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We compare the recently introduced multi-state mapping approach to surface hopping (MASH) with the
Förster and Redfield theories of excitation energy transfer. Whereas Förster theory relies on weak coupling
between chromophores, and Redfield theory assumes the electronic excitations to be weakly coupled to fast
chromophore vibrations, MASH is free from any perturbative or Markovian approximations. We illustrate
this with an example application to the rate of energy transfer in a Frenkel-exciton dimer, showing that MASH
interpolates correctly between the opposing regimes in which the Förster and Redfield results are reliable.
We then compare the three methods for a realistic model of the Fenna–Matthews–Olson complex with a
structured vibrational spectral density and static disorder in the excitation energies. In this case there are no
exact results for comparison so we use MASH to assess the validity of Förster and Redfield theories. We find
that Förster theory is the more accurate of the two on the picosecond timescale, as has been shown previously
for a simpler model of this particular light-harvesting complex. We also explore various ways to sample the
initial electronic state in MASH and find that they all give very similar results for exciton dynamics.

I. INTRODUCTION

Revealing the mechanisms of excitation energy transfer
is fundamental to the study of biological photosynthetic
systems and has motivated methodological development
for several decades.1,2 Excitonic systems typically con-
sist of an assembly of chromophores (sites) embedded in
a protein or solvent environment. Traditionally, excita-
tion energy transfer has been divided into two regimes,
depending on the relative magnitudes of the vibrational
relaxation time and the inverse of the inter-site coupling
strength.3,4 For chromophores that are weakly coupled to
each other (but have rapid vibrational relaxation, which
usually means strong coupling to the environment) the
transfer is referred to as ‘incoherent’ and proceeds via
hopping between sites. This regime can be well described
by Förster theory. In the opposite limit of slow vibra-
tional relaxation (or strong coupling between the chro-
mophores), the transfer is referred to as ‘coherent’ and
proceeds between delocalized exciton states. This regime
can be described by a perturbative master equation such
as Redfield theory. We emphasize that in either regime,
the transfer of population is often well described by a
kinetic rate equation, and that the electronic coherences
are both small and short-lived in an appropriate elec-
tronic basis.5,6

The main challenge is that many systems of interest
tend to appear in the intermediate regime where the two
timescales are comparable.7,8 For simple system–bath
models one can solve the dynamics non-perturbatively
using fully quantum methods such as the hierarchical
equations of motion (HEOM).9 Such a study of a two-
site model has shown that exciton transfer is fastest in

a)Electronic mail: johan.runeson@chem.ox.ac.uk

the intermediate regime, where the rate is not adequately
captured by either of the perturbative theories mentioned
above.10 However, fully quantum methods like HEOM
and quasi-adiabatic path integrals11,12 are only practical
for harmonic models and they can be hard to converge
for strong system–environment couplings. It is therefore
important to develop accurate methods that can describe
nonadiabatic transitions more generally, including in sys-
tems with anharmonic atomistic potentials.

So far, the most successful strategy to model nonadi-
abatic transitions has been Tully’s fewest switches sur-
face hopping (FSSH).13 Since it was first proposed in
1990, this stochastic algorithm has become immensely
popular in photochemistry and is widely implemented
in open software. However, it continues to suffer from
long-standing issues often referred to as ‘overcoherence’,
despite much effort on the development of more or less
ad hoc ‘decoherence corrections’.14

Recently, Mannouch and Richardson have proposed a
different strategy based on a phase-space mapping of two-
state systems onto a spin degree of freedom.15 This so-
called ‘mapping approach to surface hopping’ (MASH)
uses a deterministic algorithm that, in contrast to FSSH,
hops to the adiabatic surface with the largest instanta-
neous population. This strategy has many appealing fea-
tures. Firstly, it removes all ambiguity about the need
for velocity rescaling/reversal for successful/unsuccessful
hops. Secondly, it replaces ad hoc decoherence correc-
tions with a rigorous ‘quantum jump’ procedure, even
without which it has been found to be more accurate than
FSSH in a range of benchmark applications.15 Thirdly,
unlike FSSH, it can correctly describe the transition
between adiabatic and non-adiabatic rates in the spin-
boson model and it recovers Marcus theory in the limit
of a perturbative inter-state coupling.16 Finally, MASH
has been proven to relax to the correct quantum–classical
equilibrium distribution for ergodic systems, a feature
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that is not shared by any other nonadiabatic trajectory
method.17

In its original formulation, MASH was limited to sys-
tems with two electronic states, but an adaptation to
multiple states has recently been proposed.18 Compared
to the original approach, the multi-state formulation dif-
fers in the way it calculates electronic observables. The
multi-state estimators are constructed to be equivariant
under unitary basis transformations, meaning that pop-
ulations and coherences are treated on the same footing
and observables can be directly evaluated in any basis.
With these estimators, multi-state MASH provably re-
laxes to the correct quantum–classical equilibrium for a
general N -state system, in any basis.18

Unfortunately, the equivariant multi-state formulation
of MASH18 does not reduce to the original formulation15

in the two-state case. The two methods have neverthe-
less been shown to be of comparable accuracy for a wide
variety of two-state systems.18 A noteworthy exception
was found for a spin-boson model in the Marcus inverted
regime, for which the original formulation was more ac-
curate than the multi-state formulation.18 However, we
shall show below that this conclusion does not hold gen-
erally, and that for a two-site exciton transfer model the
two formulations lead to essentially the same rates, even
in the inverted regime.

In this article, we apply multi-state MASH to a more
challenging set of exciton systems than previously consid-
ered. In particular, we investigate the transition between
the regimes of ‘coherent’ and ‘incoherent’ rate theories
and compare with fully quantum benchmark results. We
then go on to investigate exciton transfer in the Fenna–
Matthews–Olson (FMO) complex, using an experimen-
tally measured spectral density to account for coupling
to vibrations, and including static disorder in the site en-
ergies. Comparison to simple rate theories indicates that
FMO is better described by Förster theory than by Red-
field theory, despite the popularity of the latter in the
exciton literature.

We also analyse in detail the choice of initial conditions
in multi-state MASH. The choice used in Ref. 18 is not
unique and, more importantly, not basis-equivariant, in
contrast to the treatment of electronic observables. We
exemplify why this could become a problem for a system
with three states, and consider alternative sets of initial
conditions. In particular, we present an approach that
overcomes the objection for three states and restores the
equivariance of the initial distribution. Upon compari-
son for exciton transfer in the dimer and FMO models,
however, we find that the initial distribution has little
practical influence on the dynamics. Based on these re-
sults, we conclude that using the simplest set of initial
conditions is well-justified for the kind of system we con-
sider here.

II. PERTURBATIVE RATE THEORIES

As a prototypical model for exciton energy transfer, we
consider the Frenkel-exciton Hamiltonian,

H = HS +HB +HSB. (1)

The first term is the system Hamiltonian in the basis of
localized pigment (‘site’) excitations

HS =

N∑
n=1

ϵn|n⟩⟨n|+
∑
n>m

Jnm(|n⟩⟨m|+ |m⟩⟨n|), (2)

where {ϵn} and {Jnm} are the site energies and the inter-
site couplings, respectively. To model interaction with vi-
brational and solvent degrees of freedom, the on-diagonal
site energies are linearly coupled to a harmonic bath,

HB =

N∑
n=1

f∑
j=1

(
p2j,n
2

+
1

2
ω2
j q

2
j,n

)
, (3)

HSB =

f∑
j=1

N∑
n=1

κjqj,n|n⟩⟨n|. (4)

Here, pj,n and qj,n are mass-scaled (mj,n = 1) momentum
and coordinate variables for the vibrational modes. The
bath frequencies and vibrational couplings are specified
through the spectral density

J(ω) =
π

2

∑
j

κ2j
ωj
δ(ω − ωj), (5)

and all sites are assumed to be coupled to identical and
independent baths. As a measure of the overall system–
bath coupling strength, we define the bath reorganization
energy

λ =
1

π

∫ ∞

0

J(ω)

ω
dω =

∑
j

κ2j
2ω2

j

. (6)

The system–bath interaction involves the bath operator
Bn =

∑
j κjqj,n, which is the energy gap between a lo-

calized excitation on site n and the ground state. In
the following, we drop the index n since the baths are
identical. To characterize the dynamics of the bath, it is
useful to define the autocorrelation function of the bath
operator,

C(t) = TrB[e
−βHBB(0)B(t)], (7)

where β = 1/(kBT ) and the time-dependence refers to
dynamics under HB. Using known expressions for the
thermal correlation functions of a harmonic oscillator,
one can show that

C(t) =
1

π

∫ ∞

0

dω J(ω)

[
coth

(
βω

2

)
cosωt+ i sinωt

]
(8)

=
1

π

∫ ∞

0

dω J(ω)
[
(1 + n(ω))eiωt + n(ω)e−iωt

]
(9)
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where n(ω) = 1/(eβω − 1) is the Bose–Einstein distribu-
tion and throughout we use units where ℏ = 1.

A. Redfield theory

In the limit of weak system–bath coupling, the effect
of the bath on the excitonic system can be described by a
second-order perturbative master equation. The pertur-
bation expansion is usually truncated in the eigenbasis of
HS, which is called the exciton basis. Diagonalizing the
system Hamiltonian gives HS =

∑
µ ωµ|µ⟩⟨µ|, where ωµ

is an eigenenergy and |µ⟩ =
∑

n U
−1
µn |n⟩ =

∑
n Unµ|n⟩ is

an exciton state. We also assume that C(t) decays faster
than the timescale of the system dynamics. Under these
two assumptions (a weak and fast bath), a standard text-
book derivation3 leads to a Markovian master equation
for the reduced density matrix of the system,

∂

∂t
ρµν(t) = −iωµνρµν(t) +

∑
µ′ν′

Rµνµ′ν′ρµ′ν′(t), (10)

where ωµν = ωµ − ων is the energy gap between the cor-
responding eigenstates of HS. The second term involves
the Redfield tensor

Rµνµ′ν′ = Γν′νµµ′ + Γ∗
µ′µνν′

− δνν′

∑
κ

Γµκκµ′ − δµµ′

∑
κ

Γ∗
νκκν′ , (11)

which is expressed in terms of the damping tensor

Γµνµ′ν′ =
∑
n

⟨µ|n⟩⟨n|ν⟩⟨ν′|n⟩⟨n|µ′⟩C̃(ωµν). (12)

Here, C̃(ω) is the Fourier–Laplace transform of the bath
correlation function,

C̃(ω) =

∫ ∞

0

dt e−iωtC(t). (13)

Inserting the expression for C(t) from Eq. (8) gives

Re C̃(ω) = J(ω)(1 + n(ω)) + J(−ω)n(−ω) (14)

Im C̃(ω) =
1

π
P

∫ ∞

−∞
dω′ Re C̃(ω)

ω′ − ω
, (15)

where P denotes principal value and, with the notation
used in this paper, J(ω < 0) = 0, so only one term
on the right-hand side of Eq. (14) is non-zero. Finally,
if the diagonal elements of ρ (the exciton populations)
are only weakly influenced by the off-diagonal elements
(the exciton coherences), one can replace Eq. (10) by
a kinetic rate equation for the populations (the secular
approximation),

∂

∂t
ρµµ(t) = −

∑
µ̸=ν

(kν→µρνν − kµ→νρµµ) (16)

with the Redfield rate constants

kµ→ν = 2
∑
n

⟨µ|n⟩⟨n|ν⟩⟨ν|n⟩⟨n|µ⟩Re C̃(ωµν). (17)

B. Förster theory

In the opposite limit of strong system–bath coupling,
one may instead pick the perturbation parameter to be
the intersite coupling Jnm. This is the Förster-type in-
coherent hopping limit, in which the subsystem follows a
kinetic rate equation in the site basis. The Förster rate
constants are19

kn→m = 2|Jnm|2 Re
∫ ∞

0

dt F ∗
n(t)Am(t) (18)

where Fn(t) and Am(t) are the flourescence and absorp-
tion lineshape functions, which based on the cumulant
expansion technique can be written as

F ∗
n(t) = e+i(ϵn−λ)t−g(t) (19)

Am(t) = e−i(ϵm+λ)t−g(t). (20)

The function g(t) is

g(t) =

∫ t

0

dt1

∫ t1

0

dt2 C(t2), (21)

where C(t) is the bath correlation function in Eq. (8).
For the Frenkel-exciton model with identical baths, the
rate expression in Eq. (18) reduces to

kn→m = 2|Jnm|2 Re
∫ ∞

0

dt ei(ϵn−ϵm)t−2g(t), (22)

where

g(t) =
∑
j

κ2j
2ω3

j

(
coth

(
βωj

2

)
(1− cosωjt) + i sinωjt

)
.

(23)

III. MULTI-STATE MASH

An alternative strategy is to simulate the bath dy-
namics explicitly with surface hopping. To this end, we
rewrite the Frenkel-exciton Hamiltonian in Eq. (1) as

Ĥ(p, q) =
∑
j,n

p2j,n
2

+ V̂ (q), (24)

where

V̂ (q) =
∑
nm

Vnm(q)|n⟩⟨m| (25)

is a (diabatic) potential operator with matrix elements

Vnm(q) =

(
ϵn +

∑
j

κjqj,n +
∑
j,l

1

2
ω2
j q

2
j,l

)
δnm + Jnm.

(26)
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Surface hopping is almost always run on adiabatic sur-
faces, i.e., in the eigenbasis of V̂ (q),

V̂ (q) =
∑
a

Va(q)|a(q)⟩⟨(q)|. (27)

We will refer to p, q as nuclear variables (physically, they
represent intramolecular vibrations as well as collective
modes of the solvent). Their dynamics is coupled to the
electronic wavefunction |ψ⟩, which can be expanded in
the diabatic or the adiabatic basis as

|ψ⟩ =
∑
n

cn|n⟩ =
∑
a

ca|a(q)⟩. (28)

The coefficients obey the Schrödinger equation

ċn = −i
∑
m

Vnm(q)cm (29)

or (equivalently)

ċa = −iVa(q)ca −
∑
j

q̇j
∑
b

djab(q)cb, (30)

where djab(q) = ⟨a(q)|∇j |b(q)⟩ is a nonadiabatic coupling
matrix element. (Here and in the rest of this section, the
index j runs over the nuclear degrees of freedom of all
sites, not just one.)

In MASH, the nuclear trajectories evolve according to
the classical equations of motion

q̇j = pj/mj (31a)

ṗj = −⟨a(q)|∇j V̂ |a(q)⟩ (31b)

where a is the adiabatic state with the largest instanta-
neous population |ca|2. Effectively, this means that the
nuclei evolve on a potential with abrupt steps. By intro-
ducing the classical state projectors,

Θn =

{
1 if |cn|2 > |ck|2 ∀k ̸= n

0 otherwise,
(32)

one can express the effective potential perceived by the
nuclei as

Veff =
∑
a

Va(q)Θa(c). (33)

At each instant, precisely one of the Θa(c) factors in the
sum of Eq. (33) is non-zero. Whenever a new state b
reaches a higher population than the current state a, the
nuclei meet a potential step Vb−Va. When crossing such
a potential step, the momentum is rescaled so as to con-
serve energy, and if there is insufficient kinetic energy to
overcome the step, the momentum is instead reversed. In
multi-state MASH, the momentum component subject to
rescaling/reversal is the projection onto the direction of
a vector v with elements18

vj =
∑
a′

Re
[
c∗a′(d

j
a′aca − dja′bcb)

]
. (34)

Because the hops occur deterministically, it is straightfor-
ward to adjust the timestep if necessary to better resolve
a given hopping event (whereas in a stochastic algorithm,
changing the timestep would change the locations of the
hops).

A. Estimators

Having defined the dynamics of each trajectory, we
next address how to measure observables. Consider a
process starting in a pure electronic state |i⟩⟨i| with
a (normalized) nuclear density ρB(p, q). The time-
dependent expectation value of an observable O is then

⟨O(t)⟩ = Tr[ρB(p, q)|i⟩⟨i|(0) Ô(t)], (35)

where the trace runs over nuclear as well as electronic de-
grees of freedom. The corresponding expression in multi-
state MASH is the phase-space integral

⟨O(t)⟩ ≈

∫
dpdq

∫
|c|=1

dc ρB(p, q)ρi(c)O(pt, qt, ct)∫
dp dq

∫
|c|=1

dc ρB(p, q)ρi(c)
(36)

where
∫
|c|=1

dc is an integral over all normalized elec-

tronic wavefunctions. A simple way to sample this inte-
gral is generate 2N normal deviates {xn, yn}Nn=1 and set

cn = (xn + iyn)/
√∑

k(x
2
k + y2k).

In the following, we consider the case where Ôn =
|n⟩⟨n| is an electronic population, for which the time-
dependent estimator is simply On(ct). There are mul-
tiple ways to construct this estimator.18 If we are inter-
ested in an adiabatic population, then the state projector
Θa(ct) is a natural choice that is consistent with the adi-
abatic surface the nuclei are evolving on. However, the
state projector is not a good estimator for diabatic pop-
ulations because it does not transform correctly under
unitary basis transformations.18

Another estimator that would transform correctly be-
tween bases is the Ehrenfest population |cn|2, but insert-
ing this choice into Eq. (36) leads to the wrong long-time
equilibrium populations. In Ref. 18 it was shown that
a simple estimator that fulfils both criteria (equivariance
under unitary basis transformations and consistency with
the quantum-classical equilibrium populations) is

On(c) = αN |cn|2 + βN (37)

where

αN =
N − 1∑N

k=1(1/k)− 1
βN =

1− αN

N
(38)

are two scalars that require no more information than
the number of states. This is the population estimator
that is used in multi-state MASH calculations.18
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B. Initial conditions

What remains to be defined is the choice of initial elec-
tronic distribution ρi(c) in Eq. (36). This distribution is
not unique, in the sense that many (quasi)probability
distributions will fulfil the initial condition∫

|c|=1
dc ρi(c)Oj(c)∫

|c|=1
dc ρi(c)

= δij . (39)

In the following we consider a few options.

1. Cap initial condition

A simple choice is

ρi(c) = Θi(c), (40)

which was used in Ref. 18. What this equation implies is
that the initial state is chosen randomly from the region
where |ci|2 is the largest population. The left column
in Fig. 1 visualizes this region for two and three-level
systems. We will refer to these regions as ‘caps’ on the
sphere/simplex and consequently to Eq. (40) as the ‘cap’
initial distribution.

Although the cap distribution has been found to be
accurate in a variety of benchmark calculations,18 it is
not basis-equivariant, unlike the population estimator
in Eq. (37). A related issue is that the diabatic ba-
sis is not unique, which makes the diabatic state pro-
jector ambigously defined. As a simple example, con-
sider a three-state system in which we want to start
from state 1. Suppose we sample the vector c =
1√
3
(
√
1 + 2ϵ,

√
1− ϵ,

√
1− ϵ), where ϵ is some number

in the range 0 < ϵ < 1. This vector has Θ1(c) = 1
and would therefore contribute to the dynamics. But if
we define a new set of diabatic basis vectors |1̃⟩ = |1⟩,
|2̃⟩ = (|2⟩+ |3⟩)/

√
2, |3̃⟩ = (|2⟩ − |3⟩)/

√
2, then for ϵ < 1

4

the maximally populated state is |2̃⟩. Thus, even though
the ket of the initial state is unchanged, the same vector
c would no longer contribute to the dynamics.

2. Focused initial condition

Perhaps the most intuitive choice for the initial wave-
function corresponding to |i⟩⟨i| would be to set ci = 1 and
cj ̸=i = 0, corresponding to a pole on the sphere or a cor-
ner of the simplex. This approach is standard in Ehren-
fest dynamics and (provided i is an adiabat) in FSSH.
However, for MASH it would violate the constraint in
Eq. (39). The reason is that in the initial corner of the
simplex, Oi(c) > 1 and Oj ̸=i(c) < 0.

The analogous initial condition for MASH with the cor-
rect initial value would be to start from wavefunctions c
for whichOi(c) = 1 andOj ̸=i(c) = 0. Such wavefunctions
are confined to circles on the sphere and isolated points

on the simplex, as shown in the second column of Fig. 1.
The circle (point) is defined by |ci|2 = (1− βN )/αN and
|cj ̸=i|2 = −βN/αN . These conditions fix the magnitudes
of all components of c, leaving the phases to be sampled
uniformly from [0, 2π). The resulting ‘focused’ initial dis-
tribution can be written as

ρi(c) = δ

(
|ci|2 −

1− βN
αN

)∏
j ̸=i

δ

(
|cj |2 +

βN
αN

)
. (41)

An advantage of this choice is that each trajectory
is initialized with physical population observables, so
it may be possible to use fewer trajectories than with
the cap initial condition to reach statistical convergence.
Nevertheless, the focused distribution is also not basis-
equivariant.

3. Equivariant initial condition

In this section, we derive a quasiprobability distri-
bution ρi that transforms correctly under unitary basis
transformations. To satisfy the condition in Eq. (39), the
simplest approach is to try the same functional form as
the time-dependent observable in Eq. (37), i.e.

ρi(c) = aN |ci|2 + bN (42)

with some constants aN , bN that need not be the same as
αN , βN . The resulting ρi(c) need not be positive definite
since we can multiply each c sampled from the |c| = 1
sphere by a weight that is positive or negative.
To evaluate the integral in Eq. (39), we make use of

the following moments:

⟨|cn|2⟩ =
1

N
, ⟨|cn|2|cm|2⟩ = δnm + 1

N(N + 1)
(43)

where

⟨f⟩ ≡

∫
|c|=1

dc f∫
|c|=1

dc
. (44)

These expectation values can be derived using standard
formulas for integrals over a sphere.20 With the help of
the moments in Eq. (43), Eq. (39) reduces to two equa-
tions in two unknowns, with the solution

aN =
N + 1

αN
, bN = −1− aNβN . (45)

Note that there is some similarity between the Roman
constants and the Greek ones in Eq. (38). For example,
αN and βN are related through NβN = 1−αN , and like-
wise aN and bN are related through NbN = 1−aN . This
means that not only On(c) but also ρi(c) involves a scal-
ing relative to the centre of the simplex: after inserting
βN and bN we get

On(c) =
1

N
+ αN

(
|cn|2 −

1

N

)
(46)
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FIG. 1. Schematical overview of the MASH initial conditions considered in this article for the case of two (top row) and three
(bottom row) states. In the two-state case, σx = 2Re c∗1c2, σy = 2 Im c∗1c2, and the vertical axis σz = |c1|2 − |c2|2 corresponds
to polarization in a given diabatic basis, while the tilted axis in the right column corresponds to polarization in the adiabatic
basis. Dark blue shading indicates a higher weight and red shading a negative weight. The initial conditions in the first three
columns are used together with the equivariant time-dependent observable in Eq. (37). The original MASH method uses an
alternative prescription that is (so far) limited to two states.

and

ρi(c) =
1

N
+ aN

(
|ci|2 −

1

N

)
. (47)

The special status of the centre of the simplex is analo-
gous to the special role of the identity operator in phase-
space mapping methods.21,22

4. Original MASH

For two-level systems, the original MASH method of
Mannouch and Richardson15 uses an alternative prescrip-
tion in which diabatic observables are first converted to
the adiabatic basis, where populations and coherences are
then measured with different estimators. Explicitly, for
a ̸= a′ and b ̸= b′, their prescription is (in our notation)

Tr[|a⟩⟨a|(0)|b⟩⟨b|(t)] 7→
2
∫
dcWa(c)Θa(c)Θb(ct)∫

dc
(48)

Tr[|a⟩⟨a|(0)|b⟩⟨b′|(t)] 7→
4
∫
dcΘa(c)c

∗
b,tcb′,t∫

dc
(49)

Tr[|a⟩⟨a′|(0)|b⟩⟨b′|(t)] 7→
6
∫
dc c∗aca′ c∗b,tcb′,t∫

dc
(50)

where Wa(c) = 4|ca|2 − 2 is a weight that goes to zero
when the two adiabats have equal populations. Note that

this approach differs from the others above not only in
the initial distribution but also in the construction of the
time-dependent observable.

IV. RESULTS

A. Exciton dimer

To investigate the transition from Redfield to Förster-
like transfer, we consider a two-site exciton model with
ϵ1 − ϵ2 = 100 cm−1 and J12 = 20 cm−1. Each site is
coupled to a bath at T = 300K with the Debye spectral
density

J(ω) = 2λ
ωωc

ω2 + ω2
c

(51)

where ωc = 53 cm−1. The quantity of interest is the for-
ward intersite rate k1→2 as a function of λ. This model
is well-studied in the literature10,23–25 and therefore al-
lows comparison with a wide range of methods. Quan-
tum mechanical (HEOM) benchmark results have been
computed by Ishizaki and Fleming,10 who observed that
Redfield theory is accurate for small λ but qualitatively
wrong for large λ, whereas Förster theory is only valid for
large λ. In their calculations, the forward and backward
rate constants were obtained by fitting the population
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FIG. 2. Rate of intersite population transfer in a Frenkel-exciton dimer as a function of the bath reorganization energy. MASH
agrees closely with the HEOM benchmark across the entire parameter range (left panel), regardless of the particular choice of
initial condition (right panel).

dynamics to the kinetic model

d

dt
⟨P1(t)⟩ = −k1→2⟨P1(t)⟩+ k2→1⟨P2(t)⟩

d

dt
⟨P2(t)⟩ = k1→2⟨P1(t)⟩ − k2→1⟨P2(t)⟩ (52)

where the site density matrix was initialized as |1⟩⟨1|. No
secular approximation was applied in the Redfield theory.

To assess the performance of MASH, we have calcu-
lated the population dynamics using all three of the ini-
tial conditions considered in Section III, and performed
additional calculations with the original version of MASH
for comparison. The bath was discretized into 100 modes
per site using a standard discretization scheme26 and the
nuclei were initialized from the classical Boltzmann dis-
tribution of an uncoupled bath. The dynamics was aver-
aged over 105 trajectories.

When extracting the rate, we observed that fitting the
population difference ⟨σz(t)⟩ = ⟨P1(t)−P2(t)⟩ to a single
exponential,

⟨σz(t)⟩ = (⟨σz(0)⟩ − ⟨σz⟩eq)e−ktott + ⟨σz⟩eq, (53)

with ktot = k1→2 + k2→1 as a fitting parameter, was
more stable than using the two-parameter fit in Eqs. (52).
Since the nuclear statistics is essentially classical (kBT <
ωc), MASH is guaranteed to recover the correct equilib-
rium value ⟨σz⟩eq = ⟨P1 − P2⟩eq, as do HEOM, Redfield
and Förster theory. So there is no need for an addi-
tional free parameter. Once ktot has been extracted from
Eq. (53), the forward rate constant can be calculated as

k1→2 = ktot⟨P2⟩eq = ktot
1

2
(1− ⟨σz⟩eq) , (54)

which follows from the detailed balance relation
k1→2/k2→1 = ⟨P2⟩eq/⟨P1⟩eq. To ensure a fair compar-
ison, we have also recalculated the Redfield and HEOM
population dynamics (using the Pyrho open source soft-
ware package27), and applied the same fitting procedure

to those. This was found to lead to slighly (< 10%) dif-
ferent rates compared to Ref. 10.
Figure 2 shows our results together with the Förster

theory rates from Ref. 10. We find that MASH agrees
closely with HEOM across the entire parameter range
(left panel), including the Redfield and Förster-type
regimes. Moreover, all four versions of MASH lead to
essentially the same rates (right panel). This is inter-
esting because the cap initial condition has previously
been found to be less accurate than the original ver-
sion of MASH for a spin-boson model in the Marcus in-
verted regime.18 In the present calculations, the region
2λ < ϵ1 − ϵ2 = 100 cm−1 is formally in the inverted
regime, but the different initial conditions nevertheless
lead to similar behaviour. We reach the same conclusion
when we convert the Frenkel-exciton model into a spin-
boson model with matching bias and total reorganization
energy, which we find does not noticeably change either
the HEOM or the MASH rates. Hence, all four versions
of MASH can be regarded as reliable in the present in-
verted regime. The inverted regime considered in Ref. 18
was more challenging owing to its larger bias (20 times
the diabatic coupling matrix element rather than the 5
times considered here), and in that regime the original
version of MASH is to be preferred.

B. Eight-site Fenna–Matthews–Olson complex

Another well-known benchmark system for exciton
energy transfer is the Fenna–Matthews–Olson complex
found in green sulfur bacteria. We have previously
demonstrated that MASH (with cap initial conditions)
agrees closely with HEOM for a standard seven-site FMO
model with a Debye spectral density.18 Here, we con-
sider a more challenging (and realistic) eight-site model
with a structured spectral density extracted from fluores-
cence line narrowing experiments.28 The resulting bath
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FIG. 3. Population dynamics in FMO at 300K comparing MASH with different initial conditions to well-established rate
theories. Left: dynamics in the site basis after an initial excitation of site 1. The three MASH initial conditions lead to
identical results and agree qualitatively with Förster theory at long times. The inset shows the site labels using the same
colouring as for the data curves. Right: dynamics in the exciton basis after an initial excitation of exciton 8. The three MASH
initial conditions lead to similar results and predict notably slower transfer than (secular) Redfield theory. The inset depicts
qualitatively the spatial extent of the exciton states and their labels in order of increasing energy.

has a reorganization energy of λ = 45 cm−1. The in-
tersite couplings and average site energies (shown in Ta-
ble I) were obtained from electrostatic calculations for
the FMO complex of Prosthecochloris aestuarii.29 Static
disorder was included by sampling the site energies with
the Gaussian widths shown in Table II, which were cal-
culated by Müh et al.30

We are not aware of any fully quantum benchmarks
for this model, so instead we compare MASH to Förster
and Redfield theory. These methods have a long his-
tory in modelling the dynamics of FMO.6,31,32 Here, we
calculate the dynamics in the site basis using Förster
theory and the dynamics in the exciton basis using Red-
field theory within the secular approximation. In each
basis, the dynamics is therefore simply a propagation of
the populations with a constant rate matrix. For sim-
plicity, we start from an excitation localized on a single
site (for the site basis calculation) or on a single exciton
(for the exciton basis calculation). The Förster and Red-
field dynamics were averaged over 1000 samples of the

site energies to account for static disorder. In the MASH
calculations, the bath was discretized into 100 modes per
site using an equally spaced grid up to ωmax = 500 cm−1,
and the modes were initialized from the classical Boltz-
mann distribution of an uncoupled bath at 300K. The
dynamics were averaged over 106 trajectories for the cap
and equivariant initial conditions and 105 for the focused
initial condition to ensure tight convergence.

The left panel of Fig. 3 shows the site populations after
an initial excitation of site 1. All three MASH initial con-
ditions give indistinguishable results. Apart from a tran-
sient (< 0.5 ps) coherence between sites 1 and 2, the dy-
namics is essentially rate-like. Although Förster theory
does not capture the coherence and differs from MASH at
short times, in particular for site 8, it agrees qualitatively
with MASH at longer times. This observation is consis-
tent with previous studies for simpler FMO models,33,34

where Förster theory was found to be qualitatively reli-
able in comparison with exact benchmark results, despite
several site couplings being as strong as 90 cm−1. The
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TABLE I. Average site energies and couplings for FMO29 in
units of cm−1.

Site 1 2 3 4 5 6 7 8
1 310 −94.8 5.5 −5.9 7.1−15.1−12.2 39.5
2 230 29.8 7.6 1.6 13.1 5.7 7.9
3 0 −58.9 −1.2 −9.3 3.4 1.4
4 180 −64.1−17.4−62.3 −1.6
5 405 89.5 −4.6 4.4
6 320 35.1 −9.1
7 270 −11.1
8 505

TABLE II. Gaussian widths (full width at half maximum) of
the site energies30 in cm−1.

Site 1 2 3 4 5 6 7 8
FWHM 60 100 60 60 120 120 120 100

reason is likely that the strong couplings only matter for
the first ∼ 100 fs, whereas on the ∼ 1 ps timescale the
population transfer is controlled by the weaker couplings
for which Förster theory is accurate.

The right panel of Fig. 3 shows the exciton popula-
tions after an initial excitation of exciton 8. This exciton
state is spatially located on sites 8 and 1, and has been
identified as one of the dominant pathways when cap-
tured photon energy enters the FMO complex from the
baseplate of the chlorosomes.6 Again, all MASH initial
conditions lead to similar dynamics up to a slight dif-
ference that washes out within 1 ps. Notably, the over-
all transfer is significantly slower than in Redfield the-
ory, by roughly a factor of 2. This observation is con-
sistent with a previous study using a phase-space map-
ping of the electronic states,35 where it was shown that
even though the Markovian approximation is valid for the
present bath, the system–bath coupling is too large for
second-order perturbative approaches like Redfield the-
ory to be reliable (see Figs. S2 and S5 of Ref. 35). Since
MASH has the additional advantage of relaxing to the
correct long-time limit, we expect it to be more accurate
than those previous mapping calculations. Note, how-
ever, that MASH can experience negative populations
for intermediate times. In the present calculations, ex-
citon state 7 becomes slightly negative between 0.1 and
0.3 ps with the ‘cap’ and ‘equivariant’ initial conditions.
This could be a real effect or due to insufficient sam-
pling. Currently, neither of the versions of MASH guar-
antees complete positivity of the system density matrix
except in the long-time limit. (For two states, the origi-
nal MASH gives strictly non-negative populations only in
the adiabatic basis.) The quantum-jump correction15,16

may help to alleviate this deficiency in future work.

V. CONCLUSIONS

In this article, we have shown by comparison with
exact results that MASH correctly captures the transi-
tion from the Redfield to Förster regimes for an exciton
dimer. This is the case no matter if one uses the orig-
inal two-state observables or the equivariant estimators
in multi-state MASH. In conjuction with the recent find-
ing that MASH recovers Marcus theory in the diabatic
limit,16 our results further establish MASH as a gener-
ally reliable rate theory across several relevant parame-
ter regimes. Since it additionally relaxes to the correct
equilibrium populations for excitonic systems in classical
environments, in contrast to any other nonadiabatic dy-
namics method we are aware of, and since it is applicable
to systems described by general anharmonic interaction
potentials, we would argue that MASH is a practical tool
that is capable of capturing almost all of the relevant in-
gredients of exciton transfer. (It has yet to be generalized
to include quantum mechanical effects in the nuclear mo-
tion, which is a work in progress.)
For a challenging model of FMO including static dis-

order and an experimental spectral density, we find that
MASH agrees qualitatively with Förster theory (apart
from a short transient coherence in the site basis), even
though several inter-site couplings are expected to be be-
yond the range of applicability of the golden rule. In
the exciton basis, MASH differs from Redfield theory in
its slower energy transfer timescale, confirming findings
from spin-mapping methods36,37 that the system–bath
coupling is too large to treat as a perturbation.35

We have also described and resolved an important is-
sue regarding the initial conditions in multi-state MASH.
For the present systems, we find that the results are vir-
tually identical for various different choices of the initial
conditions. Although the situation would likely be dif-
ferent for applications in excited-state photochemistry,
we conclude that for the condensed-phase environments
considered here one may use whichever initial condition
is more practical. A previous calculation for a spin-boson
model in the Marcus inverted regime has found that the
‘cap’ initial condition in multi-state MASH and the origi-
nal MASH method give different relaxation timescales,18

but for the present dimer model there is no noticeable
difference between the two methods even for model pa-
rameters that correspond to the inverted regime.
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J. P. Ogilvie, V. I. Prokhorenko, T. Renger, H.-S. Tan, R. Tem-
pelaar, M. Thorwart, E. Thyrhaug, S. Westenhoff, and D. Zig-
mantas, “Quantum biology revisited,” Sci. Adv. 6, eaaz4888
(2020).

7G. D. Scholes, “Coherence from light harvesting to chemistry,”
J. Phys. Chem. Lett. 9, 1568–1572 (2018).

8A. J. Sneyd, D. Beljonne, and A. Rao, “A new frontier in exciton
transport: Transient delocalization,” J. Phys. Chem. Lett. 13,
6820–6830 (2022).

9Y. Tanimura and R. Kubo, “Time evolution of a quantum sys-
tem in contact with a nearly Gaussian-Markoffian noise bath,”
J. Phys. Soc. Jpn. 58, 101–114 (1989).

10A. Ishizaki and G. R. Fleming, “Unified treatment of quantum
coherent and incoherent hopping dynamics in electronic energy
transfer: Reduced hierarchy equation approach,” J. Chem. Phys.
130, 234111 (2009).

11N. Makri and D. E. Makarov, “Tensor propagator for iterative
quantum time evolution of reduced density matrices. I. Theory,”
J. Chem. Phys. 102, 4600–4610 (1995).

12N. Makri, “Small matrix disentanglement of the path integral:
Overcoming the exponential tensor scaling with memory length,”
J. Chem. Phys. 152, 041104 (2020).

13J. C. Tully, “Molecular dynamics with electronic transitions,”
J. Chem. Phys. 93, 1061–1071 (1990).

14L. Wang, J. Qiu, X. Bai, and J. Xu, “Surface hopping methods
for nonadiabatic dynamics in extended systems,” WIREs Com-
put. Mol. Sci. 10, e1435 (2020).

15J. R. Mannouch and J. O. Richardson, “A mapping approach to
surface hopping,” J. Chem. Phys. 158, 104111 (2023).

16J. E. Lawrence, J. R. Mannouch, and J. O. Richardson, “Re-
covering Marcus theory rates and beyond without the need for
decoherence corrections: The mapping approach to surface hop-
ping,” (2023), arXiv:2311.08802 [physics.chem-ph].

17G. Amati, J. R. Mannouch, and J. O. Richardson, “Detailed bal-
ance in mixed quantum-classical mapping approaches,” (2023),
arXiv:2309.04686 [quant-ph].

18J. E. Runeson and D. E. Manolopoulos, “A multi-state map-
ping approach to surface hopping,” J. Chem. Phys. 159, 094115
(2023).

19M. Yang and G. R. Fleming, “Influence of phonons on exciton
transfer dynamics: comparison of the Redfield, Förster, and mod-
ified Redfield equations,” Chem. Phys. 275, 355–372 (2002).

20G. B. Folland, “How to integrate a polynomial over a sphere,”
Amer. Math. Monthly 108, 446–448 (2001).

21M. A. C. Saller, A. Kelly, and J. O. Richardson, “On the identity
of the identity operator in nonadiabatic linearized semiclassical
dynamics,” J. Chem. Phys. 150, 071101 (2019).

22X. Gao, M. A. C. Saller, Y. Liu, A. Kelly, J. O. Richardson,
and E. Geva, “Benchmarking quasiclassical mapping Hamilto-
nian methods for simulating electronically nonadiabatic molecu-
lar dynamics,” J. Chem. Theory Comput. 16, 2883–2895 (2020).

23A. Ishizaki and G. R. Fleming, “On the adequacy of the red-
field equation and related approaches to the study of quantum
dynamics in electronic energy transfer,” J. Chem. Phys. 130,
234110 (2009).

24P. Huo and T. F. Miller III, “Electronic coherence and the kinet-
ics of inter-complex energy transfer in light-harvesting systems,”
Phys. Chem. Chem. Phys. 17, 30914–30924 (2015).

25J. E. Runeson, Spin-mapping approaches for mixed quantum-
classical dynamics, Ph.D. thesis, ETH Zurich (2022).

26T. J. H. Hele, An Electronically Non-Adiabatic Generalization of
Ring Polymer Molecular Dynamics, Master’s thesis, University
of Oxford (2011).

27T. C. Berkelbach, “Pyrho: A Python package for reduced density
matrix techniques,” (2020).

28M. Wendling, T. Pullerits, M. A. Przyjalgowski, S. I. Vulto, T. J.
Aartsma, R. van Grondelle, and H. van Amerongen, “Electron–
vibrational coupling in the Fenna–Matthews–Olson complex
of Prosthecochloris aestuarii determined by temperature-
dependent absorption and fluorescence line-narrowing measure-
ments,” J. Phys. Chem. B 104, 5825–5831 (2000).

29M. Schmidt am Busch, F. Müh, M. El-Amine Madjet, and
T. Renger, “The eighth bacteriochlorophyll completes the exci-
tation energy funnel in the FMO protein,” J. Phys. Chem. Lett.
2, 93–98 (2011).

30F. Müh, M. E.-A. Madjet, J. Adolphs, A. Abdurah-
man, B. Rabenstein, H. Ishikita, E.-W. Knapp, and
T. Renger, “α-Helices direct excitation energy flow in the
Fenna–Matthews–Olson protein,” P. Natl. Acad. Sci. USA 104,
16862–16867 (2007).
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