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The ability of quantum computers to overcome the exponential memory scaling of many-
body problems is expected to transform quantum chemistry. Quantum algorithms require
accurate representations of electronic states on a quantum device, but current approxima-
tions struggle to combine chemical accuracy and gate-efficiency while preserving physical
symmetries, and rely on measurement-intensive adaptive methods that tailor the wave func-
tion ansatz to each molecule. In this contribution, we present a symmetry-preserving and
gate-efficient ansatz that provides chemically accurate molecular energies with a well-defined
circuit structure. Our approach exploits local qubit connectivity, orbital optimisation, and
connections with generalised valence bond theory to maximise the accuracy that is obtained
with shallow quantum circuits. Numerical simulations for molecules with weak and strong
electron correlation, including benzene, water, and the singlet-triplet gap in tetramethyle-
neethane, demonstrate that chemically accurate energies are achieved with as much as 84 %
fewer two-qubit gates compared to state-of-the-art adaptive ansatz techniques.

I. Introduction

Solving the electronic Schrödinger equation underpins
theoretical predictions of chemistry. Since exact solutions
formally scale exponentially with the number of electrons,
we currently rely on polynomially-scaling approximations,
such as coupled-cluster and density functional theory.
However, these methods fail when electronic states cannot
be easily approximated, due to strong spin-coupling or
competing electronic configurations. Gate-based quantum
computation promises to solve these strongly correlated
problems by representing electronic states using polynomi-
ally scaling quantum resources.[1] For near-term quantum
hardware, which is limited to shallow circuits, the most
promising methods optimise a parametrised ansatz for the
electronic state using algorithms such as the variational
quantum eigensolver (VQE).[2] However, traditional wave
function approximations cannot be easily translated into
quantum circuits, and no consensus has been reached on
the best ansatz for practical quantum computation.[3, 4]

We define a quantum ansatz as a parametrised uni-
tary transformation Û applied to an initial qubit state
|Φ0⟩, where Û is composed of building blocks Û =

Û1(θ1) · · · ÛM (θM ) that are implemented using quantum
gate operations. This ansatz should (i) be highly accu-
rate and systematically improvable, (ii) correspond to
a shallow quantum circuit, and (iii) satisfy the physi-
cal symmetries of the Hamiltonian including the parti-
cle number, Pauli antisymmetry, and the ⟨Ŝ2⟩ and ⟨Ŝz⟩
spin quantum numbers. Generally, Û is constructed us-
ing either hardware-efficient operators, which give shal-
low circuits but fail to preserve physical symmetries,[5–8]
or fermionic operators that preserve physical symmetries,
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but require a large number of gate operations.[3, 9–16]
For example, methods based on unitary coupled cluster
(UCC) theory expand the exponential of a sum of non-
commuting fermionic operators using a Trotter approxi-
mation eÂ+B̂ = limm→∞(eÂ/meB̂/m)m, which is only ex-
act in the infinite limit.[2, 3, 17] Overcoming this trade-
off between gate efficiency and physical symmetries is a
major challenge to achieve chemically meaningful calcula-
tions on near-term devices.

The disentangled UCC approach showed that exact
states can be represented using an infinite product of
exponential one- and two-body fermionic operators.[18]
However, the accuracy of truncated expansions strongly
depends on the choice and ordering of operators.[17–19]
Therefore, state-of-the-art algorithms use an adaptive
ansatz to select the most relevant operators from a pre-
defined pool. For example, the ADAPT-VQE protocol
adds operators with the largest energy improvement on
each iteration,[20–24] while DISCO-VQE performs a cou-
pled global optimisation of the continuous operator am-
plitudes and discrete operator sequence.[25] These meth-
ods have shown that accurate and gate-efficient approxi-
mations can be identified, while even shallower circuits
can be constructed using qubit-excitation-based opera-
tors that ignore fermionic antisymmetry.[24, 26] However,
adaptive optimisation has high quantum measurement
costs that are likely to preclude simulations on real hard-
ware, and can yield very different circuits with inconsis-
tent hardware noise along potential energy surfaces.

In this work, we show that adaptive optimisation can
be avoided using a well-defined ansatz structure. We
present the tiled Unitary Product State (tUPS) approxi-
mation and show that it can provide high-accuracy, spin-
preserving, and gate-efficient quantum circuits. Building
on the quantum number preserving (QNP) gate fabric,
which combines symmetry-preservation with local qubit
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connectivity,[27] our approach maximises the accuracy for
shallow quantum circuits by incorporating orbital opti-
misation and an initial qubit state motivated by perfect-
pairing valence bond theory. We demonstrate that chemi-
cal accuracy (within 1.59mEh) can be obtained for poten-
tial energy surfaces and spin-state energies in molecules
with weak and strong electron correlation, using up to
84% fewer two-qubit gates compared to state-of-the-art
adaptive algorithms. Our results comprehensively show
that the fixed UPS ansatz can exceed the accuracy and
gate efficiency of adaptive optimisation methods, paving
the way for a new generation of electronic structure ap-
proximations for quantum algorithms.

II. Theory

A. Tiled unitary product states

It has recently been shown that an arbitrary wave
function can be constructed from a product of M unitary
fermionic operators as[18]

|Ψ(θ)⟩ =
M∏
I=1

exp(θI κ̂µI
) |Φ0⟩ , (1)

where κ̂µI
correspond to generalised one- and two-body

fermionic operators acting between arbitrary orbitals,
which may appear multiple times. Ref. 25 showed that
Eq. (1) can be restricted to include only spin-adapted one-
body operators κ̂

(1)
pq or paired two-body operators κ̂

(2)
pq

acting between spatial orbitals ϕp and ϕq, defined as

κ̂(1)
pq = Êpq − Êqp, and κ̂(2)

pq = Ê2
pq − Ê2

qp. (2)

Here, Êpq = p̂†q̂+ˆ̄p† ˆ̄q is the singlet excitation operator,[28]
p̂† ( ˆ̄p†) defines the creation operator for a high (low) spin
electron in spatial orbital ϕp, |Φ0⟩ is the initial state, and
θI are continuous parameters. Each operator may appear
multiple times with a different continuous parameter, and
the particular sequence of operators is indexed by the dis-
crete variables µI . Any state with the same particle num-
ber and spin symmetry as |Φ0⟩ can be represented for
M → ∞ using a suitable operator sequence and continu-
ous variables. Following Ref. [25], we refer to the ansatz
in Eq. (1) as a Unitary Product State (UPS) to highlight
its general mathematical structure.

The operators in Eq. (2) are generalised excitations that
are not restricted to occupied-virtual transitions. The k-
UpCCGSD approach proposed in Ref. [9] was the first
quantum ansatz to use only these one-body and paired
two-body generalised fermionic operators, showing that
the gate count can be reduced to linear scaling with the
number of spin orbitals.

In practice, we require a truncated UPS with a finite
number of operators and a shallow circuit implementation.
Building on the QNP gate fabric,[27] we define the tiled
Unitary Product State (tUPS) using L layers of fermionic

operators that act between sequential spatial orbitals
(Fig. 1A) as

|ΨtUPS⟩ =
L∏

m=1

(
A∏

p=1

Û
(m)
2p+1,2p

B∏
p=1

Û
(m)
2p,2p−1

)
|Φ0⟩ , (3)

where A = N−2
2 or N−1

2 and B = N
2 or N−1

2 for an
even or odd number of spatial orbitals N . The operators
Û

(m)
pq each contain three unique variable parameters for

every layer m and are constructed from a paired two-body
operator sandwiched between two spin-adapted one-body
operators as

Û (m)
pq = exp

(
θ
(m)
pq,1 κ̂

(1)
pq

)
exp
(
θ
(m)
pq,2 κ̂

(2)
pq

)
exp
(
θ
(m)
pq,3 κ̂

(1)
pq

)
.

(4)
So far, this circuit is almost identical to the QNP ap-
proach, but our definition of Û (m)

pq contains two one-body
operators rather than just one, giving faster convergence
with respect to the number of layers. The accuracy of
the tUPS approximation can be increased further by in-
cluding orbital optimisation and modifying the initial
qubit register using connections to the perfect pairing va-
lence bond theory,[29–33] leading to the orbital-optimised
(oo-tUPS) and perfect-pairing (pp-tUPS) variants of the
tUPS approximation, respectively (vide infra).

B. Optimal ordering of unitary operations

The favourable properties of Û (m)
pq can be understood by

characterising how the exponential operators exp(θ κ̂
(1)
pq )

and exp(θ κ̂
(2)
pq ) transform the electronic Hilbert space.

For a D-dimensional Hilbert space and θ ∈ R, the expo-
nential operators exp(θ κ̂I) belong to the SO(D) matrix
group and the anti-Hermitian operators κ̂I belong to the
associated Lie algebra so(D).[34, 35] Therefore, the op-
erators exp(θ κ̂

(1)
pq ) and exp(θ κ̂

(2)
pq ) are isomorphic to ro-

tations in Euclidean space. These rotations can be illus-
trated by considering the action of κ̂(1)

pq and κ̂
(2)
pq on the

singlet states for two electrons in two spatial orbitals ϕp

and ϕq, for which D = 3. The complete so(3) Lie algebra
is then characterised by the commutation relations

[κ̂(1)
pq , κ̂

(2)
pq ] = 2κ̂(3)

pq , (5a)

[κ̂(2)
pq , κ̂

(3)
pq ] = 2κ̂(1)

pq , (5b)

[κ̂(3)
pq , κ̂

(1)
pq ] = 2κ̂(2)

pq , (5c)

where κ̂
(3)
pq ≡ 2[κ̂

(1)
pq , κ̂

(2)
pq ] by definition. Matrix representa-

tions for these operators in the two-electron singlet basis
{|qq̄⟩ , 1√

2
(|qp̄⟩+ |pq̄⟩), |pp̄⟩}, where e.g. |qq̄⟩ = ˆ̄q†q̂† |vac⟩,
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Û
(1)
43

Û
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FIG. 1: (A) The tUPS ansatz employs a tiled gate fabric with L layers containing operators that only couple adjacent spatial
orbitals. (B) Spin-adapted one-body and paired-two body operators correspond to Givens rotations around orthogonal axes in
the singlet subspace where the spatial orbitals ϕp and ϕq contain a total of one high-spin and one low-spin electron. Arbitrary

states within this subspace exist on the surface of a sphere due to normalisation. (C) Ordering the qubits such that the
high-spin orbitals appear before the low-spin orbitals removes all the Pauli-Z strings from the Jordan–Wigner encoding of κ̂(1)

pq

and κ̂
(2)
pq , and a suitable 2D arrangement means that only local connectivity between qubits with the same spatial orbital is

required. Note that this ordering is not shown in the circuit diagram (A).

are given by

k̂(1)pq =

 0 −
√
2 0√

2 0 −
√
2

0
√
2 0

 , (6a)

k̂(2)pq =

0 0 −2
0 0 0
2 0 0

 , (6b)

k̂(3)pq =

 0
√
2 0

−
√
2 0 −

√
2

0
√
2 0

 . (6c)

Therefore, these operators are isomorphic to generators of
rotations on the singlet hypersphere[36] (Fig. 1B) through
e.g. κ̂

(1)
pq

∼= L̂x, κ̂
(2)
pq

∼= L̂y, and κ̂
(3)
pq

∼= L̂z. For many-
electron systems, k̂

(1)
pq and k̂

(2)
pq mix determinants with

the same electronic occupation excluding ϕp and ϕq, and
form a universal set of Givens rotations,[37] as described
in Appendix A.

In 3D Euclidean space, any rotation R̂ of the axis
system can be parametrised using three Euler angles
(θ1, θ2, θ3) and two rotation axes (e.g. x and y) as[35]

R̂(θ1, θ2, θ3) = exp
(
θ1L̂x

)
exp
(
θ2L̂y

)
exp
(
θ3L̂x

)
. (7)

Therefore, the singlet Hamiltonian for two-electrons in
ϕp and ϕq can be completely diagonalised using the

Û
(m)
pq (θ1, θ2, θ3) operation proposed in Eq. (4), and we do

not need to explicitly consider κ̂(3)
pq . In contrast, the oper-

ators ÛQNP
pq (θ1, θ2) = exp(θ1 κ̂

(1)
pq )exp(θ2 κ̂

(2)
pq ) used in the

QNP ansatz [27] cannot perform an arbitrary axis trans-
formation in this 3-dimensional Hilbert space.[18, 19]

The ability of Û (m)
pq (θ1, θ2, θ3) to perform any transfor-

mation within the two-electron, two-orbital Hilbert space
provides the tUPS ansatz with greater variational flexi-
bility than the QNP gate fabric, particularly when the
wave function is not dominated by a single determinant.
Therefore, the tUPS ansatz will converge faster than the
QNP approach with respect to the number of layers for
deep quantum circuits and multi-configurational ground
states. Furthermore, we can exploit a four-point and
eight-point parameter shift rule[38] to evaluate analytic
partial derivatives with respect to the tUPS parameters,
as detailed Appendix B.

C. Convergence to the exact ground state

Convergence to the exact ground state for L → ∞ is
guaranteed by the relationship of the tUPS ansatz to
the general UPS structure [Eq. (1)] and stems from dis-
entangling the fermionic Lie algebra.[18, 19] Since ev-
ery many-body excitation can be expressed using nested
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commutators containing only operators of the form κ̂
(1)
pq

and κ̂
(2)
pq , the spin-adapted one-body and paired two-body

operators can “generate” the full Lie algebra of many-
body excitations.[18, 25] Expanding the product of expo-
nential operators using the Baker–Campbell–Hausdorff
theorem,[34] eÂeB̂ = eÂ+B̂+ 1

2 [Â,B̂]+···, ensures that Eq. (1)
can represent any fermionic unitary transformation for
a sufficiently large L. This result extends to the tUPS
approach by noting that any spin-adapted one-body or
paired two-body operator can be represented as a sum of
operators and commutators that only include κ̂

(1)
p,p±1 or

κ̂
(2)
p,p±1, as shown in Appendix C.
Conserving quantum numbers such as the particle num-

ber, ⟨Ŝz⟩, and ⟨Ŝ2⟩ ensures that approximate wave func-
tions can be physically interpreted and have a high overlap
with the true ground state, making them suitable initial
states for fault-tolerant quantum algorithms.[1, 39] Em-
ploying fermionic operators means that truncated tUPS
approximations conserve particle number and Pauli anti-
symmetry, which can be broken using gate-efficient qubit
excitation operators.[15, 16, 24, 26, 40] The ⟨Ŝz⟩ and
⟨Ŝ2⟩ expectation values of |Φ0⟩ are conserved because
the spin-adapted one-body and paired two-body opera-
tors commute with the spin operators, e.g. [Ŝz, κ̂

(1)
pq ] = 0

and [Ŝ2, κ̂
(1)
pq ] = 0. Furthermore, these operators can be

implemented exactly as a quantum circuit, whereas spin-
adapted unpaired two-body operators contain a sum of
non-commuting terms that requires a Trotter approxima-
tion, which destroys the spin adaptation.[41]

D. Efficiency of quantum resources

In practice, the fermionic operators must be expressed
as elementary qubit gates using transformations such as
the Jordan–Wigner (JW) encoding[42]

p̂ =
1

2
(X̂p + iŶp)

p−1∏
r=0

Ẑr, (8a)

p̂† =
1

2
(X̂p − iŶp)

p−1∏
r=0

Ẑr. (8b)

Here, {X̂p, Ŷp, Ẑp} are the Pauli operators for the pth

qubit and
∏p−1

r=0 Ẑr encodes the fermionic anti-symmetry.
Since two-qubit CNOT gates create more noise than single-
qubit gates, the CNOT count is commonly used to assess
the practicality of a quantum circuit. For arbitrary many-
body excitation operators, the CNOT count is dominated
by the Pauli-Z string and increases with the number of
orbitals.[43] This cost can be reduced by using the qubit
creation and annihilation operators Q̂†

p = 1
2 (X̂p − iŶp)

and Q̂p = 1
2 (X̂p + iŶp) to define qubit-excitation-based

(QEB) operators.[24, 43, 44] While one- and two-body
QEB operators yield efficient circuit implementations,[43]
and can be used in ADAPT-VQE,[24, 44] they ignore

Pauli antisymmetry and can destroy the sign structure of
the wave function.

The tUPS ansatz avoids any compromise between
CNOT efficiency and symmetry preservation. If the spin-
orbitals are indexed such that κ̂

(1)
p,p±1 acts between adja-

cent qubits, with the ordering

{ϕ1, ϕ2, . . . , ϕN , ϕ1̄, ϕ2̄, . . . , ϕN̄}, (9)

then the JW encoding of the spin-adapted one-body op-
erator becomes equivalent to a QEB single excitation and
the corresponding unitary operation becomes

exp
(
θ κ̂

(1)
p,p±1

)
= exp

(
i
θ

2
(X̂pŶp±1 − ŶpX̂p±1)

)
× exp

(
i
θ

2
(X̂N+pŶN+p±1 − ŶN+pX̂N+p±1)

)
,

(10)

where p and p+N index the qubits representing the high-
and low-spin orbitals for the spatial orbital ϕp. Here,
the restriction to nearest-neighbour excitations ensures
that all the Pauli-Z strings cancel. Therefore, these op-
erators can be implemented with 4 CNOT gates.[27, 43]
Similarly, the Pauli-Z strings also cancel for the paired
two-body operators restricted to nearest-neighbour ex-
citations, allowing exp(θ κ̂

(2)
p,p±1) to be encoded with 13

CNOT gates.[27, 43] Circuit implementations for these
operations are described in Ref. [27]. Furthermore, κ̂(2)

p,p±1

could be implemented with local qubit interactions using
a 2D qubit arrangement that provides local connectivity
between the high- and low-spin states for spatial orbitals
ϕp and ϕp±1, as suggested in Fig. 1C. Consequently, each
Û

(m)
p,p±1 operator can be implemented with 21 CNOT gates

while conserving the particle number, ⟨Ŝ2⟩ and ⟨Ŝz⟩, and
anti-symmetry of |Φ0⟩, and the overall CNOT count for
the tUPS ansatz is 21L (N − 1).

E. Optimal orbitals and initial qubit state

Orbital optimisation has been shown to increase the
accuracy of VQE for the UCC ansatz restricted to dou-
ble excitations,[10, 45] pair-correlated simulations on real
hardware,[46] and separable pair approximations.[13] Or-
bital optimisation can also be used to compress the or-
bital space and reduce the number of qubits in a quan-
tum simulation.[47] Crucially, these improvements do not
increase the circuit depth since the orbital update can be
classically implemented by transforming the input molec-
ular integrals, while computing the orbital gradient re-
quires at most the two-body density matrix, which is
already measured for energy estimation.[45, 48] There-
fore, we expect that orbital optimisation in the oo-tUPS
ansatz will be essential to maximise the accuracy of shal-
low quantum circuits, and we describe its implementation
in Appendix D.
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Since the operators Û
(m)
p,p±1 only act between sequential

spatial orbitals, the entanglement generated by the first
tUPS layer can be maximised by alternating the initial
qubit register between occupied and empty spatial orbitals
(Fig. 2), with no change to the circuit cost. The first “half”
layer is then equivalent to the classical perfect pairing
(PP) approximation[32, 49] as described in Appendix E,
leading to the pp-tUPS ansatz. Since PP is a form of
valence bond theory,[50, 51] we expect that shallow pp-
tUPS approximations with this alternating initial qubit
register will be most accurate using localised bonding
and anti-bonding orbital pairs, reflecting the local qubit
interactions in the circuit. These local interactions have
previously been exploited for quantum ansätze based
on separable pair approximations.[13, 14] Furthermore,
the relationship to PP theory suggests that the L = 1
truncation will perform well for weakly interacting pairs
of strongly correlated electrons, while strong inter-pair
correlation will require more layers.

|1⟩
|1⟩
|1⟩
|1⟩
|0⟩
|0⟩
|0⟩
|0⟩

|1⟩
|1⟩
|0⟩
|0⟩
|1⟩
|1⟩
|0⟩
|0⟩

ϕ1

ϕ2

ϕ3

ϕ4

ϕ1

ϕ2

ϕ3

ϕ4

Û
(1)
21

Û
(1)
43

Û
(1)
21

Û
(1)
43

Hartree–Fock Perfect Pairing

FIG. 2: Different initial qubit registers with the first “half”
layer of the tUPS ansatz correspond to either the

Hartree–Fock (left) or Perfect Pairing (right) approximations.
For the Hartree–Fock case, the Û

(1)
pq operators only act

between occupied–occupied or virtual–virtual orbital pairs,
and thus do not change the wave function.

Despite being derived from contrasting perspectives,
the pp-tUPS circuit structure (Fig. 1A) shares structural
similarities to the SPA+ (separable pair approximation)
approach introduced in Ref. [14]. However, the pp-tUPS
approach can employ multiple circuit layers, providing
systematic convergence to the exact result. Furthermore,
the circuits in Ref. [14] are designed using pre-defined
orbital interactions based on chemical graph structures,
whereas our approach is more agnostic of the molecular
structure. It is notable that the pp-tUPS approach can
recover a similar set of orbitals and circuit structure to
SPA+ for linear hydrogen chains (see Section III B), high-
lighting the relationship between local qubit connectivity
and local orbital interactions.

III. Results and Discussion

A. Computational Details

All molecular energies were computed using state-
vector VQE simulations following the protocol described
in supplementary section “Continuous optimisation using
basin-hopping” of Ref. [25], as summarised here. Molec-
ular one- and two-electron integrals were computed us-
ing PySCF[52] for the molecular structures and ac-
tive orbital spaces detailed in the supplemental mate-
rial.[53] Matrix representations of the Hamiltonian and
the fermionic κ̂

(1)
pq and κ̂

(2)
pq operators were generated in

the number-preserving and ⟨Sz⟩ = 0 Hilbert space us-
ing OpenFermion.[54] VQE calculations were then sim-
ulated using a developmental version of the GMIN global
optimisation program.[55] The continuous parameters of
the tUPS, oo-tUPS, and pp-tUPS ansätze were optimised
using basin-hopping parallel tempering[56–58] (BHPT) to
efficiently search for the global minimum, as summarised
for VQE simulations in Ref. [25]. This BHPT scheme in-
cluded eight replica basin-hopping calculations with tem-
peratures distributed exponentially between 0.0001Eh

and 0.01Eh, and exchange between replicas was attempted
with a mean frequency of 10 steps. On each basin-hopping
step, the L-BFGS[59–63] optimisation procedure was used
with analytic gradients, and the convergence criteria was
set to a root-mean-square gradient value below 10−6 Eh

with a maximum of 2000 steps. The number of frozen
orbitals, the Hilbert space size, and the total number of
basin-hopping steps per replica is tabulated in Table I.

While orbital optimisation can be implemented by trans-
forming the molecular integrals, it is easier to include or-
bital optimisation in our current implementation using

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6

Θ̂
(1)
21

Θ̂
(1)
43

Θ̂
(1)
65

Θ̂
(1)
32

Θ̂
(1)
54

Θ̂
(2)
21

Θ̂
(2)
43

Θ̂
(2)
65

Θ̂
(2)
32

Θ̂
(2)
54

Θ̂
(3)
21

Θ̂
(3)
43

Θ̂
(3)
65

Θ̂
(3)
32

Θ̂
(3)
54

FIG. 3: Structure of the orbital transformation circuit in
the current VQE simulations. This circuit is applied

after the tUPS ansatz, with Θ̂
(m)
p+1,p = exp(θ

(m)
p+1,pκ̂

(1)
p+1,p)

and a unique parameter θ
(m)
p+1,p for each repetition m.
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TABLE I: The number of frozen orbitals, the Hilbert space size, and the total number of basin-hopping steps per
temperature replica used in the BHPT optimisation for the continuous ansatz parameters in each molecule.

Molecule Frozen core Frozen virtuals Hilbert Space Size Basin-Hopping Steps per replica
Linear H6 0 0 400 1000
Triangular H6 0 0 400 1000
LiH 0 0 225 1000
Benzene 18 12 400 1000
H2O 0 0 441 1000
N2 4 0 400 1000
BeH2 0 0 1225 250
CH2 0 0 1225 1000
Tetramethyleneethane 19 13 400 1000

additional one-body operators that are optimised as part
of the ansatz. These unitary operations are arranged in
a tiled circuit structure, as illustrated in Fig. 3, and ap-
plied after the primary tUPS ansatz structure (i.e., at the
end of the state preparation circuit). The total number of
one-body operators required is 1

2N(N−1), which dictates
the number of layers in the orbital transformation circuit.
This approach has the same expressibility as transforming
the molecular integrals, and a similar approach is used for
hardware experiments in Ref. [64]. These operators are
excluded from CNOT counts because the orbital optimi-
sation could be performed using classical pre-processing.

The alternating initial qubit state was prepared by ap-
plying a suitable series of paired two-body operators to
the HF ground state. For triplet calculations, the ini-
tial state was prepared by applying the triplet excitation
operator[28] T̂pq = 1√

2
(p̂†q̂ − ˆ̄p† ˆ̄q) to the doubly-occupied

HOMO-LUMO orbital pair. Since triplet calculations
were always performed with orbital optimisation, the ini-
tial orbitals were not adjusted prior to VQE optimisation.

Fermionic-excitation-based (FEB) and qubit-excitation-
based (QEB) ADAPT-VQE simulations were performed
with the QForte program.[65] The operator pool con-
tained all generalised one- and two-body fermionic or
qubit excitation operators without any spin adaption.
Calculations were performed up to a maximum of 200 op-
erators and the number of CNOT gates was computed
using the circuit implementations provided in Ref. [24].

B. Characterising the tUPS ansatz properties

We performed numerical VQE simulations to examine
the accuracy of the tUPS ansatz structure, as detailed
in Section IIIA. The faster convergence with respect to
the number of layers of the oo-tUPS and pp-tUPS ap-
proximations is demonstrated in the linear and triangular
isomorphs of H6 (STO-3G) with a nearest-neighbour sep-
aration of R(H−H) = 2.0Å. For the linear structure, this
bond length lies between the weakly correlated (equilib-
rium) and the strongly correlated (dissociation) regimes.
The triangular structure corresponds to a spin-frustrated
lattice, with no configuration where only opposite-spin

electrons occur on neighbouring atoms.
First, we compare the tUPS accuracy with the original

QNP approach[27] for a given L, noting that each QNP
layer contains 10 operators and 85 CNOTs compared to
15 operators and 105 CNOTs for the tUPS ansatz. Using
the ground-state Hartree–Fock (HF) orbitals for linear
H6, the QNP approximation requires L = 5 to obtain
chemical accuracy (1.59mEh), while the tUPS approach
requires only L = 4 (Fig. 4A). The greater flexibility of the
Û

(m)
pq operators in the tUPS ansatz is essential when the

wave function becomes increasingly entangled, providing
lower energies than QNP for deeper circuits. Including
orbital optimisation significantly improves the accuracy
for shallow circuits, deviating from the exact result by
only 10−4 Eh for oo-tUPS with L = 3. Furthermore, the
pp-tUPS approach requires only L = 2 to reach chemical
accuracy, reducing the deviation in the energy by a factor
of 103 compared to the HF-based tUPS ansatz with the
same circuit depth. A similar reduction in the number
of layers can be achieved using oo- or pp- variants of the
QNP ansatz, although the oo- and pp-tUPS approaches
provide as much as a 10× greater accuracy than their oo-
or pp-QNP counterparts for deep circuits. Consequently,
our approach reduces the number of operators required
to reach chemical accuracy in linear H6 from 50 to 30
with the QNP and pp-tUPS methods, respectively, and
the number of CNOT gates from 425 to 210.

While the wave function will be orbital-independent in
the L → ∞ limit, truncated approximations will depend
on the choice of molecular orbitals. The optimal pp-tUPS
orbitals for linear H6 with L = 1 form pairs of localised
bonding and anti-bonding orbitals between alternating
bonds in the molecule (Fig. 4B). These optimal orbitals
are very similar to the localised H4 orbitals used in cir-
cuits based on molecular graphs introduced in Ref. [14].
Their localised structure illustrates the close relationship
between quantum approximations with local qubit con-
nectivity and valence bond theory, providing physical in-
tuition into how these quantum ansätze capture electron
correlation. This pairing-based intuition suggests that the
pp-tUPS approximation can provide chemically-accurate
energies with L = 2 because the circuit structure can cap-
ture both intra- and inter-pair correlations for this sys-
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Û
(1)
65

Û
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FIG. 4: The tUPS, oo-tUPS, and pp-tUPS methods accelerate the energy convergence with respect to the number of layers for (A)
linear H6 and (C) triangular H6 with R(H−H) = 2.0Å. (B) The optimal orbitals of the pp-tUPS ansatz (L = 1) for linear H6 form
localised bonding and anti-bonding orbital pairs, highlighting the importance of local interactions. Note that the pp-tUPS ansatz
is invariant to rotations of the orbitals within each pair. Molecular geometries are provided in the supplemental material.[53]

tem with three pairs of strongly interacting electrons.
The spin-frustrated triangular H6 structure exhibits

stronger electron correlation, with many near-degenerate
configurations that provide significant contributions to
the ground state. The original QNP approach[27] fails to
reach chemical accuracy within 6 layers, while oo- and pp-
variants of the QNP ansatz require L = 6 (Fig. 4C). In
contrast, the standard tUPS ansatz achieves chemical ac-
curacy with L = 6, demonstrating that the greater flexibil-
ity of Û (m)

pq [Eq. (4)] is vital for strongly entangled states,
where arbitrary unitary transformations are required. The
oo-tUPS and pp-tUPS methods provide further improve-
ment, with L = 4 sufficient to reach chemical accuracy
in both cases. Although this system cannot be easily de-
composed into weakly-interacting pairs of electrons, the
pp-tUPS initial qubit state still improves the accuracy of
shallow circuits compared to oo-tUPS by maximising the
correlation captured by the first layer of the ansatz.

C. Achieving gate efficiency

The practicality of ansatz preparation on real quan-
tum hardware is dominated the number of two-qubit
CNOT gates, which provide the greatest contribution to
the circuit noise. We investigated the accuracy and gate-
efficiency of the tUPS approximation using the linear
and triangular H6 structures, the weakly correlated LiH
molecule, and the delocalised π-system in benzene. We
assume that spin-adapted one-body and paired two-body
operators in the tUPS ansatz require 4 and 13 CNOT
gates, respectively, using the circuit implementations de-
scribed in Ref. [43].

To compare with previous results, we first consider
linear H6 at R(H−H) = 1.5Å. [20, 24, 25] The fermionic-
excitation-based[20] (FEB) or qubit-excitation-based[24]
(QEB) variants of ADAPT-VQE require 1326 and 1410
CNOT gates to reach chemical accuracy, respectively,
(Fig. 5A) while similar calculations using the selected
projective quantum eigensolver (SPQE) converge with at
least 4000 CNOT gates using the STO-6G basis set.[26,
40, 66] In contrast, only 568 CNOT gates are required if
discrete optimisation is used to select the best operator
sequence from a pool containing all spin-adapted one-
body and paired two-body operators.[25] Remarkably, the
pp-tUPS ansatz outperforms these adaptive methods and
provides chemical accuracy with only 210 CNOT gates,
giving an 84% reduction relative to FEB-ADAPT-VQE.
Orbital optimisation and the alternating initial qubit
state are essential for achieving this gate efficiency, as
demonstrated by comparing to the oo-tUPS and QNP
approaches, which require 315 and 510 CNOT gates to
reach chemical accuracy, respectively. Therefore, the pp-
tUPS approach sets a new standard for the number of
two-qubit CNOT gates required to obtain a chemically
accurate quantum circuit for linear H6.

Since the triangular H6 structure features stronger
correlation than linear H6, adaptive methods such as
ADAPT-VQE require more operators and CNOT gates
to reach chemical accuracy, with 2402 and 1726 CNOT
gates required for FEB-ADAPT-VQE and QEB-ADAPT-
VQE, respectively (Fig. 5B). In contrast, the oo-tUPS
and pp-tUPS approximations provide chemical accuracy
with only 420 CNOT gates, giving an 82.5% reduction
compared to FEB-ADAPT-VQE. Therefore, the pp-tUPS
ansatz can describe weak and strong correlation with a
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FIG. 5: The oo- and pp-tUPS methods significantly reduce the quantum resources required to quantitatively predict strongly
correlated molecular energies compared to adaptive optimisation methods. The accuracy of the energy for a given number of

CNOT gates is shown for (A) linear H6 with R(H−H) = 1.5Å, (B) triangular H6 with R(H−H) = 2.0Å, (C) LiH with
R(Li−H) = 1.546Å, and (D) benzene using the (6e, 6o) active space at the experimental geometry, provided in the

supplemental material.[53] DISCO-VQE results are taken from Ref. [25] and are only available for linear H6.

similar quantum resource cost.
The LiH and benzene molecules have been extensively

studied using classical and quantum algorithms. At equi-
librium, LiH is dominated by a single Slater determi-
nant and both oo-tUPS and pp-tUPS provide chemical
accuracy with L = 1, corresponding to 105 CNOT gates
(Fig. 5C). Since LiH does not feature particularly strong
correlation, the FEB- and QEB-ADAPT-VQE approaches
provide similar gate efficiency to the pp-tUPS, although
the pp-tUPS approximation converges more rapidly once
the energy is within 10−4 Eh of the exact result. The pp-
tUPS approach reaches chemical accuracy for benzene
with 420 CNOT gates, compared to 524 for FEB-ADAPT-
VQE, providing a reduction of 20% (Fig. 5D). Conse-
quently, the pp-tUPS approach significantly reduces the
number of two-qubit CNOT gates required for chemically
accurate predictions of both weakly and strongly corre-
lated molecular energies, while also preserving the particle
number, Pauli antisymmetry, ⟨Ŝz⟩, and ⟨Ŝ2⟩ symmetries
of the initial state, and avoiding adaptive optimisation.

To ensure a fair comparison between ADAPT-VQE and
tUPS, the basin-hopping procedure was also used to opti-
mise the ansatz discovered by ADAPT-VQE after a cer-
tain number of steps (dark red dots in Fig. 5). In each
case, there is negligible improvement in the energy opti-
mised using this ADAPT-VQE-BH approach compared
to the standard ADAPT-VQE result, demonstrating that
the improved accuracy of the oo- and pp-tUPS hierarchy

arises from the ansatz structure rather the choice of opti-
misation algorithm for the continuous parameters. These
results are consistent with Ref. [67], which suggests that
ADAPT-VQE typically finds a solution close to the global
minimum if the continuous parameters are recycled on
each macro-iteration.

D. Predicting accurate potential energy surfaces

Chemical simulations rely on accurate predictions of
molecular potential energy surfaces. However, classical
methods struggle to balance the different correlation that
occurs as molecular structures change, such as competing
electronic configurations and spin-coupling during chemi-
cal reactions. We assessed the accuracy of tUPS, oo-tUPS,
and pp-tUPS approximations for archetypal potential en-
ergy surfaces, including the dissociation of H2O and N2,
and the insertion of Be into H2.

Smooth potential energy surfaces are required to com-
pute nuclear forces for geometry optimisation or dynamic
simulations. Orbital optimisation in the oo-tUPS or pp-
tUPS methods is essential to obtain smooth energy sur-
faces for all the molecules considered (Fig. 6). In con-
trast, the HF-based tUPS ansatz “jumps” between differ-
ent solutions, despite using basin-hopping optimisation
to identify the global minimum with respect to the con-
tinuous parameters. These jumps are worst for strongly
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FIG. 6: Orbital optimisation is essential for computing smooth potential energy surfaces. Energy surfaces are computed for the
H2O (STO-3G) symmetric stretch (A), N2 (STO-3G; 4 frozen core orbitals) dissociation (B), and Be + H2 (STO-6G) insertion
pathway (C) using the tUPS (i), oo-tUPS (ii), and pp-tUPS (iii) approximations, with the energetic accuracy compared in (iv).

Molecular geometries are detailed in the supplemental material.[53]

correlated states, such as the molecular dissociation limit.

The accuracy of the oo-tUPS and pp-tUPS ansatz for
dissociated H2O and N2 provides intuition into how elec-
tron correlation is captured. The symmetric stretch of
H2O simultaneously breaks two bonds into two spatially
separated pairs of spin-coupled electrons. The pp-tUPS
approximation accurately captures this correlation with
L = 1 because the first half-layer strongly couples the
electrons within each pair, and the second half-layer in-
troduces the inter-pair coupling (Fig. 6A). In contrast,
the oo-tUPS ansatz requires L = 2 to predict the correct
dissociation limit since the HF-style initial qubit regis-
ter is less efficient at describing the spin-coupled electron
pairs. Similarly, breaking the N2 triple bond gives three

pairs of spin-coupled electrons and the pp-tUPS approx-
imation requires L = 2 to capture the inter-pair corre-
lation, while the oo-tUPS approach accurately predicts
the dissociation limit with L = 3 (Fig. 6B). These results
suggest that the pp-tUPS method can dissociate L bonds
using L− 1 layers, providing valuable intuition into the
chemical applicability of this quantum ansatz.

Reaching chemical accuracy across a full potential en-
ergy surface with a consistent and small number of unitary
operators is particularly challenging for adaptive optimisa-
tion methods, which typically require more operators for
intermediate bond lengths or the strongly correlated dis-
sociation limit.[20, 24, 26, 40] In contrast, discrete global
optimisation of the operator sequence showed that accu-
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rate binding curves for H2O and N2 can be achieved with
a constant number of operators.[25] Using the pp-tUPS
ansatz, two layers (36 operators; 252 CNOTs) are suffi-
cient to get a chemically accurate binding curve for H2O,
while three layers (45 operators; 315 CNOTs) are required
for N2. By comparison, analogous FEB-ADAPT-VQE
calculations required around 400 and 2000 CNOT gates
to reach chemical accuracy for equilibrium and stretched
N2, respectively.[23] The ability of pp-tUPS to give chem-
ical accuracy for different geometries with a consistent
number of CNOT gates will be essential for balancing the
quantum hardware noise along potential energy surfaces.

Compared to the spin-coupling correlation for bond
dissociation, the Be + H2 insertion mechanism fea-
tures strong mixing between two dominant closed-shell
configurations.[68] We consider the reaction trajectory de-
fined in Ref. [69] with the STO-6G basis used in Ref. [26].
Like the H2O and N2 binding curves, orbital optimisation
is essential to obtain a smooth potential energy surface
(Fig. 6C). However, one layer of the oo-tUPS ansatz is
not sufficient to get a balanced binding curve, giving less
accurate energies for the dissociated regime where there
is competition between the Be (1s)2(2s)2 and (1s)2(2p)2

configurations[70] (Fig. 6C). The pp-tUPS ansatz pro-
vides qualitative accuracy with L = 1 (18 operators; 126
CNOTs) and reaches chemical accuracy at all points with
L = 2 (36 operators; 252 CNOTs). The highly-accurate
dissociation limit of pp-tUPS with L = 1 can be ratio-
nalised as there are two correlated pairs of electrons on
the Be atom, and the overall system is a direct product
of the Be and H2 wave functions. Crucially, the pp-tUPS
ansatz achieves this accuracy with a consistent wave func-
tion structure, while adaptive techniques typically select
between ×5 to ×130 more operators at the crossing point
(x ∼ 2Å) compared to the dissociation limit.[26]

E. Computing spin-state energetics

Resolving the energies of different spin states, such as
as singlet-triplet gaps, is important for developing effi-
cient organic light-emitting diodes, singlet fission, and
photocatalysis. However, current quantum algorithms can
only compute spin energetics using excited-state meth-
ods such as variational quantum deflation,[71] constrain-
ing ⟨Ŝ2⟩ using Lagrange multipliers,[72] or subspace ex-
pansions such as the nonorthogonal VQE[73] and quan-
tum equation-of-motion methods.[74–78] Since the tUPS
ansatz only contains operators that commute with Ŝz and
Ŝ2, the spin of the initial state is conserved for all trunca-
tions. Therefore, different spin-state energies can now be
computed on an equal footing using suitable initial states,
without any modifications to the VQE optimisation.

We first illustrate this approach using the bending mode
of methylene, which involves a crossing of the S0 and
T0 states. Both the oo-tUPS and pp-tUPS approxima-
tions qualitatively reproduce the singlet-triplet intersec-
tion point with L = 2 (36 operators; 252 CNOTs) and can
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FIG. 7: The oo-tUPS and pp-tUPS ansätze accurately
predict the singlet-triplet gap of methylene (STO-3G) with

R(C−H) = 1.117Å by preserving the ⟨Ŝz⟩ and ⟨Ŝ2⟩
quantum numbers of the initial state.

predict the singlet-triplet gap ∆EST = ES −ET to within
chemical accuracy at all points with L = 3 (54 operators;
378 CNOTs), as shown in Fig. 7. Like the ground-state
potential energy surfaces, the pp-tUPS is more accurate
than oo-tUPS for L = 1. However, this improvement is
less significant for the T0 state since the pp-tUPS ansatz
cannot capture any additional correlation between the
triplet-coupled electrons.

Tetramethyleneethane (TME) is a more challenging dis-
joint diradical, where the degenerate molecular orbitals
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FIG. 8: The oo-tUPS and pp-tUPS ansätze systematically
converge to the exact S0 and T0 energies for planar TME as
more layers are added to the ansatz. The π-system (6e, 6o)

active space is used with the STO-3G basis set at the
molecular geometry provided in the supplemental

material.[53] The singlet-triplet gap (∆EST) can be predicted
within chemical accuracy using two layers (30 operators; 210

CNOTs) of the pp-tUPS ansatz.



11

 






 

 






 

 
















  










 

















    






 

 










 

0 1 2 3 4 5 6

10-5

10-4

10-3

10-2

10-1

100

 




  

 




 


 













    










 


















    





 



































0 1 2 3 4 5 6

10-5

10-4

10-3

10-2

10-1

100

0.0

0.2

0.4

0.6

0.8

0.0

0.1

0.2

0.3

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

A

B

C

FIG. 9: Comparison of the optimised ground-state energies obtained for the tUPS hierarchy with different gradient RMS
convergence thresholds for (A) linear H6 and (B) triangular H6 with R(H−H) = 1.5Å. (C) The number of steps required to reach
convergence for individual L-BFGS runs in triangular H6 as more circuit layers are added or orbital optimisation is included.

are spatially separated.[79, 80] The (6e, 6o) active space
corresponding to the carbon π-system provides the nat-
ural approximation for predicting ∆EST. Both the oo-
tUPS and pp-tUPS approaches systematically converge to
the exact S0 and T0 energies as the number of ansatz lay-
ers is increased (Fig. 8). The pp-tUPS approach provides
a balanced representation of the two states and can pre-
dict the singlet-triplet energy gap within chemical accu-
racy using two-layers (30 operators; 210 CNOTs). Again,
the oo-tUPS approximation is less accurate for shallow
circuits, but quantitatively predicts the singlet-triplet gap
with L = 3. Consequently, the tUPS ansatz allows dif-
ferent spin states to be directly targeted in the VQE
formalism, which was previously challenging using non-
symmetry-preserving adaptive optimisation techniques.

F. Analysis of Numerical Optimisation

The number of quantum measurements to evaluate
the VQE gradient to a precision of ϵ scales as O(ϵ−2).[4]
Therefore, it is preferable to make the RMS gradient con-
vergence threshold as loose as possible while still retain-
ing chemical accuracy in the final energy. In Fig. 9A and
9B, we compare the converged tUPS, oo-tUPS, and pp-
tUPS energies for the linear and triangular H6 systems
using different RMS gradient convergence thresholds of
10−3, 10−4 and 10−6 Eh. The number of layers required
to reach chemical accuracy is unchanged in the linear H6
system, although the overall accuracy obtained with deep

quantum circuits is reduced for the looser convergence
threshold. In the H6 triangle, a convergence threshold of
10−3 Eh prevents chemical accuracy from being obtained,
but a threshold of 10−4 Eh is sufficient to leave the con-
clusions unchanged.

It is well known that variational quantum algorithms
are prone to challenging numerical optimisation. The
basin-hopping algorithm performs many L-BFGS runs
from randomly perturbed starting points, providing data
to assess the convergence properties of the tUPS ansatz
hierarchy. For the H6 triangle, we see that the number of
L-BFGS steps required for convergence generally increases
with more circuit layers for all variants of the tUPS hier-
archy (Fig. 9C). The convergence becomes slower when
orbital optimisation is included in the oo- and pp-tUPS
ansätze. For L = 4, 20-30% of L-BFGS runs reach the
maximum number of 2000 steps, giving states that are
variationally lower in energy but are not fully converged.
This large number of L-BFGS steps is concordant with
QNP calculations in Ref. [27], and is illustrative of the
optimisation challenges in VQE calculations.

IV. Conclusions

We have shown that physically-accurate parametrisa-
tions for electronic states can be constructed with very
shallow quantum circuits using the fixed pp-tUPS ansatz,
avoiding expensive adaptive optimisation methods. This
ansatz is systematically improvable, and combines physi-
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cal accuracy with gate efficiency while conserving parti-
cle number, fermionic antisymmetry, and the ⟨Ŝz⟩ and
⟨Ŝ2⟩ quantum numbers of the initial state. The accuracy
that can be achieved with shallow quantum circuits is
maximised by incorporating orbital optimisation and an
initial qubit register that is derived from perfect pairing
valence bond theory. Numerical simulations on molecules
with strongly correlated electronic states demonstrate
that chemically accurate potential energy surfaces and
singlet-triplet gaps can be predicted with significantly
fewer two-qubit CNOT gates compared to state-of-the-
art adaptive optimisation methods.

Previously, adaptive optimisation has been essential to
identify a physically accurate sequence of unitary opera-
tors with shallow quantum circuit implementations.[20,
24, 25] In contrast, the pp-tUPS ansatz achieves accuracy
and gate efficiency by using fermionic operators that only
act between nearest-neighbour spatial orbitals and by con-
sidering their properties as Lie algebraic generators for
unitary transformations. This shift away from adaptive
ansatz design offers key advantages for practical quantum
simulations: it avoids the measurement costs required to
adaptively optimise the operator sequence; and gives a
consistent circuit structure with a well-defined quantum
resource cost across all molecular structures. These ad-
vances lay the foundation for new high-accuracy fixed ap-
proximations for electronic states that embrace the nat-
ural functionality of qubit rotations, without sacrificing
fundamental physical symmetries.

This work has considered the full expressibility of the
tUPS ansatz hierarchy using global optimisation tech-
niques. Our current approach has focussed on finding the
global minimum, but requires a large number of energy
and gradient evaluations. Future investigations will be re-
quired to understand the efficiency of numerically optimis-
ing the energy, including the best optimisation algorithm,
the dependence on the initial guess, and the structure of
the underlying energy landscape. Suitable initial guesses
may be identified using concepts from valence bond the-
ory, potentially by taking advantage of related quantum
ansätze such as Refs. [13, 14, 81, 82] or using established
orbital localisation techniques.[83, 84] However, it is not
clear whether the ansatz structure, or the inclusion of or-
bital optimisation, will improve or worsen the issues of
local minima and barren plateaus in variational quantum
algorithms.[85, 86] Further numerical simulations will be
necessary to assess how much the reduction in CNOT
gates improves the noise resilience of the corresponding
quantum circuits, whether the accuracy remains consis-
tent for larger systems, and how many circuit layers are
needed.

Preparing physically accurate and gate-efficient quan-
tum representations of electronic states will be vital to
capitalise on the functionality of near-term quantum com-
puting. Current state-of-the-art methods adaptively de-
sign the ansatz for each molecule, but these have high
quantum measurement costs, give different circuits along
potential energy surfaces, and struggle to preserve spin
symmetry. We have presented the pp-tUPS ansatz, which
achieves both gate-efficiency and symmetry preservation
using a fixed circuit structure. Our approach sets a new
standard for the accuracy and gate efficiency that can
be achieved for strongly correlated molecules, using as
much as 84 % fewer two-qubit gates compared to adaptive
techniques. We believe that the tUPS ansatz hierarchy
will support the development of practical simulations for
strongly correlated chemistry on real quantum hardware.

Data Availability

The numerical data required to reproduce the figures
presented in this manuscript will be made available in an
open-source repository upon acceptance.
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A. Relating fermionic operators to Given’s rotations

The action of exp(θκ̂
(1)
pq ) and exp(θκ̂

(2)
pq ) for many-

electron systems can be understood by considering how
these operators transform many-body Slater determinants.
For a given (p, q) pair, we can group determinants ac-
cording to their occupation of the orbitals ϕp and ϕq.
In what follows, an arbitrary determinant is denoted
|kqkpkq̄kp̄;k′⟩, where kp (kp̄) are the occupation numbers
of the high (low) spin orbital corresponding to ϕp, and
k′ is the occupation vector for orbitals excluding p and
q. Since neither κ̂

(1)
pq or κ̂

(2)
pq can change the occupation

of any orbital except ϕp or ϕq, matrix representations for
each k′ can be expressed as
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κ̂(1)
pq =



0
0 −1
1 0

0 −1
1 0

0
0 −1 −1 0
1 0 0 −1
1 0 0 −1
0 1 1 0

0
0 −1
1 0

0 −1
1 0

0



, κ̂(2)
pq =



0
0

0
0

0
0

0 0 0 −2
0 0 0 0
0 0 0 0
2 0 0 0

0
0

0
0

0
0


(A1)

where the occupation numbers |kqkpkq̄kp̄⟩ are ordered as

{|0000⟩ , |1000⟩ , |0100⟩ , |0010⟩ , |0001⟩ , |1100⟩ , |1010⟩ , |1001⟩ , |0110⟩ , |0101⟩ , |0011⟩ , |1110⟩ , |1101⟩ , |1011⟩ , |0111⟩ , |1111⟩}
(A2)

and the remaining zeros have been omitted to highlight
the block diagonal structure. These matrix representa-
tions reveal the relationship of exp(θ κ̂(1)

pq ) and exp(θ κ̂
(2)
pq )

to Given’s rotations.[37] In particular, since the high- and
low-spin one-body operators commute (i.e. [τ̂pq, τ̂p̄q̄] = 0
where τ̂pq = p̂†q̂ − q̂†p̂), the one-body exponential opera-
tor corresponds to the product of two Given’s rotations as
exp(θ κ̂

(1)
pq ) = exp(θ τ̂pq)exp(θ τ̂p̄q̄). The Given’s rotation

exp(θ τ̂pq) only affects the occupancies of the high-spin
orbitals corresponding to ϕp and ϕq, and similarly for the
low-spin counterpart exp(θ τ̂p̄q̄). Analogously, the paired
two-body exponential operator exp(θ κ̂(2)

pq ) corresponds to
a Given’s rotation between the determinants with occu-
pancies |kqkpkq̄kp̄⟩ corresponding to |1010⟩ and |0101⟩.[37]

B. Parameter shift rule for tUPS gradients

Computing partial derivatives of the energy with re-
spect to the tUPS wave function parameters is essential
for practical VQE simulations and gradients. Since the en-
ergy is periodic with respect to the ansatz parameters, a
parameter-shift rule can be used to compute analytic gra-
dients using the same variational circuit architecture as
the energy computation.[87] The required parameter-shift
rule can be deduced by examining the eigenvalue struc-
ture of κ̂(1)

pq and κ̂
(2)
pq . First, we consider partial derivatives

with respect to a parameter defining an exponential spin-
adapted one-body operator exp(θ1κ̂

(1)
pq ). From Eq. (A1),

the unique eigenvalues of κ̂(1)
pq are 0, ±1i, and ±2i. There-

fore, the exact partial derivative can be computed using
an eight-point parameter shift rule.[38] A convenient ex-

pression is given as

∇θ1E =
1

2

[
E
(
θ1 +

π

2

)
− E

(
θ1 −

π

2

)]
+

(
2
√
2 + 3

2

)[
E
(
θ1 +

π

4

)
− E

(
θ1 −

π

4

)]
+

(
2
√
2− 3

2

)[
E

(
θ1 +

3π

4

)
− E

(
θ1 −

3π

4

)]
−4

√
3

3

[
E
(
θ1 +

π

3

)
− E

(
θ1 −

π

3

)]
.

(B1)

Similarly, the eigenvalues of κ̂(2)
pq are 0, and ±2i, and thus

the exact partial derivative for an exponential paired two-
body operator exp(θ2κ̂

(1)
pq ) can be computed with the four-

point parameter shift rule

∇θ2E = 2
[
E
(
θ2 +

π

8

)
− E

(
θ2 −

π

8

)]
+
(
1−

√
2
)[

E
(
θ2 +

π

4

)
− E

(
θ2 −

π

4

)]
.

(B2)

C. Universality of the tUPS wave function

Previously, the universality of UPS wave functions con-
structed from spin-adapted one-body and paired two-body
operators was derived by showing that all many-body
fermionic operators can be represented as nested commu-
tator expansions of κ̂(1)

pq and κ̂
(2)
pq .[18, 25] The universality

of the tUPS circuit structure can be shown by represent-
ing κ̂

(1)
pq and κ̂

(2)
pq as nested commutators containing only

operators that act between sequential spatial orbitals, i.e.
κ̂
(1)
p,p±1 and κ̂

(2)
p,p±1. These operators are shown to be suf-

ficient by representing the non-sequential spin-adapted
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one-body and paired two-body operators as

κ̂
(1)
p,p+2 = [κ̂

(1)
p,p+1, κ̂

(1)
p+1,p+2], (C1a)

κ̂
(2)
p,p+2 =

1

2

[
κ̂
(1)
p,p+1, [κ̂

(1)
p,p+1, κ̂

(2)
p+1,p+2]

]
+ κ̂

(2)
p+1,p+2.

(C1b)

Through these expressions, the exponential op-
erators can be implemented using the iden-
tities eÂ+B̂ = limn→∞(eÂeB̂)n and e[Â,B̂] =

limn→∞(eÂ/
√
neB̂/

√
ne−Â/

√
ne−B̂/

√
n)n.

Eq. (C1a) can be derived using the standard commuta-
tor rule [Êpq, Êrs] = δqrÊps − δpsÊrq as

[κ̂
(1)
p,p+1, κ̂

(1)
p+1,p+2] = [Êp,p+1 − Êp+1,p, Êp+1,p+2 − Êp+2,p+1]

= [Êp,p+1, Êp+1,p+2]− [Êp+1,p, Êp+1,p+2]− [Êp,p+1, Êp+2,p+1] + [Êp+1,p, Êp+2,p+1]

= Êp,p+2 − Êp+2,p = κ̂
(1)
p,p+2.

(C2)

Similarly, noting that κ̂
(2)
pq = êpqpq − êqpqp, where êpqrs = ÊpqÊrs − δqrÊps, we can use the commutator identity[28]

[Êmn, êpqrs] = δpnêmqrs + δrnêpqms − δmq êpnrs − δmsêpqrn to expand the nested commutator in Eq. (C1b) as[
κ̂
(1)
p,p+1, [κ̂

(1)
p,p+1, κ̂

(2)
p+1,p+2]

]
=
[
Êp,p+1 − Êp+1,p, [Êp,p+1 − Êp+1,p, êp+1,p+2,p+1,p+2 − êp+2,p+1,p+2,p+1]

]
= [Êp,p+1 − Êp+1,p, êp,p+2,p+1,p+2 + êp+1,p+2,p,p+2 − êp+2,p,p+2,p+1 + êp+2,p+1,p+2,p]

= 2(êp,p+2,p,p+2 − êp+2,p,p+2,p)− 2(êp+1,p+2,p+1,p+2 − êp+2,p+1,p+2,p+1)

= 2κ̂
(2)
p,p+2 − 2κ̂

(2)
p+1,p+2

(C3)

leading to the full expression in Eq. (C1b).
Here, we have shown that arbitrary spin-adapted one-

body and paired two-body operators can be expressed
as a sum of operators acting between sequential spatial
orbitals and their commutators. Therefore, the product
of exponential operators in the tUPS ansatz with an
increasing number of layers will eventually be able to
parametrise any exponential operation for the Lie algebra
of many-body excitations, as indicated through successive
applications of the Baker–Campbell–Hausdorff expansion
eÂeB̂ = eÂ+B̂+ 1

2 [Â,B̂]+···.[35] Consequently, exact wave
functions within a finite basis set can be obtained with a
sufficient L, which we expect to be finite in practice.

D. Orbital optimisation

Orbital optimisation is essential to obtain smooth po-
tential energy surfaces with truncated tUPS approxima-
tions. The molecular spatial orbitals |ϕp⟩ are defined as
a linear combination of N atomic orbitals |χµ⟩ as

|ϕp⟩ =
N∑
µ

|χµ⟩Cµ·
·p , (D1)

where we use the nonorthogonal tensor notation.[88] For
real orbitals, the coefficients Cµ·

·p are orthogonalised as

N∑
µν

C ·µ
p· ⟨χµ|χν⟩Cν·

·q = δpq. (D2)

Variations in the orbitals for the correlated wave function
|Ψ⟩ can be parametrised using the exponential form

|Ψ(s)⟩ = exp

(
N∑

m>n

smn(Êmn − Ênm)

)
|Ψ⟩ , (D3)

where s is the lower triangle of an N ×N anti-Hermitian
matrix representing a step in the orbital space. The energy
can be optimised with respect to the orbital coefficients
by computing the gradient in this representation as[28]

∂E

∂smn

∣∣∣∣
s=0

= 2(Fmn − Fnm), (D4)

where Fmn are matrix elements of the generalized Fock
matrix and are defined as

Fmn =

N∑
q

Dmqhnq +

N∑
qrs

Γmqrsgnqrs. (D5)

Here, Dpq = ⟨Ψ|Êpq|Ψ⟩ and Γpqrs = ⟨Ψ|êpqrs|Ψ⟩ are the
one- and two-body reduced density matrices (RDMs) for
the correlated wave function, respectively, and êpqrs =

ÊpqÊrs−δqrÊps.[28] The one-electron and two-electron in-
tegrals are defined as hpq = ⟨ϕp|ĥ|ϕq⟩ and gpqrs = (pq|rs),
respectively. The optimal step can then be implemented
by re-computing the one- and two-electron integrals us-
ing the updated orbitals

C̃ = C exp(s). (D6)
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Since this process only needs the one- and two-body
RDMs, which are already measured to compute the en-
ergy on a quantum device, this orbital optimisation does
not require any additional quantum resources.

E. Connection to perfect pairing theory

Perfect pairing (PP) theory is a well-established classi-
cal valence bond approximation for molecular systems.[29–
33] Starting from a closed-shell Slater determinant, the
PP wave function is constructed by assigning a unique
virtual orbital ϕi∗ to each occupied spatial orbital ϕi and
considering all excitations between each occupied-virtual
orbital pair. Arbitrary mixing between the singlet states
for each occupied-virtual orbital pair can be parametrised
with two rotation angles (xi, yi) and the total wave func-
tion for n electron pairs can then be expressed as the anti-

symmetrised product

|ΨPP⟩ = Â
n∏

i=1

(
cosxi cos yi ϕiϕī + sin yi ϕi∗ϕī∗

+
sinxi cos yi√

2
(ϕiϕī∗ + ϕi∗ϕī)

)
.

(E1)

This wave function corresponds to a product of non-
interacting singlet-coupled electron pairs and has been
instrumental in developing our understanding of molecu-
lar bonding.[32, 89] It can accurately describe the dissoci-
ation of a single bond, but requires additional improve-
ments to capture strongly interacting pairs of spin-coupled
electrons.[90, 91] The equivalence between the first half-
layer of the pp-tUPS ansatz (see Fig. 2) and the PP wave
function arises because the operators Û (1)

2p,2p−1 can exactly
solve each (2e, 2o) sub-problem, giving a direct product
of exact two-orbital sub-problems analogous to Eq. (E1).
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