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A quantum algorithm for solving the advection equation by embedding the discrete time-marching
operator into Hamiltonian simulations is presented. One-dimensional advection can be simulated
directly since the central finite difference operator for first-order derivatives is anti-Hermitian. Here,
this is extended to industrially relevant, multi-dimensional flows with realistic boundary conditions
and arbitrary finite difference stencils. A single copy of the initial quantum state is required and the
circuit depth grows linearly with the required number of time steps, the sparsity of the time-marching
operator and the inverse of the allowable error. Statevector simulations of a scalar transported in a
two-dimensional channel flow and lid-driven cavity configuration are presented as a proof of concept
of the proposed approach.

I. INTRODUCTION

Quantum computing is expected to bring a profound
shift in our computational capability. Among the most
promising applications is solving large-scale partial dif-
ferential equations (PDEs) more efficiently than clas-
sical computers. PDEs are ubiquitous across science
and engineering and solving them currently occupies the
majority of the world’s high-performance computing re-
sources. The development of efficient quantum algo-
rithms is therefore of immense value and has attracted
a large interdisciplinary research community, spurred on
by the continuing advancements in quantum hardware
[1, 2].

The advection equation is a foundational linear PDE
spanning multiple industries as it describes the transport
of a scalar quantity in advection-dominated flows. It is
given by

∂ϕ

∂t
+ uj

∂ϕ

∂xj
= 0 (1)

where ϕ represents the scalar field (e.g. temperature, con-
centration) and uj is the jth component of the advective
velocity vector, where repeated indices invoke summation
over all spatial dimensions. Applications include mod-
elling the vast oceanic [3], atmospheric [4], and geological
flows [5] used in climate studies, drug delivery systems in
biomathematics [6], and heat exchangers for cooling oil
refineries, chemical processing plants and power stations
[7]. When the advection equation is discretised in space
using the finite difference method, the homogeneous or-
dinary differential equation (ODE)

dϕ⃗

dt
=Mϕ⃗ (2)

is produced. The original motivation for quantum com-
puting was to simulate quantum dynamics governed by
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the Schrödinger equation [8], which can be expressed
in the form of Eq. (2) for an anti-Hermitian coeffi-
cient matrix M . The central finite difference opera-
tor for first-order derivatives is anti-Hermitian, so for
one-dimensional flows with periodic boundary condi-
tions, advection can be simulated on a quantum com-
puter using the unitary operator eMt. This implies
that one-dimensional advection can be considered equiv-
alent to quantum dynamics [9]. Indeed, advection in
a divergence-free velocity field is inherently a norm-
preserving process, making it well-suited for simulation
on a quantum computer. However, for industrially rele-
vant multidimensional flows with realistic boundary con-
ditions or non-centred finite difference stencils, M ceases
to be anti-Hermitian so a different approach must be
taken.

Quantum algorithms for solving PDEs can be delin-
eated into two categories: fully quantum algorithms
that implement quantum circuits to evolve the quan-
tum state as described by the PDE of interest, and
quantum-classical hybrid algorithms where a quantum
computer is used for a specific task in a larger, classical
computation. Fully quantum approaches generally ex-
cel at solving linear PDEs because quantum operators
act linearly on quantum superpositions, allowing algo-
rithms based on the finite difference method (FDM) [10–
13], the finite element method (FEM) [14, 15] and spec-
tral methods [16] to be effectively represented quantum
mechanically. Encoding the solution from N = 2n grid
points within the amplitudes αj of an n-qubit quantum

state |ψ⟩ =
∑N

j=1 αj |j⟩ leads to an exponentially grow-
ing capacity to store information and an inherent quan-
tum parallelism when processing it. Amplitude encod-
ing does not allow for the inspection of the full solution
as with classical methods, but rather the extraction of
global statistics into the limited output space. This may
be adequate depending on the context and make pre-
viously intractable problems tractable. Fully quantum
approaches are not limited to linear PDEs as techniques
have been proposed based on the derivation of the non-
linear Schrödinger equation using mean-field techniques
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[17] and Carleman linearisation [18] to tackle nonlinear
PDEs, but these are generally limited to weakly nonlinear
interactions. On the other hand, variational quantum al-
gorithms (VQAs) [19] for solving optimisation problems
have been used as the basis for hybrid algorithms that
have demonstrated a greater capability of tackling non-
linear PDEs [20–22]. Kyriienko et al. [21] used a machine
learning strategy where differentiable quantum circuits
were trained to solve nonlinear differential equations.
Jaksch et al. [22] extended a quantum algorithm for solv-
ing nonlinear problems [20] to fluid dynamics, evaluating
cost functions from matrix product state representations
of the flow [23] to obtain a polynomial upper bound on
the depth of the variational network. VQA-based algo-
rithms are of interest because their potential to operate
on near-term hardware, [19] though a definitive quantum
advantage is yet to be demonstrated.

Most quantum algorithms for solving linear PDEs have
a quantum linear systems algorithm (QLSA) at their core
[10, 12–16, 24–28] such as the HHL algorithm [29] or
further optimisations thereof [30, 31]. Clader et al. [14]
developed a quantum algorithm using a QLSA to im-
plement the FEM for solving Maxwell’s equations, and
this was further clarified and developed by Montanaro
and Pallister [15]. Cao et al. [10], Wang et al. [12] and
Childs et al. [13] in their respective studies optimised
a quantum algorithm based on the FDM to solve the
Poisson equation by expressing the PDE as a system of
linear equations and then solving with a QLSA. Algo-
rithms for solving homogeneous, time-independent ODEs
[24, 25, 27, 28] in the form of Eq. (2) can be applied to
the spatially discretised advection equation. Berry [24]
proposed an algorithm using a QLSA with a linear mul-
tistep method, where the error per time step is a high
power of the time step size. A different approach was
later taken by Berry et al. [25] by encoding a truncated
Taylor series expansion of eMt in a linear system of equa-
tions, achieving an exponentially improved dependence
on precision. This work was later extended by Krovi [27]
to non-diagonalisable and singular matrices, while also
achieving an exponential improvement over Berry et al.
[25] for diagonalisable matrices with a bounded value
of ||eMt||. Berry and Costa [28] proposed encoding a
truncated Dyson series into a system of linear equations,
achieving a scaling that is linear in the evolution time
T and the norm ||M ||, and poly-logarithmic in the al-
lowable error ϵ. The primary disadvantage of algorithms
that employ a QLSA is that they require a large number
of state initialisation queries that grow linearly with the
condition number of the matrix [29], which itself grows
linearly with the desired simulation time [32]. This intro-
duces a potentially prohibitive computational overhead
given the challenges of state preparation. In addition,
the runtime of the HHL algorithm has a dependency on
1/ϵ arising from the quantum phase estimation (QPE)
step, which may become prohibitive for algorithms re-
quiring repeated applications. Subsequent works [30, 31]
have improved the ϵ dependence by applying the inverse

of the matrix as a linear combination of unitaries (LCU)
[30] or by the quantum adiabatic theorem [31], though
with significantly more involved implementations.

Quantum algorithms for solving PDEs that do not
depend on a QLSA have also been developed. Costa
et al. [11] put forward a quantum algorithm that evolves
a quantum state according to the wave equation using
Hamiltonian simulation without the need for a QLSA,
aside from in the proposed generation of the initial con-
ditions. A practical implementation of this algorithm was
then developed and analysed by Suau et al. [33], confirm-
ing that the gate requirements agreed with the theoret-
ical complexity. In a different study, Budinski [34] pro-
posed a quantum algorithm for the advection-diffusion
equation centred around the lattice Boltzmann method
(LBM) that tracks the evolution of particle distribution
functions on a grid. The main challenge of implementing
the non-unitary collision step of the LBM was achieved
with the LCU method. Simulating ODEs in the form
of Eq. (2) as Hamiltonian simulations has received much
recent attention [32, 35–38]. An et al. [38] expressed the
evolution as a linear combination of Hamiltonian simula-
tion (LCHS) problems, which is a special case of the LCU
method. The algorithm was later improved upon [32] by
further generalising the method and leading to the dis-
covery of faster-decaying coefficients in the weighted sum,
improving the ϵ dependency. Jin et al. [35–37] provided
an alternative viewpoint on this problem by introduc-
ing a Schrödingerisation method that maps linear PDEs
to a higher-dimensional system of Schrödinger equations,
then solving with Hamiltonian simulation. Both the
Schrödingerisation [35–37] and the LCHS [32, 38] algo-
rithms assume M to be negative semi-definite, applica-
ble to problems and numerical schemes that maintain or
dampen the solution, but do not amplify it. This ap-
plies to upwind and central finite difference schemes for
discretising the advection equation, but not downwind
schemes. A time-marching algorithm for the ODE prob-
lem was proposed by Fang et al. [39] by explicitly inte-
grating the PDE over short time steps, as is a common
practice in the classical numerical solution of differential
equations. This operator is not unitary so has a prob-
ability of failure in a block-encoding strategy, ordinarily
leading to an exponentially decaying success probability
in the simulation time T . This was overcome by apply-
ing a uniform singular value amplification at each time
step, resulting in a runtime with a quadratic dependence
on T . The absence of a QLSA in these methods gener-
ally leads to improved state preparation costs [32] and
favourable poly-logarithmic scaling in the allowable er-
ror per time step using sparse Hamiltonian simulation
[40] or LCU [30] algorithms. Other methods of quantum
matrix multiplication with the potential to be applied
to solving PDEs using explicit time advancement were
compared by Shao [41] based on the swap test, singular
value estimation and HHL algorithms. However, all of
these methods utilise QPE as a subroutine, thus limiting
their ϵ dependence and the number of state initialisation
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queries required.
The algorithm presented here uses an explicit time

marching strategy for solving the advection equation by
embedding numerical integrators into a series of Hamil-
tonian simulations. The algorithm achieves linear scaling
in the required number of time steps NT , requires a sin-
gle copy of the initial quantum state and applies to var-
ious boundary conditions with arbitrary finite difference
stencils. The mathematical description of the algorithm
is provided next, followed by analyses of the errors and
complexity in Sections III and IV respectively. Statevec-
tor simulations of a two-dimensional laminar channel flow
and a lid-driven cavity problem are provided and anal-
ysed in Section V and the paper is finalised with conclud-
ing remarks in Section VI.

II. THE ALGORITHM

The first step is to discretise the advection equation in
space and time using the FDM. Central, forward or back-
ward schemes of any order of accuracy can be chosen for
the spatial derivatives, and these can vary throughout
the domain, e.g. by reducing the order of accuracy and
transitioning to a one-sided scheme towards a wall. A
second-order central scheme for a one-dimensional prob-
lem will be chosen to describe the algorithm and anal-
yse its baseline properties, with different schemes being
demonstrated later in the paper. When combined with
forward Euler discretisation in time, the advection equa-
tion in one dimension for a constant velocity u becomes

ϕt+1
m − ϕtm

∆t
+ u

ϕtm+1 − ϕtm−1

2∆x
= 0 (3)

for spatial grid point m and temporal location t. Equa-
tion (3) can be solved for ϕt+1

m , obtaining an equa-

tion to advance the solution in time. A vector ϕ⃗t =
[ϕt0, ϕ

t
1, . . . , ϕ

t
N−1] can be constructed from ϕ to write Eq.

(3) as a matrix transformation

ϕ⃗t+1 = Aϕ⃗t (4)

For the described one-dimensional advection equation
discretised with a second-order central FDM, the matrix
A takes the form

A =



1 − r
2 0 r

2

r
2

. . .
. . . 0

. . .
. . .

. . .

0
. . .

. . . − r
2

− r
2 0 r

2 1


(5)

when considering simple periodic boundary treatment
where the first and last grid points are adjacent, lead-
ing to entries in the top-right and bottom-left corners.
The stability parameter r = u∆t/∆x is the Courant-
Friedrichs-Lewy (CFL) number and is related to the con-
dition number κ. To ensure numerical stability, r must

|1⟩
Ω

X |1⟩

|ϕt⟩ |ϕt+1⟩

(a)

|1⟩
Ω

|1⟩

|ϕt⟩ ≈ |ϕt⟩

(b)

FIG. 1: Quantum circuit for (a) a successful time step
measuring |0⟩ and (b) an unsuccessful time step

measuring |1⟩.

not exceed 1 [42], though in practice and especially for
explicit schemes, much lower values are required. In D-
dimensional space with k-order-accurate spatial discreti-
sation, the sparsity of the matrix s = 1+Dk with FDM
coefficients determined by k.
While divergence-free advection is a norm-preserving

process, the truncation errors from the discretisation pro-
cedure in Eq. (3) lead to the matrix A being non-unitary,
i.e. AA† ̸= I. Therefore, to enact A on a quantum
state |ϕt⟩, the non-unitary Hamiltonian embedding pro-
cedure described by Gingrich and Williams [43] is used.
A Hamiltonian H is constructed from A in the form

H =

[
0 iA

−iA† 0

]
(6)

where i is the imaginary unit. A quantum state is evolved
according to H by the unitary operator

Ω = exp (−iHθ)

= exp

([
0 Aθ

−A†θ 0

])
(7)

where the symbol θ is the Hamiltonian evolution time for
a single time step. The time step size is encoded in the
Hamiltonian, so θ affects the accuracy of a time step and
its probability of success rather than the evolution time
itself. The exponential function produces a block matrix
with the structure

Ω =

[
Ĩ Ã

B̃ Ĩ

]
(8)

and when applied to a solution register |ϕt⟩ supplemented
by an ancilla qubit initialised as |1⟩, it produces the state

Ω |1⟩ |ϕt⟩ = Ω

[
0

|ϕt⟩

]
=

[
Ã |ϕt⟩
Ĩ |ϕt⟩

]
(9)

≈
[
|ϕt+1⟩
|ϕt⟩

]
For the advection equation, the matrices Ã and Ĩ retain
the relative structure of A and the identity matrix I re-
spectively, and hence, a subspace of the Hilbert space
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evolves as described by the advection equation. Posts-
electing the ancilla qubit in the state |0⟩ collapses the

solution register to |ϕt+1⟩ = Ã |ϕt⟩, and if postselection

fails the state collapses to Ĩ |ϕt⟩ ≈ |ϕt⟩ allowing the state
to be reused for further computation. The quantum cir-
cuit representations of a successful and unsuccessful time
step are shown in Fig. 1.

III. ERROR ANALYSIS

An expression for the error upper bound can be derived
by considering the errors at each time step associated

with the application of Ã and Ĩ, and combining them
with the number of time steps required and the proba-
bility of postselection success. First, the errors per time
step are derived in Part A, followed by the probability of
a successful time step in Part B. These are combined to
produce the overall error bound in Part C and compared
to the errors when applied to a different PDE, the heat
equation, in Part D.

A. Error per Time Step

The matrix A in Eq. (5) is a Toeplitz matrix so can be
defined in terms of its diagonals, where the main diago-
nal d0 = 1, super-diagonal d1 = −r/2 and sub-diagonal

d−1 = r/2. Similarly, the corresponding terms in Ã can
be evaluated as a function of r and θ. Considering a 4×4

matrix to avoid unnecessary negligible terms, Ã can be
expressed as

Ã =

d0 :
1

2

(
sin(θ) +

sin
(
θ
√
r2 + 1

)
√
r2 + 1

)

d1,−d−1, : −
r sin

(
θ
√
r2 + 1

)
2
√
r2 + 1

(10)

d2, d−2 :
1

2

(
sin(θ)−

sin
(
θ
√
r2 + 1

)
√
r2 + 1

)

The similarity between the matrices in Eq. (5) and (10)
can be compared by constructing an error matrix that
quantifies the error of the terms relative to the main
diagonal. The property that Eq. (10) must satisfy is
d1,−d−1 = −rd0/2 with other elements equalling 0, i.e.
the relative proportions of the matrix must be consistent.

If Eq. (5) is scaled by d
(Eq.10)
0 to yield equal diagonal ele-

ments with Eq. (10), then subtracting Eq. (10) from the

scaled Eq. (5) gives the error matrix EA, given by

EA =

d0 : 0 (11)

d1,−d−1 : −r
4

(
sin(θ)−

sin
(
θ
√
r2 + 1

)
√
r2 + 1

)

d2, d−2 : −1

2

(
sin(θ)−

sin
(
θ
√
r2 + 1

)
√
r2 + 1

)

The maximum error for the application of Ã can then be
defined by taking the spectral norm of Eq. (11)

||EA|| =
1

2

(
sin(θ)

√
r2 + 1− sin

(
θ
√
r2 + 1

))
(12)

Following the same procedure, Ĩ can be written as

Ĩ =

d0 :
1

2

(
cos(θ) + cos

(
θ
√
r2 + 1

))
d−1,−d1, : 0 (13)

d2, d−2 :
1

2

(
cos(θ)− cos

(
θ
√
r2 + 1

))
and an error matrix can be constructed that quantifies
error relative to the identity matrix:

EI =

d0 : 0 (14)

d1, d−1 : 0

d2, d−2 : −1

2

(
cos(θ)− cos

(
θ
√
r2 + 1

))
Taking the spectral norm of the error matrix gives

||EI || =
1

2

(
cos(θ)− cos

(
θ
√
r2 + 1

))
(15)

which represents the maximum error for a failed postse-
lection.

B. Time Step Success Probability

The probability of a successful time step P = ||Ã |ϕ⟩ ||2
can be studied by analysing the contribution of Ĩ to the

state. The square of the spectral norm ||Ĩ||2 corresponds

to the largest action of Ĩ on a statevector squared, so can
be used to find the worst-case probability of successful

measurement Pmin = 1− ||Ĩ||2. Using the definition of Ĩ
in Eq. (13), Pmin is defined as

Pmin =

{
sin2(θ) when 0 < θ ≤ π

1+
√
r2+1

sin2(θ
√
r2 + 1) when π

1+
√
r2+1

< θ ≤ π
2

(16)
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FIG. 2: Surface plot of the minimum probability of a
successful time step defined in Eq. (16).

which is visualised in Fig. 2. The figure shows that
Pmin is optimal for small values of r and when θ =
π/(1+

√
r2 + 1), approaching unity as r approaches zero.

Using this value of θ for a typical case where r = 0.1, the
minimum probability Pmin = 99.9985%, corresponding
to a worst case of 67 000 successful time steps per failed
time step on average. It is shown in Section V that for
a practical configuration, the probability of postselection
success is mostly represented by sin2(θ), with the contri-

bution from sin2(θ
√
r2 + 1) having a reduced role lead-

ing to θ = π/2 being optimal in practice. For example,
r = 0.1 and θ = π/2 resulted in approximately 1 billion
successful time steps for every failed time step.

C. Overall Error Bound

The overall error bound for the algorithm can be eval-
uated using ϵ = NT ||EA|| + NF ||EI ||, where NT is the
required number of successful time steps and NF is the
expected number of failed time steps. Since the num-
ber of time steps required is inversely proportional to the
time step, NT = T/r, where T is the simulation time in
nondimensional form andNF = NT /Pmin−NT . Combin-
ing these expressions, the error per the simulation time
evaluates to

ϵ

T
=


1

2r

[(
cos(θ)− cos

(
θ
√
r2 + 1

))
cot2(θ)

+ sin(θ)
√
r2 + 1− sin

(
θ
√
r2 + 1

)]
1

2r

[(
cos(θ)− cos

(
θ
√
r2 + 1

))
cot2

(
θ
√
r2 + 1

)
+sin(θ)

√
r2 + 1− sin

(
θ
√
r2 + 1

) ]
(17)

when 0 < θ ≤ π
1+

√
r2+1

and π
1+

√
r2+1

< θ ≤ π
2 respec-

tively. This bound assumes that the number of failed
time steps is relatively close to the expected value, which
is reasonable as NT becomes large. This expression is

visualised in Fig. 3a, which reveals that the overall error
is mostly insensitive to the value of θ and grows linearly
with r. This indicates that for the low values of r required
for numerical stability, θ = π/2 is the most efficient con-
figuration as it minimises the required circuit depth with-
out incurring substantial additional errors. The linear
growth of error in the quantum matrix representation
indicates that the algorithm does not worsen the error
complexity from the classical Euler method that under-
pins the algorithm, and means there is little algorithmic
benefit in pursuing higher-order time integrators.

D. Comparison with the Heat Equation

To demonstrate the advantageous properties of Eq.
(17) for the advection equation, the error will be com-
pared against the algorithm applied to a different PDE,
the heat equation. The heat equation features a second
derivative term on the right-hand side

∂ϕ

∂t
= D

∂2ϕ

∂xj∂xj
(18)

where D is the diffusivity. Following the same discretisa-
tion procedure for a one-dimensional problem, the matrix
A takes the form [d−1, d0, d1] = [rh, 1 − 2rh, rh] for the
internal grid points, where rh = D∆t/(∆x)2 is the stabil-
ity parameter with a theoretical maximum value of 0.5.
The error bound for the heat equation evaluates to

ϵ

T
=



1

2rh



∣∣∣∣∣(8rh−3) sin(θ) + sin(θ−4rhθ)

+2 sin(θ−2rhθ)

∣∣∣∣∣
2−4rh

+ |sin(θ−3rhθ) + 3 sin(θ−rhθ)|
× cot2(θ−4rhθ) sin(rhθ)



1

2rh



∣∣∣∣∣(1−4rh) sin(θ) + (4rh−3) sin(θ−4rhθ)

+(2−8rh) sin(θ−2rhθ)

∣∣∣∣∣
2−4rh

+ |sin(θ−3rhθ) + 3 sin(θ−rhθ)|
× cot2(θ−2rhθ) sin(rhθ)


(19)

when 0 < r ≤ 1/3 and 1/3 < r ≤ 1/2 respectively, which
is visualised in Fig. 3b. The expression and the figure
reveal that the error asymptotically approaches infinity
for rh → 0.25 and rh → 0.5. Furthermore, as rh → 0,
the error bound does not approach zero as occurs for the
advection equation but rather approaches approximately
2, thereby making it impossible to diminish the error by
increasing the circuit depth. A local minimum value for
the error occurs when rh = 1/3, where ϵ/T reduces to
approximately 6 for θ = π/2. The errors for the ad-
vection equation are analogous to classical computations
since reducing r linearly reduces the error, with the error
approaching zero as r → 0. This is not the case when ap-
plied to the heat equation where the error is a convoluted,
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ϵ/T

0 5 10 15 20

(a) (b)

FIG. 3: Surface plot of the error bound per nondimensional simulation time as a function of r and θ for (a) the
advection equation and (b) the heat equation. For the heat equation in (b), the surface has been truncated at

ϵ/T = 20 since ϵ asymptotically approaches infinity for rh → 0.25 and rh → 0.5.

discontinuous function of rh without a clear trend. Even
using the optimal values of rh = 1/3 or rh < 0.01, the
errors are still too large for useful computation, indicat-
ing that the heat equation evolution operator cannot be
efficiently represented in this manner. Therefore, the al-
gorithm cannot be considered a sufficiently general PDE
solver.

IV. COMPLEXITY ANALYSIS

The number of qubits grows as n = O(logN) since
the computational grid is compressed into the ampli-
tudes of the exponentially growing computational basis
states. The circuit depth grows linearly with the re-
quired number of time steps NT ∝ TN1/D. The num-
ber of time steps growing linearly with the desired sim-
ulation time T is intuitive, but the N1/D factor with
the number of grid points N requires a further break-
down. It is assumed that a D-dimensional domain of
equal side lengths is discretised by N = ND

x grid points,
where Nx = Ny = Nz for D > 1. The CFL condition
rmax = max(uj)∆t/∆x < 1 constrains the time step size
to the grid spacing, where halving ∆x requires halving
∆t, or equivalently, doubling Nx requires doubling NT .
Given that NT ∝ Nx and N = ND

x , then N ∝ ND
T , or

inversely NT ∝ N1/D.

In terms of error, Fig. 3 shows that ϵ grows linearly
with r, which is the same as the underpinning Euler
method. Halving r halves ϵ, which requires doubling NT

and therefore doubling the circuit depth, so the circuit
depth grows with 1/ϵ.
The remaining complexity considerations depend on

the chosen implementation of the Hamiltonian simula-
tions. As an example, the algorithm of Berry et al. [40]
is considered due to its near-optimal properties. It com-
bines the strategies of a Szegedy quantum walk [44, 45]
and fractional-query simulation [46]. The Szegedy quan-
tum walk approach scales optimally in the matrix spar-
sity but not in the allowable error, while the simulation
of the fractional-query model scales optimally with the
error but not with the sparsity. The fractional query
model is used to correct the phase more accurately than
the QPE step in the quantum walk approaches [44, 45],
resulting in the favourable scaling in both sparsity and
the allowable error. The overall algorithm implements
Hamiltonian simulation with

O

(
τ
(
n+ log5/2(τ/ϵ)

) log(τ/ϵ)

log log(τ/ϵ)

)
(20)

gates, where τ = s||H||maxθ, s is the sparsity and
||H||maxθ is the maximum value of the matrix Hθ [40]
which is O(1) in this case. The complexity of the Hamil-
tonian simulation step can therefore be written as

O

(
s
(
log(N) + log5/2(s/ϵ)

) log(s/ϵ)

log log(s/ϵ)

)
(21)

Suppressing the poly-logarithmic terms for simplicity,
this reduces to an almost linear dependence on the spar-

sity, Õ(s). For the block-encoded Hamiltonian in Eq. (6),
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FIG. 4: Evolution of the quantum amplitudes from statevector simulations of a 2D laminar channel flow described
by the advection equation at different time intervals for (a) θ = π/(1 +

√
r2max + 1) while varying rmax and (b)

rmax = 0.25 while varying θ.
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FIG. 5: (a) The typical number of successful time steps for every failed time step as a function of rmax for different

values of θ, and (b) the probability of a successful time step P = ||Ã |ϕt⟩ ||2 and the prediction sin2(θ) for the
rmax = 0.25 case.

the sparsity of H is equal to the sparsity of A, which is
s = 1 + Dk where k is the order of the spatial discreti-
sation. Therefore, the complexity of the Hamiltonian

simulation step can be written as Õ(Dk). Since the error
ϵ does not appear in this simplified expression, the dom-
inant source of error arises from the encoding of the non-
unitary operator and the explicit Euler method rather
than the Hamiltonian simulation implementation. Com-
bining all of these contributions, the circuit depth grows

as Õ(NT s/ϵ) or Õ
(
TN1/DDk/ϵ

)
for D-dimensional sim-

ulations.
Efficient classical simulations of the advection equa-

tion typically have a time complexity of O(NNT ) [47],
and given that NT ∝ TN1/D, this can be written as
O(TN (1+D)/D). The quantum algorithm offers a sig-
nificant polynomial improvement over the classical algo-
rithm as their time complexities differ by a factor of N .
The effectiveness of the quantum algorithm increases in
higher dimensional space as the number of grid points
increases at a much faster rate than the required cir-
cuit depth, taking advantage of the exponentially grow-
ing Hilbert space.

V. SIMULATIONS

This section presents quantum statevector simulations
of the algorithm applied to a two-dimensional laminar
channel flow in Part A and a lid-driven cavity flow in
part B. In Part C, the response of the algorithm to noise
in the initial quantum state and the Hamiltonian embed-
ding is demonstrated, and the errors are quantified for
various finite difference stencils with and without noise.
In all simulations, N = 64 × 64 = 4096 grid points have
been used to discretise the problems in space, correspond-
ing to 12 qubits representing the solution and the addi-
tional ancilla qubit required by the algorithm, totalling

13 qubits.

A. Laminar Channel Flow

The velocity field u⃗ = [u, v] is described by the analyt-
ical solution to the Navier-Stokes equations in this con-
figuration, known as a plane Poiseuille flow, which has a
parabolic profile of u leading to the nondimensional CFL
parameter to be defined as

r(y) =
u(y)∆t

∆x
(22)

= rmax (4y(1− y)) 0 ≤ y ≤ 1 (23)

which varies from from 0 at the walls to rmax at the
centre of the domain, where y is the vertical normalised
distance. The vertical component of the velocity v = 0
because the flow is laminar. The scalar ϕ is initialised as
a sine wave in the horizontal direction as

ϕ(x) = sin(2πx) + 1, 0 ≤ x ≤ 1 (24)

where x is the corresponding normalised horizontal dis-
tance. The x boundaries are periodic, so fluid that flows
out of the right boundary enters through the left bound-
ary. The velocity reducing to zero at the walls (i.e. a
no-slip wall) corresponds to Dirichlet boundary condi-
tions, where the value of ϕwall is maintained according
to Eq. (24). This boundary condition results in a single
entry of 1 on the diagonal of A.

The evolution of the quantum amplitudes for (a) vary-
ing CFL parameter r and (b) varying Hamiltonian evo-
lution time θ per time step is provided in Fig. 4, showing
that a visually similar solution is reached regardless of
the values of r or θ. The equivalent simulation time cor-
responds to 2000 successful time steps for rmax = 0.1, 800
successful time steps for rmax = 0.25 and 400 successful
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FIG. 6: Error contours for the channel flow simulations compared to the analytical solution as a percentage, defined
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∣∣ϕ(x, y, t)− |ϕ⟩
∣∣/max(ϕ(x, y, t)), for (a) θ = π/(1 +
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varying θ.
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FIG. 7: (a) Velocity vectors overlaid with velocity magnitude contours for the lid-driven cavity simulations at
Re = 100, and (b) contours showing the evolution of the quantum amplitudes for lid-driven cavity simulations

discretised by a one-sided 2nd-order-accurate upwind finite difference stencil.

time steps for rmax = 0.5. The simulations in Fig. 4a use
θ = π/(1+

√
r2max + 1) calculated from Fig. 2 to optimise

Pmin, i.e. the worst-case probability of measurement suc-
cess. The simulations in 4b use a constant rmax = 0.25
while varying θ to π/2, π/4 and π/8. Varying θ alters

the probability of a successful time step P = ||Ã |ϕt⟩ ||2,
and the variation of P with rmax and θ is presented in
Fig. 5a and 5b respectively. The value of θ that optimises
the worst-case Pmin is not found to be optimal in prac-
tice, with π/2 providing a significantly greater probabil-
ity of postselection success. For example, rmax = 0.1 and
θ = π/(1 +

√
r2max + 1) leads to a typical 67 000 success-

ful time steps for every unsuccessful time step compared
to approximately 1 billion when θ = π/2. The prediction
of sin2(θ) from Fig. 2 is very accurate for all values of
θ as shown in Fig. 5b. Although the probability of time
step success is close to certain when θ = π/2, there re-
mains a small chance of failure so the algorithm cannot
be considered entirely deterministic. However this does
not impact the ability of the algorithm to prepare the
state |ϕT ⟩, it just requires further attempted time steps.
The θ = π/4 and π/8 cases in Fig. 4b demonstrate the
ability of the algorithm to withstand postselection fail-
ure, where approximately only 50% and 14.6% of the time
steps succeed, respectively.

The laminar channel flow configuration can be consid-
ered as an ensemble of one-dimensional advection prob-
lems, so has an analytical solution that can be calculated
using the method of characteristics. Given the initial

condition in Eq. (24), the analytical solution at time t is

ϕ(x, y, t) =
sin(2π(x− u(y)t)) + 1

||ϕ(x, y, 0)||
(25)

where the denominator ensures a norm of 1 so the solu-
tions can be compared like-for-like. Figure 6 compares
the quantum solution for all cases against the analyti-
cal solution by plotting the local errors as a percentage,
100
∣∣ϕ(x, y, t) − |ϕ⟩

∣∣/max(ϕ(x, y, t)). The errors remain
within 3% for every case and appear to grow linearly
with the local value of r, increasing towards the centre
of the domain where r is greatest and with increasing
rmax as shown in Fig. 6a. This is in agreement with the
theoretical linear dependency of the algorithm with the
error derived in Section IV. Figure 6b shows how the er-
rors vary with θ under the influence of unsuccessful time
steps, which shows that reducing θ does not decrease the
overall accuracy of the solution, again agreeing with the
theoretical expression visualised in Fig. 3. However, re-
ducing θ does require more time steps to be attempted,
thereby increasing the circuit depth and confirming the
theoretical result that θ = π/2 is the most efficient con-
figuration. In all cases, the errors smoothly display the
parabolic profiles of the scalar field, indicating that dis-
cretisation errors are consistently leading to propagation
at a slightly different velocity to u(y). The parabolas
of zero error are false negatives, arising due to identical
scalar values on either side of a local maximum or min-
imum masking the true error. The algorithm accurately
represents the Dirichlet boundary where the scalar gradi-
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noise in the initial state and (b) Gaussian noise in the Hamiltonian embedding. The simulations use a

4th-order-accurate central finite difference stencil.

ents are greatest, as demonstrated by the errors reducing
to zero towards the y boundaries.

B. Lid-Driven Cavity

A scalar transported in a lid-driven cavity has been
simulated to demonstrate the performance of the algo-
rithm for a multi-dimensional problem where no straight-
forward analytical solution exists. The lid-driven cavity
configuration involves a square cavity filled with a fluid,
where the top wall (lid) moves horizontally at a constant
velocity Uwall, while the other three walls remain sta-
tionary. The fluid directly adjacent to the moving wall
acquires the same velocity as the wall due to the no-slip
condition. This imparts momentum to the rest of the
fluid, causing it to circulate within the cavity.

As no analytical solution is available for this config-
uration and for comparison, the velocity field has been
generated by the commercial computational fluid dynam-
ics software Ansys Fluent [48] for a Reynolds number
Re = UwallL/ν = 100, where L is the side length of the
cavity and ν is the kinematic viscosity. The domain was
discretised with 64 × 64 cells and solved using the finite
volume method with a pressure-based coupled solver and
a second-order upwind scheme for the spatial derivatives.
The resulting velocity vectors are shown in Fig. 7a, over-

laid by the velocity magnitude. The vectors are drawn
on a 32× 32 grid for a less-cluttered graphic.
The scalar field is initialised as a sine wave in the y

direction, ϕ(x, y) = sin(2πy) + 1 for y = 0 to 1. The
quantum simulations use a second-order one-sided up-
wind finite difference stencil to evaluate the matrix A,
where the direction of the stencil is in the opposite direc-
tion to the local velocity component. The maximum CFL
parameter rmax = 0.1, the Hamiltonian evolution time
per time step θ = π/2, and the simulations have been
carried out for T = 2800 time steps with each time step
occurring successfully. The initial conditions and subse-
quent evolution of the scalar field is shown in Fig. 7b,
which shows the scalar field swirling and being distorted
by the velocity field. The no-slip wall naturally leads to
a Dirichlet condition at the boundary in pure advection
problems, and Fig. 7b shows that the wall boundary val-
ues are effectively maintained. The solution is physically
plausible and captures other qualitative features of the
flow such as the vortex location, and is in close quantita-
tive agreement with corresponding classical simulations.

C. Effects of Noise and the Spatial Scheme

Returning to the laminar channel flow where an ana-
lytical solution is available, Fig. 8 shows the effects of var-
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FIG. 9: Mean absolute value of the error with different
noise and spatial discretisation schemes.

ious types of noise on the simulations using rmax = 0.1,
θ = π/2 and a fourth-order central scheme for the spatial
derivatives. Figure 8a shows that, when subject to Gaus-
sian noise with a standard deviation of 10% of mean(ϕ),
the numerical methods in the algorithm are capable of
handling the noise as the same qualitative solution is ob-
tained as the noise-free simulations in Fig. 4. The initial
noise is retained in the final solution and does not appear
to accumulate or dampen. Figure 8b demonstrates the
effects of noise in the Hamiltonian embedding procedure
in Eq. (6). When the entries of A are subject to noise
with a standard deviation of 1% of the true value, the
correct qualitative solution is obtained with errors that
appear to grow linearly with time and the local value of
u(y).

The growth of the mean absolute value of the error
with no noise, initial state noise and Hamiltonian em-
bedding noise is shown in Fig. 9 for a fourth-order cen-
tral scheme, a second-order central scheme and a second-
order one-sided upwind scheme. In all cases, the errors
are calculated against the noise-free analytical solution
in Eq. (25). Starting with the noise-free error evolution,
Fig. 9 confirms that the mean error grows linearly with

time for all spatial discretisation schemes. The second-
order one-sided scheme is the least accurate, with mean
errors reaching 1.3% after 2000 time steps, followed by
the second-order and fourth-order central schemes with
errors reaching 0.6% and 0.1% respectively. In the pres-
ence of noise, the one-sided scheme performs best due to
the greater numerical dissipation of the noise in the small
scales whilst still capturing the derivative information in
the large scales. For the initial state noise, the central
schemes maintain the mean error at approximately 4%
while the one-sided scheme sharply reduces the error be-
fore it stabilises at below 3%. In the case of Hamiltonian
embedding noise, errors grow linearly with the simulation
time but with a much steeper gradient than the noise-free
simulations. Again, the one-sided scheme significantly
outperforms as the errors grow at a reduced rate.

VI. CONCLUSIONS

A quantum algorithm for solving the advection equa-
tion, a linear PDE prevalent in various scientific and
engineering industries, was presented. The algorithm
uses sparse Hamiltonian simulation to embed the dis-
crete time-marching operator A into the Hamiltonian H,
resulting in a unitary operator Ω = e−iHθ that encodes
A to a high accuracy regardless of the values of θ. This
ensures that a time step is completed with high accuracy
and probability. Postselection failure does not require
further state initialisation queries since the resulting op-
eration closely approximates the identity matrix, having
a minimal impact on the quantum state and allowing
the computation to continue. The algorithm applies to
multidimensional problems with arbitrary boundary con-
ditions and finite difference stencils.
From a resource utilisation perspective, qubit require-

ments grow logarithmically with the number of grid
points N and the circuit depth grows linearly with the
desired number of time steps, the sparsity of the discrete
time-marching operator and the inverse of the desired er-

ror, Õ(NT s/ϵ), when suppressing poly-logarithmic terms.
This represents a significant polynomial speedup in com-
plexity compared to classical methods, which typically
exhibit a scaling of O(NNT ), leading to a polynomial
improvement by a factor of N .
It was demonstrated mathematically that the method-

ology does not universally apply to all PDEs, using the
heat equation as an example. The derived mathemati-
cal expressions for the effects of the r and θ parameters
on the error have been validated numerically with stat-
evector simulations. In the channel flow configuration,
the amplitudes closely agreed with the analytical solu-
tion for all parameters tested. It was shown that there is
an advantage in using high-order spatial schemes when
the state varies as a continuous function, but that low-
order dissipative schemes may outperform in noisy envi-
ronments.
The typical advantages of the proposed approach over
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other algorithms are that the runtime grows linearly with
the simulation time, the state can be reused on postselec-
tion failure requiring a single copy of the initial state, any
combination of finite difference stencils can be used, and
for its simplicity of implementation. Other algorithms
that can be applied to the advection equation are typi-
cally aimed at solving homogeneous ODEs in the form of
Eq. (2), which the advection equation reduces to when
discretised in space. In comparison to QLSA-based al-
gorithms [24, 25, 27, 28], the proposed approach excels
due to the single copy of the initial quantum state re-
quired. The optimal QLSA [31] requires O(κ log(1/ϵ))
queries to the state preparation oracle, which can be-
come prohibitive when pursuing a practical quantum ad-
vantage. The quantum time-marching algorithm [39] is
conceptually the most similar to the algorithm presented
here, although results in a runtime with a quadratic de-
pendence on T compared to a linear dependence in the
present algorithm. Schrödingerisation [35–37] and LCHS
[32, 38] algorithms both assume that the real part of the

coefficient matrix M is negative semi-definite, which ap-
plies to central and upwind finite difference schemes for
the advection equation. Occasionally, however, the use of
downwind schemes cannot be avoided, such as when re-
solving the flow near a computational boundary. There-
fore, the flexibility of the proposed approach and its sim-
plicity of implementation make it a preferred choice.
Finally, developing algorithms that evolve a quantum

state by the PDE of interest is only a step towards achiev-
ing a practical quantum advantage, with methods for ef-
ficiently preparing the state and extracting useful global
statistics being crucial for preparing scientific and engi-
neering industries to be quantum-ready.
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