, they actually have different mutual
information behavior due to the implicit non-local structure from
JW transformation [69]).

FIG. 9. MIE of toric code on a torus. The torus is
divided into regions A,B,M . The M region is then measured
out and we are interested in the MIE between A and B. Two
non-contractible loops l1, l2 are shown in blue and red.

is contractable, then due to the topological nature of
the system, there is no long-range measurement-induced
entanglement. Instead we consider measuring a non-
contractable region M , that separates two unmeasured
regions A,B as shown in Fig. 9. The boundaries between
measured and unmeasured region are on non-contractible
loops which we call l1. The other non-contractible loop
intersects l1 once and is called l2. The ground space of
the toric code Hamiltonian on the torus is 4-fold degen-
erated and is invariant under the action of string (loop)
operators on l1, l2. The ground state is invariant under
application of string operators that are labelled by anyon
types, {e,m, f = e ×m}. A generating set of string op-
erators can be chosen as e-strings and m-strings. An
e-string is a product of Z operators along a path of the
lattice while an m-string is a product of X operators
along a path of the dual lattice. We denote loop opera-
tors of type a = e,m on loops li=1,2 as W a

i . Then these
operators preserve the ground space and their eigenval-
ues can be used to label states in the ground space. In
the language of string-net condensation the ground states
are equal-weight superpositions of closed e-loop configu-
rations, where we define links with X = −1 as having an
e-loop segment. Then the 4-fold degenerated states can
be characterized by the parity of number of loops along
non-contractible directions l1, l2. This way of labelling
provides us with a basis of the ground space which we
denote as |α, β⟩SN and call string-net basis, α, β = 0, 1
are the parities of number of loops along l1, l2 respec-
tively.

Now let us consider starting with a state with even
parity of loops long l1, l2: |0, 0⟩SN and measuing in X-
basis in region M . The measurement will then project
onto some fixed loop configuration in M , while the un-
measured region remains a equal weight superposition of
various loop configurations. From the measurement out-
comes we can infer the parity of loops along l1 in M . If
the measurements yield a result such that the number of
loops along l1 in M is even, then we know that the total
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number of loops along l1 in A,B must be even since the
initial state has even parity of loops along l1. This condi-
tion entangles the string-net configurations in A,B: they
can have either both even or both odd parity along l1.
Apart from this condition the states in A,B are still equal
weight superpositions of all possible loop configurations.
The post-measurement state in region A,B is thus a Bell
pair with entanglement entropy log 2. On the other hand
if the measurement projects onto a state in regionM with
odd number of loops along l1, then the postmeasurement
state must have opposite parities of loops along l1 in A
and B. In this case the post-measurement state is again a
Bell-pair and has entanglement entropy log 2. Therefore
after averaging over measurement outcomes with Born
probability we have MIE(A,B) = log 2. One can verify
that starting with any of the 4 states |α, β⟩SN will yield
MIE(A,B) = log 2 if one measures in X-basis.

A scheme dual to the above measurement scheme is
to start with a state with definite parities of dual loops
along l1, l2

2 and make measurements in Z-basis, which
will also give MIE(A,B) = log 2.

The above example illustrates that the MIE of a topo-
logical order is a constant that is invariant under defor-
mations of the measurement region for certain measure-
ment basis. But several question remains. How exactly
is the MIE related to the data of the topological order
such as quantum dimension of anyons? Can the result
for toric code be generalized to other topological orders?
We address these questions by reformulating the above
calculation in a way that makes it suitable for general-
izaiton, along the way these questions will be resolved
automatically.

III.E.2) Minimally entangled states — Apart from the
string-net basis |α, β⟩SN discussed before, there are other
basis for the ground space of a topological order on a
torus. An important basis consists of the minimally en-
tangled states (MES) [70, 71]. MES will be crucial in
obatining the MIE for a general ground state of abelian
quantum double models. Here we briefly summarize
their construction. Consider all loop operators on a
non-contractible loop l1, these are generated byW e

1 ,W
m
1

as an algebra. Since these two operators commute, we
can diagonalize them simultaneously within the ground
space. The common eigenstates of the loop operators on
l1 can be labelled by anyon types: |a⟩, a = 1, e,m, f , with
the property that the eigenvalue under action by W a

1

is given by the braiding statistics of anyons: W a
1 |b⟩ =

eiθ(a,b)|b⟩. Here θ(a, b) is the braiding phase between
anyon a and b. The state |a⟩ can be viewed as having
an anyon a threading through the center of the torus3,

2 One says there is a a dual string at a link if Z = −1 at that link,
and a dual string lives on a path of the dual lattice.

3 In other words the state |a⟩ can be viewed as prepared by a path
integral in the solid torus, with an anyon string a inserted in the
center S1.

then the action of W b
1 is performing a braiding between

a and b in spacetime. The string-net basis is related to
MES via a linear transformation. To derive the transfor-
mation, notice the effect of the operators W e,m

1 on the
string-net configuration: W e

1 creates a loop along l1 while
Wm

1 measures the parity of loops along l2. We can then
deduce the action of W a

1 on the string-net basis:

W e
1 |0, 0⟩SN = |1, 0⟩SN , W

m
1 |0, 0⟩SN = |0, 0⟩, (22)

W e
1 |1, 0⟩SN = |0, 0⟩SN , W

m
1 |1, 0⟩SN = |1, 0⟩SN , (23)

W e
1 |0, 1⟩SN = |1, 1⟩SN , W

m
1 |0, 1⟩SN = −|0, 1⟩, (24)

W e
1 |1, 1⟩SN = |0, 1⟩SN , W

m
1 |1, 1⟩SN = −|1, 1⟩SN , (25)

from which we can form superpositions to obtain (un-
normalized) eigenstates of loop operators W a

1 : |1⟩ =
|0, 0⟩SN + |1, 0⟩SN , |m⟩ = |0, 0⟩SN − |1, 0⟩SN , |e⟩ =
|1, 1⟩SN + |0, 1⟩SN , |f⟩ = |1, 1⟩SN − |0, 1⟩SN . The in-
verse transformation is: |0, 0⟩SN = |1⟩+ |m⟩, |1, 0⟩SN =
|1⟩ − |m⟩, |0, 1⟩SN = |e⟩ − |f⟩, |1, 1⟩SN = |e⟩+ |f⟩.
Now consider taking an MES |a⟩ as our initial state and

denote the post-measurement state as Pm|a⟩ where Pm

is the projection operator for a measurement outcome m.
The state Pm|a⟩ remains topologically ordered in the un-
measured region A,B, since the stabilizers Av, Bp are not
altered by the measurements for v, p in A∪B. A crucial
observation is that the post-measurement state Pm|a⟩ re-
mains a common eigenstate of loop operators W a

1 in re-
gion A,B. This is due to the fact that the loop operators
W a

1 are topological and can be freely deformed to be sup-
ported entirly in region A or B without changing their ac-
tion on the states prior to measurement. Therefore since
region A,B are not affected by the measurements, the
operators W a

1 commute with the projector P , and Pm|a⟩
remains an eigenstate of W a

1 with the same eigenvalues
as the initial state |a⟩, that is, W b

1Pm|a⟩ = eiθ(a,b)Pm|a⟩
After measurement, the quantum state in M becomes

a trivial product state, therefore the A,B to M inter-
faces become gapped boundaries of the unmeasured re-
gion A,B. Region A,B now host topological order on
cylinder with gapped boundaries, whose ground space
is finitely degenerated and can be characterized by the
action of W a

1 s. Similar to the situation on a torus we
can label the states in region A,B by anyon types and
they satisfy the relation W 1

b |a⟩ = eiθ(a,b)|a⟩. One can
again picture the state as having an anyon b threading
through the center of the cylinder. The fact that the
post-measurement state Pm|a⟩ remains an eigenstates of
W b

1 with eigenvalues eiθ(a,b) fixes the states in region A,B
to be |a⟩A, |a⟩B . Therefore we conclude for an MES,

P |a⟩√
⟨a|P |a⟩

= |a⟩A ⊗ |a⟩B ⊗ |ϕ⟩M (26)

This shows for MES there is no MIE for any measure-
ment basis. The decomposition of post-measurement
state Eq. (26) allows us to directly calculate MIE for
a generic initial state by expanding the initial state in
the MES basis.
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FIG. 10. Definition of vertex and face operators in quantum
double models.

Let us reproduce the string-net states MIE using the
MES formalism. The state |0, 0⟩SN can be expanded in
MES as |0, 0⟩SN = 1√

2
(|1⟩ + |m⟩). Apply the projection

operator to the initial state and use the decomposition
Eq. (26), we conclude 4

P |0, 0⟩SN =
1√
2
(|1⟩A|1⟩B + |m⟩A|m⟩B)|ϕ⟩M (27)

which is a Bell-pair with entanglement entropy log 2 re-
gardless of measurement outcome. Therefore MIE for
|0, 0⟩SN is log 2, in agreement with the result obtained
earlier using the string-net picture of the ground state
wavefunction.

III.E.3) MIE in Abelian quantum double models —
The toric code analysis can be readily generalized to gen-
eral Abelian topological orders. From the decomposition
Eq. (26) we know the MES has zero MIE. Therefore a
non-zero MIE can only be obtained if one starts with a
non-MES state, such as the string-net states |SN,α, β⟩
of the toric code. We show that the string-net states of
toric code can be generalized to generic abelian quantum
double models D(G), and their MIE contains informa-
tion about the order of the gauge group G. The abelian
quantum double model D(G) with abelian G, can be de-
fined on the square lattice as follows [72, 73]. There is a
|G|-dimensional Hilbert space on every link of the lattice,
with a natural basis |g⟩, g ∈ G. The lattice is endowed
with an orientation of edges and the Hamiltonian are
built with two types of operators Ag

v, B
h
p , defined on ver-

tices and faces of the lattice respectively. Ag
v changes the

states on the 4 edges adjacent to v from |h⟩ to |gh⟩ or
|g−1h⟩, according to whether the edge is pointing towards

4 Here we also used the fact that the norm square of the post
measurement state ⟨a|P |a⟩ is the same for a = 1,m. This can be
justified by noticing that |a⟩s are related by the action of Wa

2 s:
|a⟩ = Wa

2 |1⟩, therefore ⟨m|P |m⟩ = ⟨1|Wm
2 PWm

2 |1⟩. Since Wm
2

is a string of X operators that commutes with the measurements,
we have ⟨m|P |m⟩ = ⟨1|P |1⟩.

or away from the vertex v. Bh
p forces the “flux” through

the plaquette p to be h. These operators are summarized
in Fig. 10. The Hamiltonian is then built from these two
types of operators as follows:

H = −
∑
v

Av −
∑
f

Bp, (28)

Av :=
1

|G|
∑
g

Ag
v, Bp := Be

p (29)

Av can be viewed of as the Gauss’s law constraint and
Bf can be viewed as the zero-flux condition. The ground
space of the quantum double can also be described by the
picture of string-net condensation. However one needs to
use a basis dual to |g⟩ to express the ground state as a
string-net liquid on the direct lattice.5 For any character

of the group G: χ ∈ Ĝ = hom[G,U(1)], define a dual
basis on an edge as |χ⟩ := 1√

|G|

∑
g χ(g)|g⟩. This can be

viewed as a group Fourier transformation of the basis |g⟩,
with inverse transformation |g⟩ = 1√

|G|

∑
χ∈Ĝ χ

∗(g)|χ⟩.
Then acting on dual basis |χi⟩, where i = 1, 2, 3, 4 labels
4 edges adjacent to v, we have

Av ∼ 1

|G|
∑
g

χs1
1 (g)χs2

2 (g)χs3
3 (g)χs4

4 (g), (30)

where si is the orientation of edge i with respect to v.
From properties of group Fourier transformation we have

1

|G|
∑
g

χs1
1 (g)χs2

2 (g)χs3
3 (g)χs4

4 (g) = δ∏
i χ

si
i ,1. (31)

Hence, the vertex term Av enforces the product of char-
acters on edges adjacent to a vertex to be the trivial char-
acter. On the other hand the face term can be written in
the |gi⟩ basis as Bp ∼ δg1g2g3g4,e = 1

|G|
∑

χ χ(g1g2g3g4).

Therefore in the dual basis we have Bp = 1
|G|

∑
χB

χ
p ,

where Bχ
p changes the states on the the edges of the face

f from |χi⟩ to |χχi⟩. We see that in the dual basis the
roles of Av and Bp are interchanged. Then one can now
view Av as enforcing the condition that in a ground state
the characters flowing through any vertex is 1. Bp terms
then form a superposition of all possible such configu-
rations. We can now say that the ground state of the
Hamiltonian Eq. (28) is a string-net liquid on the direct
lattice, with string types labelled by characters of G.
We are now in place to define a string-net basis for

a general abelian quantum double model defined on a
torus. In a given string-net configuration, the string type
along a non-contractible direction l1,2 is χ1,2. Then the
ground states with definite χ1, χ2 are called string-net
states and are denoted by |χ1, χ2⟩SN . We now make

5 Alternatively one can write the ground state of the quantum
double as a string-net liquid in the |g⟩-basis on the dual lattice.
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connection to the MES, defined for any topological or-
der on a torus. The MES are labelled by anyon types.
For abelian quantum double models, the anyon types are

labelled by pairs (g, χ), g ∈ G,χ ∈ Ĝ, with self and mu-
tual statistics given by θ(g, χ) = χ(g), θ((g, χ), (g′, χ′)) =
χ(g′)χ′(g) [72, 73]. χ-type anyon is associated with vio-
lation of the vertex terms Av of the Hamiltonian, g-type
anyon is associated with violation of face terms Bp. To
find the transformation between MES |g, χ⟩ and string-
net states |χ1, χ2⟩, we analyze the effect of loop opera-
tors W 1

g,χ on the string-net states. The loop operator

W 1
g,χ moves an anyon (g, χ) around l1. It is an rib-

bon operator with support on a direct path and a dual
path, both along l1. It changes the states on the di-
rect path from |χi⟩ to |χχi⟩, and the states on the dual
path from |gi⟩ to |ggi⟩. Therefore it acts on the string-
net states as W 1

g,χ|χ1, χ2⟩SN = χ2(g)|χχ1, χ2⟩SN . To

obtain MES, which are eigenstates of W 1
g,χ, we simply

perform Fourier transform to the first label of string-net
states and define: |g, χ⟩ = 1√

|G|

∑
χ1
χ∗
1(g)|χ1, χ2⟩SN .

One can verify the states |g, χ⟩ satisfies W 1
g′,χ′ |g, χ⟩ =

χ(g
′)χ′(g)|g, χ⟩. The phase χ(g′)χ′(g) is exactly the

braiding between two anyons (g, χ) and (g′, χ′).Thus the
states |g, χ⟩ are indeed the MES. The inverse transfor-
mation is given by the inverse Fourier transformation:
|χ1, χ2⟩SN = 1√

|G|

∑
g χ1(g)|g, χ2⟩.

Now using the decomposition of MES after measure-
ment Eq. (26), we have for string-net states

P |χ1, χ2⟩SN =
1√
|G|

∑
g

χ1(g)|g, χ2⟩A ⊗ |g, χ2⟩ ⊗ |ϕ⟩M

(32)

The entanglement entropy between A and B is there-
fore

∑
g∈G

1
|G| log |G| = log |G| regardless of measure-

ment outcome. We conclude that for string-net states
we have MIE = logG = logD. We used the fact that
the quantum double D(G) has total quantum dimension
D = |G|.

IV. Discussion

This exploration of measurement-induced entangle-
ment (MIE) and information (MII) in ground-states of
various systems reveals the presence of universal features
depending on the topology or universality class for criti-
cal or gapless systems. This universal structure provides
distinct, complementary information from that contained
in the single-interval entanglement entropy of the state.
These quantities are relevant for assessing the computa-
tional power of the state for measurement-based quan-
tum computing, and have operational significance for
the classical and quantum complexity of simulating that
state. With the exception of gapped topological phases,
our present understanding of MIE and MII comes en-
tirely from numerical simulations of piecemeal examples.
To obtain a systematic understanding of the structure
of MIE and MII, analytic methods for computing these
from field theory descriptions would be highly valuable,
and are an important challenge for future work. For ex-
ample, while numerical simulations of the XX spin chain
show that the MIE behaves like a four-point correlation
function, although the scaling exponent does not appear
to be simply related to known bulk- or boundary- scal-
ing dimensions. This suggests that the MIE for 1 + 1d
CFTs could, perhaps, be governed by new classes of scal-
ing operators that have not been previously considered.
An analytic understanding would be especially valuable
for studying higher-dimensional gapless systems, such
as non-Fermi liquids, and gapless quantum spin liquids,
where purely (classical) numerical methods are challeng-
ing to implement at large scale.
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given by

C ′
ij =

⟨c†acac
†
i cic

†
aca⟩

Caa
=


1 if i = j = a

Cij −
CiaCaj

Caa
if i ̸= a, j ̸= a

0 otherwise

(A3)

and when P0 is applied, the updated correlation matrix
is given by

C ′
ij =

⟨cac†ac
†
i cicac

†
a⟩

1− Caa
=


0 if i = j = a

Cij +
CiaCaj

1− Caa
if i ̸= a, j ̸= a

0 otherwise

(A4)

where multi particle correlators can be decomposed to
single particle correlators by Wick’s theorem. With the
update rule, one can easily obtain the postmeasurement
correlation functions satisfying Born probability.

B. Correlation matrix for the 1d free fermion chain

In this section we derive the correlation matrix in
Eq. (8). For the 1d free fermion chain, the Hamil-
tonnian can be writte in the momentum space H =

−
∑

k 2 cos kc
†
kck. For a ground state with filling factor

nf , we have

⟨c†kck⟩ =
{
1 if |k| < nfπ

0 otherwise
. (B1)

Then the correlation matrix becomes

Cij = ⟨c†i cj⟩ =
1

L

∑
k

⟨c†kck⟩e
ik(i−j) =

1

L

∑
|k|<nfπ

eik(i−j).

(B2)

Note that when applying Jordan-Wigner transformation
to a spin model with periodic boundary condition, the
mapped 1d free fermion chain has periodic (antiperiodic)
boundary condition when the total number of fermion is
odd (even). Thus, we consider the correlation matrix for
odd and even number of fermion respectively.

When total number of fermion, i.e. nfL, is odd, the
allowed momentum is in the form of 2nπ/L, where n is
integer. Then Eq. (B2) becomes

Cij =
1

L
+

2

L

∑
1≤n≤

nfL−1

2

cos
2πn(i− j)

L

=
1

L
+

2

L

sin
π(nfL−1)(i−j)

2L

sin π(i−j)
L

cos
π(nfL+ 1)(i− j)

2L

=
sinπnf (i− j)

L sin π(i−j)
L

, (B3)

where we have used the identity

m∑
n=1

cosnx =
sin mx

2

sin x
2

cos
(m+ 1)x

2
. (B4)

When total number of fermion, i.e. nfL, is even, the
allowed momentum is in the form of (2n− 1)π/L. Then
Eq. (B2) becomes

Cij =
2

L

∑
1≤n≤

nfL

2

cos
π(2n− 1)(i− j)

L

=
2

L

∑
1≤n≤

nfL

2

cos
2πn(i− j)

L
cos

π(i− j)

L

+
2

L

∑
1≤n≤

nfL

2

sin
2πn(i− j)

L
sin

π(i− j)

L

=
sinπnf (i− j)

L sin π(i−j)
L

, (B5)

where we have used Eq. (B4) and

m∑
n=1

sinnx =
sin mx

2

sin x
2

sin
(m+ 1)x

2
. (B6)

In conclusion, Eq. (8) holds for both odd and even total
number of fermion.

C. DMRG calculation of MIE in the XX model
with σx-basis measurements and the XXZ model

In this section we calculate the MIE in the XX and
XXZ model with ground states obtained by the DMRG
method implemented in the TeNPy package [75]. The
truncated bond dimensions are 256 and 400 for L = 48
and L = 64 respectively. As a benchmark, we first inves-
tigate the XX model with σz-basis measurements, which
we have calculated via the free-fermion method up to
L = 256 in Sec. II B. As shown in Fig. 11(a), the fitted
exponent α ≈ 0.34 is slightly larger than the α ≈ 0.31
(Fig. 1) obtained by the free-fermion method. We inter-
pret the discrepancy as a finite size effect. For the XX
model with σx-basis measurements, the fitted exponent
α ≈ 0.31 (Fig. 11(b)) slightly smaller than that with
σz-basis measurements at the same system size, but the
discrepancy is too small to tell whether they will drift to
the same exponent at the large L limit. For the XXZ
model, Fig. 11(c)-(f) show that the exponent α increases
from 0.19 to 0.25 to 0.42 to 0.5, as the anisotropic in-
teraction parameter ∆ varies from −0.9 to −0.5 to 0.5
to 0.9. This trend is consistent with the analytically
understood behavior in the mutual information where
αMI = 1− arccos∆

π [43].
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FIG. 11. MIE calculated by DMRG for (a)/(b) the XX model
with σz/σx-basis measurements and for the XXZ model with
σz-basis measurements and (c) ∆ = −0.9, (d) ∆ = −0.5, (e)
∆ = 0.5, and (f) ∆ = 0.9. Data are averged over from 3 · 103
to 6 · 103 measurement realizations.

D. MIE upper-bounds strange correlators

Mutual information between regions A and B up-
per bounds connected correlators between operators sup-
ported in these regions. In this section, we show that the
MIE similarly upper bounds strange correlators. Con-
sider a state |ψ⟩ which is partitioned into three regions:
A, B, and C:

|ψ⟩ =
∑
a,b,c

ϕabc|abc⟩, (D1)

where a, b, and c label the local degree of freedom in A,
B, and C. We apply measurements on region C with
outcome |mc⟩, and then the resulting wavefunction is

|ψc⟩ =
⟨mc|ψ⟩√
pmc

=
∑
a,b

ϕabmc√
pmc

|ab⟩, (D2)

with probability pmc
=

∑
a,b |ϕabmc

|2. The averaged MIE
in A is defined as

MIE(A,B) =
∑
mc

pmc
SA (|ψc⟩) . (D3)

In the same setting, we can also define a strange corre-
lator between a post-measurement product state |m⟩ =
|mambmc⟩ and the interested state |ψ⟩

SC (OA, OB) =
⟨m|OAOB |ψ⟩

⟨m|ψ⟩
(D4)

where ma and mb are meaurement outcomes in regions
A and B, which are not measured in the MIE setting,
and OA and OB are charged local operators in regions A
and B.

To show the connection between strange correlators
and MIE, we first rewrite the MIE as the mutual infor-
mation between A and B in the post-measurement state
|ψc⟩

MIE(A,B) =
1

2

∑
mc

pmc
I(A,B) [|ψc⟩] . (D5)

Then we can follow Ref. [76] to express the mutual infor-
mation as a relative entropy

I(A,B) [|ψc⟩] = S (ρcAB |ρcA ⊗ ρcB) , (D6)

where ρcAB = |ψc⟩⟨ψc| and ρcA/B = trB/A (|ψc⟩⟨ψc|).
Then using the norm bound [77] S(ρ|σ) ≥ 1

2 ||ρ − σ||21
and the trace inequality ||X||1 ≥ tr (XY ) /||Y ||∞, where
|| · ||p is the Schatten norm, we can obtain

I(A,B) [|ψc⟩] ≥
1

2

(tr (ρcABY )− tr (ρcA ⊗ ρcBY ))
2

||Y ||2∞
. (D7)

Let Y = |mamb⟩⟨mamb|OAOB , then the right hand side
of the inequality becomes

p2mambmc

2||Y ||2∞p2mc

[SC(OA, OB)]
2

(D8)

where we have used the fact that each changed local op-
erator has zero expectation value.

Combining Eq. (D5)– Eq. (D8), we can obtain

MIE(A,B) ≥ c0
∑
mc

p2mambmc

pmc

[SC(OA, OB)]
2

(D9)

where c0 is some non-universal constant depending on
the choice of |ma/b⟩ and OA/B . Therefore, MIE is lower-
bounded by the average of square of strange correlators
weighted by some nonuniversal joint measurement prob-
ability.
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